Skip to main content

Electrical Properties of Spinal Motoneurons

  • Chapter

Abstract

The study of electrical properties of motoneurons is concerned with the mechanisms by which an individual motoneuron converts its graded, postsynaptic potential (PSP) input into all-or-none spike output. A comparison of motoneuron properties among different species may thus indicate how much of the difference in motoneuron output is related to neuron properties as distinct from synaptic organization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araki, T.: Effects of electrotonus on the electrical activities of spinal motoneurons of the toad. Jap. J. Physiol. 10, 518–532 (1960).

    Article  CAS  Google Scholar 

  • Araki, T., Otani, T.: Responses of single motoneurons to direct stimulation in toad’s spinal cord. J. Neurophysiol. 18, 472–485 (1955).

    PubMed  CAS  Google Scholar 

  • Araki, T., Otani, T.: Accommodation and local response in motoneurons of toad’s spinal cord. Jap. J. Physiol. 9, 69–83 (1959).

    Article  CAS  Google Scholar 

  • Barrett, J.N., Crill, W.E.: Specific membrane properties of cat motoneurons. J. Physiol. (Lond.) 239, 301–324 (1974a).

    CAS  Google Scholar 

  • Barrett, J.N., Crill, W.E.: Influence of dendritic location and membrane properties on the effectiveness of synapses in cat motoneurons. J. Physiol. (Lond.) 239, 325–346 (1974b).

    CAS  Google Scholar 

  • Bennett, M.V.L.: A comparison of electrically and chemically mediated transmission. In: Structure and Function of Synapses (G.D. Pappas and D.P. Purpura, eds.), p. 221–256. New York: Raven Press 1972.

    Google Scholar 

  • Bradley, K., Somjen, G.G.: Accomodation of motoneurons of the rat and cat. J. Physiol. (Lond.) 156, 75–92 (1961).

    CAS  Google Scholar 

  • Brock, L.G., Coombs, J.S., Eccles, J.C.: Intracellular recording from antidromically activated motoneurons. J. Physiol. (Lond.) 122, 429–461 (1953).

    CAS  Google Scholar 

  • Brookhart, J.M., Fadiga, E.: Potential fields initiated during monosynaptic activation of frog motoneurons. J. Physiol. (Lond.) 150, 633–655 (1960).

    CAS  Google Scholar 

  • Brookhart, J.M., Kubota, K.: Studies of the integrative function of the motor neurone. In: Progress in Brain Research, vol. 1: Brain Mechanisms. New York: Elsevier 1963.

    Google Scholar 

  • Burke, R.E., ten Bruggencate, G.: Electrotonic characteristics of alpha motoneurones of varying size. J. Physiol. (Lond.) 212, 1–20 (1971).

    Google Scholar 

  • Coombs, J.S., Curtis, D.R., Eccles, J.C.: The electrical properties of the motoneurone membrane. J. Physiol. (Lond.) 130, 291–325 (1955).

    CAS  Google Scholar 

  • Coombs, J.S., Curtis, D.R., Eccles, J.C.: The interpretation of spike potentials of motoneurones. J. Physiol. (Lond.) 139, 198–231 (1957a).

    CAS  Google Scholar 

  • Coombs, J.S., Curtis, D.R., Eccles, J.C.: The generation of impulses in motoneurones. J. Physiol. (Lond.) 139, 232–249 (1957b).

    CAS  Google Scholar 

  • Eccles, J.C., Eccles, R.M., Lundberg, A.: The action potentials of the alpha motoneurones supplying fast and slow muscles. J. Physiol. (Lond.) 142, 275–291 (1958).

    CAS  Google Scholar 

  • Frank, K., Fuortes, M.G.F.: Stimulation of spinal motoneurones with intracellular electrodes. J. Physiol. (Lond.) 134, 451–470 (1956).

    CAS  Google Scholar 

  • Fuortes, M.G.F., Frank, K., Becker, M.C.: Steps in the production of motoneuron spikes. J. gen. Physiol. 40, 735–754 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Granit, R., Kernell, D., Shortess, G.K.: Quantitative aspects of repetitive firing of mammalian motoneurones caused by injected currents. J. Physiol. (Lond.) 168, 911–931 (1963).

    CAS  Google Scholar 

  • Grinnell, A.D.: A study of the interaction between motoneurones in the frog spinal cord. J. Physiol. (Lond.) 182, 612–648 (1966).

    CAS  Google Scholar 

  • Hodgkin, A.L., Huxley, A.T., Katz, B.: Measurement of the current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116, 429–448 (1952).

    Google Scholar 

  • Ito, M., Oshima, T.: Temporal summation of afterhyperpolar-ization following a motoneurone spike. Nature (Lond.) 195, 910–911 (1962).

    Article  Google Scholar 

  • Ito, M., Oshima, T.: Electrical behavior of the motoneurone membrane during intracellularly applied current steps. J. Physiol. (Lond.) 180, 607–635 (1965).

    CAS  Google Scholar 

  • Katz, B., Miledi, R.A.: A study of the spontaneous miniature potentials in spinal motoneurones. J. Physiol. (Lond.) 168, 389–422 (1963).

    CAS  Google Scholar 

  • Kennard, D.W.: The anatomical organization of neurons in the lumbar region of the spinal cord of the frog (Rana temporaria). J. comp. Neurol. 111, 447–567 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Kernell, D.: The delayed depolarization in cat and rat motoneurones. Progr. Brain Res. 12, 42–55 (1964).

    Article  CAS  Google Scholar 

  • Kernell, D.: The adaptation and the relation between discharge frequency and current strength of cat lumbo-sacral motoneurones stimulated by longlasting injected currents. Acta physiol. scand. 65, 65–73 (1965a).

    Article  Google Scholar 

  • Kernell, D.: High-frequency repetitive firing of cat lumbosacral motoneurones stimulated by long-lasting injected currents. Acta physiol. scand. 65, 74–86 (1965b).

    Article  Google Scholar 

  • Kernell, D.: Input resistance, electrical excitability, and size of ventral horn cells in cat spinal cord. Science 152, 1637–1640 (1965c).

    Article  Google Scholar 

  • Klee, M.R., Perau, F.K., Faber, D.S.: Temperature effects on resting potential and spike parameters of cat motoneurons. Exp. Brain Res. 19, 478–492 (1974).

    CAS  Google Scholar 

  • Kubota, K., Brookhart, J.M.: Inhibitory synaptic potential of frog motor neurons. Amer. J. Physiol. 204, 660–666 (1963a).

    CAS  Google Scholar 

  • Kubota, K., Brookhart, J.M.: Recurrent facilitation of frog motoneurons. J. Neurophysiol. 26, 877–893 (1963b).

    PubMed  CAS  Google Scholar 

  • Lucas, K.: On the rate of variation of the exciting current as a factor in electric excitation. J. Physiol. (Lond.) 36, 253–274 (1907–08).

    CAS  Google Scholar 

  • Machne, X., Fadiga, E., Brookhart, J.M.: Antidromic and synaptic activation of frog motor neurons. J. Neurophysiol. 22, 483–503 (1959).

    PubMed  CAS  Google Scholar 

  • Magherini, P.C., Precht, W., Schwindt, P.C.: Electrical properties of frog motoneurons in the in situ spinal cord. J. Neurophysiol. 39, 459–473 (1976a).

    PubMed  CAS  Google Scholar 

  • Magherini, P.C., Precht, W., Schwindt, P.C.: Evidence for electrotonic coupling between frog motoneurons in the in situ spinal cord. J. Neurophysiol. 39, 474–500 (1976b).

    PubMed  CAS  Google Scholar 

  • Meij, H.S., Holemans, K.C., Meyer, B.J.: Facilitory and excit-ory interaction between motoneurons of adjacent segments in the spinal cord of the frog. Exp. Neurol. 20, 522–532 (1970).

    Article  Google Scholar 

  • Nelson, P.G., Burke, R.E.: Delayed depolarization in cat spinal motoneurons. Exp. Neurol. 17, 16–26 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Nelson, P.G., Frank, K.: Extracellular potential fields of single spinal motoneurons. J. Neurophysiol. 27, 913–927 (1964).

    PubMed  CAS  Google Scholar 

  • Nelson, P.G., Frank, K.: Anomalous rectification in cat spinal motoneurons and effect of polarizing currents on excitatory postsynaptic potential. J. Neurophysiol. 30, 1097–1113 (1967).

    PubMed  CAS  Google Scholar 

  • Nelson, P.G., Lux, H.D.: Some electrical measurements of motoneuron parameters. Biophys. J. 10, 55–73 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Precht, W., Richter, A., Ozawa, S., Shimazu, H.: Intracellular study of frogs vestibular neurons in relation to the labyrinth and spinal cord. Exp. Brain Res. 19, 377–399 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Rall, W.: Branching dendritic trees and motoneuron membrane resistivity. Expt. Neurol. 1, 491–527 (1959).

    Article  CAS  Google Scholar 

  • Rall, W.: Time constants and electrotonic lengths of membrane cylinders and neurons. Biophys. J. 9, 1483–1508 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Richter, D.W., Schlue, W.R., Mauritz, K.H., Nacimiento, A.C.: Comparison of membrane properties of the cell body and initial part of the axon of phasic motoneurons in the spinal cord of the cat. Exp. Brain Res. 20, 193–206 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Schwindt, P.C.: Membrane potential trajectories underlying motoneuron rhythmic firing at high rates. J. Neurophysiol. 36, 434–449 (1973).

    PubMed  CAS  Google Scholar 

  • Schwindt, P.C., Calvin, W.H.: Membrane potential trajectories between spikes underlying motoneuron firing rates. J. Neurophysiol. 35, 311–325 (1972).

    PubMed  CAS  Google Scholar 

  • Silver, M.L.: The motoneurons of the frog spinal cord. J. comp. Neurol. 77, 1–39 (1942).

    Article  Google Scholar 

  • Sotelo, C., Taxi, J.: Ultrastructural aspects of electrotonic junctions in the spinal cord of the frog. Brain Res. 17, 137–141 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Stensaas, L.J., Stensaas, S.S.: Light and electron microscopy of motoneurons and neuropile in the amphibian spinal cord. Brain Res. 31, 67–84 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Stoney, S.D., Machne, X.: Mechanisms of accommodation in different types of frog neurons. J. gen. Physiol. 53, 248–262 (1969).

    Article  PubMed  Google Scholar 

  • Washizu, Y.: Single spinal motoneurons excitable from two different antidromic pathways. Jap. J. Physiol. 10, 121–131 (1960).

    Article  CAS  Google Scholar 

  • Woodbury, J.W.: Potentials in a volume conductor. In: Chap. 3 of Medical Physiology and Biophysics (T.C. Rush and H.P. Patton, eds.). London: W.B. Saunders 1961.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Schwindt, P.C. (1976). Electrical Properties of Spinal Motoneurons. In: Frog Neurobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66316-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66316-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66318-5

  • Online ISBN: 978-3-642-66316-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics