Neurophysiology of the Anuran Visual System

  • O.-J. Grüsser
  • Ursula Grüsser-Cornehls


Due to recent behavioral and electrophysiological data found in different anurans, some investigators believe that the visual system of frogs and toads is a highly specialized machinery which detects only self-moving visual signals relevant to the survival of the animals (p. 357 f., 435 ff.). Other visual signals are believed to be “suppressed” by the neuronal network of the visual system. Thus the ironic poem of Heinrich Heine would be incorrect as such a neuronal machine leaves little possibility for frogs to “erquicken… an Sonnenblicken”. The angular velocity of the sun and the shadows cast by stationary objects in the frog’s habitat would be too slow to be discovered by the movement-detecting neuronal systems.


Receptive Field Retinal Ganglion Cell Modulation Transfer Function Optic Tectum Contrast Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ach, v.: Über die Otolithenfunction und den Labyrinthtonus. Pflügers Arch. ges. Physiol. 86, 122–146 (1901).Google Scholar
  2. Adler, K.: The role of extraoptic photoreceptors in amphibian rhythms and orientation: A review. J. Herpetol. 4, 99–112 (1970).Google Scholar
  3. Akert, K.: Der visuelle Greifreflex. Helv. physiol. pharmacol. Acta 7, 112–134 (1949).PubMedGoogle Scholar
  4. Aleksandrova, T.A.: Retino-tegmental projections in the brain of the frog R. temp. [Russ.] Z. Evol. Biokhim. Fiziol. 8, 456–458 (1972).Google Scholar
  5. Alexander-Schäfer, G.: Vergleichend-physiologische Untersuchungen über die Sehschärfe. Pflügers Arch. ges. Physiol. 119, 571–579 (1907).Google Scholar
  6. Andrew, A.M.: Action potentials from the frog colliculus. J. Physiol. (Lond.) 130, 25 (1955).Google Scholar
  7. Autrum, H.: Das Fehlen unwillkürlicher Augenbewegungen beim Frosch. Naturwissenschaften 46, 435 (1959).Google Scholar
  8. Bäck, I., Donner, K.O., Reuter, T.: The screening effect of the pigment epithelium on the retinal rods in the frog. Vision Res. 5, 101–111 (1965).PubMedGoogle Scholar
  9. Bäckström, A.-C., Reuter, T.: Receptive field organization of ganglion cells in the frog retina: Contributions from cones, green rods and red rods. J. Physiol. (Lond.) 246, 79–107 (1975).Google Scholar
  10. Barlow, H.B.: The receptive field of ganglion cells in the frog’s retina. Abstr. 18th Intern. Congr. Physiol., p. 88–89 (1950).Google Scholar
  11. Barlow, H.B.: Action potentials from the frog’s retina. J. Physiol. (Lond.) 119, 58–68 (1953 a).Google Scholar
  12. Barlow, H.B.: Summation and inhibition in the frog’s retina. J. Physiol. (Lond.) 119, 69–88 (1953 b).Google Scholar
  13. Barlow, H.B., Fitzhugh, R., Kuffler, S.W.: Dark adaptation, absolute threshold and Purkinje shift in single units of the cat’s retina. J. Physiol. (Lond.) 137, 327–337 (1957).Google Scholar
  14. Bartels, M.: Vergleichendes über Augenbewegungen. In: Handb. der normalen pathologischen Physiologie (Bethe Bergmann, ed.), vol. XII/2, p. 1113–1165 (1931).Google Scholar
  15. Baumann, Ch.: Die absolute Schwelle der isolierten Froschnetzhaut. Pflügers Arch. ges. Physiol. 280, 81–88 (1964).Google Scholar
  16. Baumann, Ch.: Der Einfluß von Metarhodopsin auf die Sehpurpurbleichung in der isolierten Netzhaut. Vision Res. 6, 5–13 (1966).PubMedGoogle Scholar
  17. Baumann, Ch.: Sehpurpurbleichung und Stäbchenfunktion in der isolierten Froschnetzhaut. I. Die Sehpurpurbleichung. Pflügers Arch. ges. Physiol. 298, 44–60 (1967 a).Google Scholar
  18. Baumann, Ch.: Sehpurpurbleichung und Stäbchenfunktion in der isolierten Froschnetzhaut. II. Die Begrenzung der Stäbchenfunktion durch Helladaptation. Pflügers Arch. ges. Physiol. 298, 61–69 (1967b).Google Scholar
  19. Baumann, Ch.: Sehpurpurbleichung und Stäbchenfunktion in der isolierten Froschnetzhaut. III. Die Dunkeladaptation des skotopischen Systems nach partieller Sehpurpurbleichung. Pflügers Arch. ges. Physiol. 298, 70–81 (1967 c).Google Scholar
  20. Baumann, Ch.: Regeneration of rhodopsin in the isolated retina of the frog (R. esculenta). Vision Res. 10, 627–637 (1970).PubMedGoogle Scholar
  21. Baumann, Ch.: The regeneration and renewal of visual pigment in vertebrates. In: Handbook of Sensory Physiology (H.J.A. Dartnall, ed.), vol. VII/1, p. 395–416. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  22. Baumann, Ch., Scheibner, H.: The dark adaptation of single units in the isolated frog retina following partial bleaching of rhodopsin. Vision Res. 8, 1127–1138 (1968).PubMedGoogle Scholar
  23. Baurmann, M.: Über reflektorisch ausgelöste Augenmuskelbewegungen der Froschlarven. Klin. Mbl. Augenheilk. 56, 393–402 (1921).Google Scholar
  24. Bechterew, W.: Über die Function der Vierhügel. Pflügers Arch. ges. Physiol. 33, 413–439 (1884).Google Scholar
  25. Beer, Th.: Die Accommodation des Auges bei den Amphibien. Pflügers Arch. ges. Physiol. 73, 501–534 (1898).Google Scholar
  26. Belekhova, M.G., Vesselkin, N.P.: On the Characteristics of the Afferent System in the Frog Brain. [Russ.] Mechanisms of Nervous Activity, p. 162–171. Leningrad: Nauka 1969.Google Scholar
  27. Bellonci, J.: Über die centrale Endigung des Nervus opticus bei den Vertebraten. Z. wiss. Zool. 47, 1–46 (1888).Google Scholar
  28. Bertulis, A. V., Podvigin, N.F.: On new type of impulse responses in frog retina. [Russ.]. In: Investigations of Principles of Information Processing in the Visual System, p. 49–54. Leningrad: Nauka 1970.Google Scholar
  29. Bianki, B., Dushabaev, Z.R.: Morphophysiological structure of visual analysors of amphibians in relation to its paired structure. Fed. Proc., Transl. Suppl. 24, 353–356 (1965).Google Scholar
  30. Biersner, R., Melzack, R.: Approach-avoidance responses to visual stimuli in frogs. Exp. Neurol. 15, 418–424 (1966).PubMedGoogle Scholar
  31. Birukow, G.: Untersuchungen über den optischen Drehnystagmus und über die Sehschärfe des Grasfrosches (R. temporaria). Z. vergl. Physiol. 25, 92–142 (1937).Google Scholar
  32. Birukow, G.: Purkinjesches Phänomen und Farbensehen beim Grasfrosch (R. temporaria). Z. vergl. Physiol. 27, 41–79 (1939).Google Scholar
  33. Birukow, G.: Die Entwicklung des Tages- und des Dämmerungssehens im Auge des Grasfrosches (R. temporaria L.). Z. vergl. Physiol. 31, 322–347 (1949).Google Scholar
  34. Birukow, G.: Studien über statisch-optisch ausgelöste Kompensationsbewegungen und Körperhaltung bei Amphibien. Z. vergl. Physiol. 34, 448–472 (1952).Google Scholar
  35. Birukow, G., Meng, M.: Eine neue Methode zur Prüfung des Gesichtssinnes der Amphibien. Naturwissenschaften 42, 652–653 (1955).Google Scholar
  36. Bishop, G.H.: Fiber groups in the optic nerve. Am. J. Physiol. 106, 461–474 (1933).Google Scholar
  37. Bishop, G.H., Clare, M.H.: Organization and distribution of fibers in the optic tract of the cat. J. comp. Neurol. 103, 269–304 (1955).PubMedGoogle Scholar
  38. Blankenagel, F.: Untersuchungen über die Großhirnfunktionen von R. temporaria. Zool. Jb. 49, 271–322 (1931).Google Scholar
  39. Boldyreva, G.N., Grindel, O.M.: Investigation of the electrical activity of different areas of the brain in the frog. [Russ.] Fiziol. Zh. SSSR 45, 1035–1044 (1959).Google Scholar
  40. Bongard, M.M., Smirnow, M.S.: Spectral sensitivity curves for receptors connected to single fibers of the optic nerve of the frog. [Russ.] Biofizika 2, 336–341 (1957).Google Scholar
  41. Borchers, H.-W.: Entwicklung elektromethodischer Grundlagen für die Erforschung des visuellen Systems von Kröten. Diss. Math. Nat. Gesamthochsch. Kassel, 107 S. (1974).Google Scholar
  42. Boycott, B.B., Mrosovsky, N., Muntz, W.R.A.: Black and white preferences in the frog, R. temporaria, and other anura. J. exp. Biol. 41, 865–877 (1964).PubMedGoogle Scholar
  43. Braitenberg, V.: Electroencephalographic evidence of “Gestalt” in the perception of movement by the frog. Kybernetik 2, 284–287 (1965).PubMedGoogle Scholar
  44. Branston, N.M., Fleming, D.G.: Efferent fibers in the frog optic nerve. Exp. Neurol. 20, 611–623 (1968).PubMedGoogle Scholar
  45. Brehm, A.E.: Die Lurche. Brehms Tierleben 1, 533–606 (1878).Google Scholar
  46. Brennecke-Dietz, M.: Microelectrode recordings from optic tract terminals in the diencephalon of toads (B. bufo). Unpublished experiments, München 1973–1974.Google Scholar
  47. Brindley, G.S.: Physiology of the retina and visual pathway. 298 p. London: E.Arnold Ltd. 1960.Google Scholar
  48. Brown, W.T., Ingle, D.: Receptive field changes produced in frog thalamic units by lesions of the optic tectum. Brain Res. 59, 405–409 (1973).PubMedGoogle Scholar
  49. Brown-Séquard, E.: De la lumière, du froid et de la chaleur sur l’iris dans les cinq classes d’animaux vertebres. J. Physiol. (Paris) 2, 281–294 and 451–460 (1859).Google Scholar
  50. Bruesh, S.R., Arey, L.B.: The number of myelinated and un-myelinated fibers in the optic nerve of vertebrates. J. comp. Neurol. 77, 631–666 (1942).Google Scholar
  51. Bullock, Th.H.: In search of principles in integrative biology. Amer. Zoologist 5, 745–755 (1965).Google Scholar
  52. Burkhardt, D.A.: Correlation between nerve impulse discharge and graded response in the frog retina. J. opt. Soc. Amer. 59, 512 (1969).Google Scholar
  53. Burkhardt, D.A.: Proximal negative response of frog retina. J. Neurophysiol. 33, 405–420 (1970).PubMedGoogle Scholar
  54. Burkhardt, D.A., Berntson, G.G.: Light adaptation and excitation: Lateral spread of signals within the frog retina. Vision Res. 12, 1095–1111 (1972).PubMedGoogle Scholar
  55. Buser, P.: Réponse du tectum de Grenoulle à la stimulation lumineuse brêve; mise en évidence d’une composante lente et tardive. C. R. Soc. Biol. (Paris) 143, 30–32 (1949 a).Google Scholar
  56. Buser, P.: Contribution à l’étude des potentials lents centraux. Analyse de l’activité électrique du lobe optique de deux vertébrés inférieurs. Arch. Sci. Physiol. 3, 471–488 (1949b).Google Scholar
  57. Buser, P.: Etude de l’activité électrique du lobe optique des vertébrés inférieurs. J. Physiol. (Paris) 47, 737–768 (1955).Google Scholar
  58. Butenandt, E.: Die Verarbeitung von Form, Größe und Geschwindigkeit von Reizflächen durch das Wirkungsgefüge der Klasse-2-Neurone in der Froschnetzhaut. Diss. (Dr. rer. nat.) Berlin, Freiburg i. Br. (1971).Google Scholar
  59. Butenandt, E., Giebel, H.: Nichtlineare Schichtmodelle der Froschretina. Bericht Sonderforschungsbereich 50, Kybernetik, München, 7 p. (1974).Google Scholar
  60. Butenandt, E., Grüsser, O.-J.: The effect of stimulus area on the response of movement detecting neurons in the frog’s retina. Pflügers Arch. ges. Physiol. 298, 283–293 (1968).Google Scholar
  61. Buytendijk, F. J. J.: Instinct de la recherche du nid et expérience chez les crapauds. (B. vulgaris et B. calamita). Arch. néerl. Physiol. (Sér. IIIc) 2, 1–50 (1918 a).Google Scholar
  62. Buytendijk, F.J.J.: L’instinct d’alimentation et l’expérience chez les crapauds. Arch. néerl. Physiol. (Sér. IIIc) 2, 217–228 (1918 b).Google Scholar
  63. Byzov, A.L.: The dynamics of the lability of single neurons of the frog retina (flicker stimulation at different intensities). Dokl. Akad. Nauk USSR 105, 852–855 (1955 a).Google Scholar
  64. Byzov, A.L.: The physiological lability of the frog retina. [Russ.] J.N. Sechenov. Physiol. J. USSR 41, 363–372 (1955 b).Google Scholar
  65. Byzov, A.L.: Physiological lability of the frog retina and its elements (russ.). In: 4th Conf. Problems Physiol. Optics. [Russ.] Acad. Sci., USSR, Moscow-Leningrad, p. 358–366 (1958).Google Scholar
  66. Byzov, A.L.: On the sources of impulses recorded from inner layers of the frog retina. [Russ.] Biophysica (Moscow) 4, 414–421 (1959).Google Scholar
  67. Byzov, A.L.: Functional properties of different cells in the retina of cold-blooded vertebrates. Cold Spr. Harb. Symp. quant. Biol. 30, 547–558 (1965).Google Scholar
  68. Byzov, A.L., Hanitzsch, R.: Intracellular records of the responses of different cells in the retina of the frog and amblystoma. [Russ.] J.N. Sechonov Physiol. J. USSR 52, Nr. 3 (1966).Google Scholar
  69. Cajal, S. Ramon y: Sur la morphologie et les connexions des éléments de la retine des oiseaux. Anat. Anz. 4, 111–121 (1889).Google Scholar
  70. Cajal, S. Ramon Y: Die Retina. Transl. by A. Greeff. Wiesbaden: Bergmann 1896.Google Scholar
  71. Cajal, S. Ramon Y: Histologie du système nerveux de l’homme et des vertébrés, vol. 2. Paris: Maloine 1911.Google Scholar
  72. Campenhausen, C. v.: Quantitative Beziehungen zwischen Lichtreiz und Kontraktion des Musculus sphincter pupillae von Scheibenzünglern (Discoglossus pictus). Kybernetik 1, 249–267 (1963).Google Scholar
  73. Chang, H.-T., Chiang, C.Y., Wu, C.P.: Electrical response of single neurons in the optic lobe of toad to photic stimulation. Scientia Sinica 8, 1131–1152 (1959).PubMedGoogle Scholar
  74. Chang, H.-T., Kostyuk, P.G.: Unit discharges of cerebellar neurons elicited by stimulation of vestibular nerve in toads. Sci. Record, New Ser. 3, 507–515 (1959).Google Scholar
  75. Chang, H.-T., Mkrtycheva, L.: Neurons responsive to interruption of light and neurons active in darkness in the optic tectum of toad. Scientia Sinica 11, 90–99 (1962).PubMedGoogle Scholar
  76. Chang, H.-T., Wu, C.-P.: Optic activation of cerebellar and vestibular neurons in the toad. Sci. Record (Peking), New Ser. 3, 640–644 (1959).Google Scholar
  77. Chapman, R.M.: Spectral sensitivity of single neural units in the bullfrog retina. J. opt. Soc. Amer. 51, 1102–1112 (1961).Google Scholar
  78. Chapman, R.M.: Spectral sensitivities of neural impulses and slow waves in the bullfrog retina. Vision Res. 2, 89–102 (1962).Google Scholar
  79. Chapman, R.M.: Spectral sensitivity comparison of on- and off-responses of the frog electroretinogram. Vision Res. 4, 455–463 (1964).PubMedGoogle Scholar
  80. Chapman, R.M.: Light wavelength and energy preferences of the bull frog: Evidence for color vision. J. comp. physiol. Psychol. 61, 420–435 (1966).Google Scholar
  81. Chievitz, J.H.: Untersuchungen über die Area centralis retinae. Arch. Anat. Physiol., Anat. Abt. (Suppl. Band) 1889.Google Scholar
  82. Chievitz, J.H.: Über das Vorkommen der Area centralis retinae. Arch. Anat. 1891, 311–334 (1891).Google Scholar
  83. Chino, Y.M., Sturr, J.F.: The time course of inhibition during the delayed response of the on-off ganglion cell in the frog. Vision Res. 15, 185–191 (1975 a).PubMedGoogle Scholar
  84. Chino, Y.M., Sturr, J.F.: Rod and cone contributions to the delayed response of the on-off ganglion cell in the frog. Vision Res. 15, 193–202 (1975 b).PubMedGoogle Scholar
  85. Chung, S.-H., Gaze, R.M., Stirling, R.V.: Abnormal visual function in Xenopus following stroboscopic illumination. Nature (Lond.) New Biol. 246, 186–188 (1973).Google Scholar
  86. Chung, S.-H., Lettvin, J.Y., Raymond, S.A.: The Clooge: A simple device for interspike interval analysis. J. Physiol. (Lond.) 239, 63–66 (1974).Google Scholar
  87. Chung, S.-H., Raymond, S.A., Lettvin, J.Y.: Multiple meaning in single visual units. Brain, Behav. Evol. 3, 72–101 (1970).Google Scholar
  88. Clairambault, P.: Étude architectonique du télencéphale de R. pipiens en début de métamorphose. J. Hirnforsch. 11, 203–225 (1969).PubMedGoogle Scholar
  89. Crescitelli, F.: The e-wave inhibition in the developing retina of the frog. Vision Res. 10, 1077–1091 (1970).PubMedGoogle Scholar
  90. Crescitelli, F., Sickel, E.: Delayed off-responses recorded from the isolated frog retina. Vision Res. 8, 801–816 (1968).PubMedGoogle Scholar
  91. Cronly-Dillon, J.: Pattern of retinotectal connections after retinal regeneration. J. Neurophysiol. 31, 410–418 (1968).PubMedGoogle Scholar
  92. Czerny, V.: Ueber Blendung der Netzhaut durch Sonnenlicht. Sitzungsber. K. Akad. Wiss., math.-nat. Kl. 56(II) (1867).Google Scholar
  93. Diebschlag, E.: Zur Kenntnis der Großhirnfunktion einiger Urodelen und Anuren. Z. vergl. Physiol. 21, 343–394 (1934).Google Scholar
  94. Dieringer, N.: Responses of Purkinje cells in the cerebellum of the grassfrog (Rana temporaria) to somatic and visual stimuli. J. comp. Physiol. 90, 409–436 (1974).Google Scholar
  95. Dittler, R.: Zapfenkontraktion an der isolierten Froschnetzhaut. Pflügers Arch. ges. Physiol. 117, 295–328 (1907).Google Scholar
  96. Dogiel, A.S.: Über die nervösen Elemente der Netzhaut der Amphibien und Vögel. Anat. Anz. 3, 342–347 (1888).Google Scholar
  97. Domberg, H.: Die Veränderung der Größe des rezeptiven Feldzentrums retinaler on-Zentrum-Neurone der Katze bei verschiedener Lichtadaptation. Med. Diss. Berlin 1972.Google Scholar
  98. Donner, K.O.: The effect of a colored adapting field on the spectral sensitivity of frog retinal elements. J. Physiol. (Lond.) 149, 318–326 (1959).Google Scholar
  99. Donner, K.O.: The scotopic spectral sensitivity of the clawed toad (Xenopus laevis). Commentat. Biol. 28, 1–6 (1965).Google Scholar
  100. Donner, K.O.: Näkösolut ja näköaineet. Eripainos, Luonnon tutkija 77(3), 45–79 (1973).Google Scholar
  101. Donner, K.O., Reuter, T.: The spectral sensitivity and photopigment of the green rods in the frog’s retina. Vision Res. 2, 357–372 (1962).Google Scholar
  102. Donner, K.O., Reuter, T.: The dark-adaptation of single units in the frog’s retina and its relation to the regeneration of rhodopsin. Vision Res. 5, 615–632 (1965).PubMedGoogle Scholar
  103. Donner, K.O., Reuter, T.: Dark-adaptation processes in the rhodopsin rods of the frog’s retina. Vision Res. 7, 17–41 (1967).PubMedGoogle Scholar
  104. Donner, K.O., Reuter, T.: Visual adaptation of the rhodopsin rods in the frog’s retina. J. Physiol. (Lond.) 199, 59–87 (1968).Google Scholar
  105. Donner, K.O., Rushton, W.A.H.: Retinal stimulation by light substitution. J. Physiol. (Lond.) 149, 288–302 (1959 a).Google Scholar
  106. Donner, K.O., Rushton, W.A.H.: Rod-cone interaction in the frog’s retina analysed by the Stiles-Crawford effect and by dark-adaptation. J. Physiol. (Lond.) 149, 303–317 (1959 b).Google Scholar
  107. Dowling, J.E.: Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frog and primates. Proc. roy. Soc. B 170, 205–228 (1968).Google Scholar
  108. Dowling, J.E.: Organization of vertebrate retinas. Invest. Ophthal. 9, 655–680 (1970).PubMedGoogle Scholar
  109. Ducret, S., Kogo, S.: Untersuchungen über den Einfluß der Sympathicusreizung auf die Retina. Pflügers Arch. ges. Physiol. 227, 71–80 (1931).Google Scholar
  110. Ebbesson, S.O.E.: On the organization of central visual pathways in vertebrates. Brain, Behav. Evol. 3, 178–194 (1970).Google Scholar
  111. Ebbesson, S.O.E.: A proposal for a common nomenclature for some optic nuclei in vertebrates and the evidence for a common origin of two such cell groups. Brain, Behav. Evol. 6, 75–91 (1972).Google Scholar
  112. Ebbesson, S.O.E., Jane, J.A., Schroeder, D.M.: A general overview of major interspecific variations in thalamic organization. Brain, Behav. Evol. 6, 92–130 (1972).Google Scholar
  113. Eckmiller, R.: Ein elektronisches Analogmodell zum Studium der Bedeutung der Wirbeltiernetzhaut für die Zeichenerkennung. Dissertation T.U. Berlin, 1971.Google Scholar
  114. Eckmiller, R., Grüsser, O.-J.: Electronic simulation of the velocity function of movement-detecting neurons. Bibl. Ophthal. (Basel) 82, 274–279 (1972).Google Scholar
  115. Eibl-Eibesfeld, I.: Nahrungserwerb und Beuteschema der Erdkröte (Bufo bufo L.). Behaviour 4, 1–35 (1951).Google Scholar
  116. Eichler, U.B.: Neurogenesis in the optic tectum of larval R. pipens following unilateral enucleation. J. comp. Neurol. 141, 375–395 (1971).PubMedGoogle Scholar
  117. Eikmanns, K.-H.: Verhaltensphysiologische Untersuchungen über den Beutefang und das Bewegungssehen der Erdkröte (Bufo bufo L.). Z. Tierpsychol. 12, 229–253 (1955).Google Scholar
  118. Ewert, J.-P.: Der Einfluß peripherer Sinnesorgane und des Zentralnervensystems auf die Antwortbereitschaft bei der Richtbewegung der Erdkröte (Bufo bufo L.). Math. Nat. Diss. Göttingen (1965).Google Scholar
  119. Ewert, J.-P.: Auslösung des Beute- und des Fluchtverhaltens durch elektrische Mittelhirn-Reizung bei der Erdkröte (Bufo bufo L.). Naturwissenschaften 53, 589 (1966).PubMedGoogle Scholar
  120. Ewert, J.-P.: Der Einfluß von Störreizungen auf die Antwortbereitschaft bei der Richtbewegung der Erdkröte (Bufo bufo L.). Z. Tierpsychol. 24, 208–312 (1967 a).Google Scholar
  121. Ewert, J.-P.: Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo). Z. vergl. Physiol. 57, 263–298 (1967 b).Google Scholar
  122. Ewert, J.-P.: Elektrische Reizung des retinalen Projektionsfeldes im Mittelhirn der Erdkröte (Bufo bufo L.). Pflügers Arch. ges. Physiol. 295, 90–98 (1967 c).Google Scholar
  123. Ewert, J.-P.: Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L.) durch elektrische Mittelhirnreizung. Z. vergl. Physiol. 54, 455–481 (1967 d).Google Scholar
  124. Ewert, J.-P.: Verhaltensphysiologische Untersuchungen zum ”stroboskopischen Sehen“der Erdkröte (Bufo bufo L.). Pflügers Arch. ges. Physiol. 299, 158–166 (1968 a).Google Scholar
  125. Ewert, J.-P.: Der Einfluß von Zwischenhirndefekten auf Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L.). Z. vergl. Physiol. 61, 41–70 (1968 b).Google Scholar
  126. Ewert, J.-P.: Quantitative Analyse von Reiz-Reaktionsbeziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte (Bufo bufo L.). Pflügers Arch. ges. Physiol. 308, 225–243 (1969 a).Google Scholar
  127. Ewert, J.-P.: Das Beuteverhalten Zwischenhirn-defekter Erdkröten (Bufo bufo L.) gegenüber bewegten und ruhenden visuellen Mustern. Pflügers Arch. 306, 210–218 (1969 b).PubMedGoogle Scholar
  128. Ewert, J.-P.: Aufnahme und Verarbeitung visueller Informationen im Beutefang- und Fluchtverhalten der Erdkröte Bufo bufo (L.). Verh. Dtsch. Zool. Ges. Köln, 218–226 (1970a).Google Scholar
  129. Ewert, J.-P.: Neural mechanisms of prey-catching and avoidance behavior in the toad (Bufo bufo L.). In: Subcortical Visual Systems (D. Ingle and G.E. Schneider, eds.). Basel: S. Karger 1970 b.Google Scholar
  130. Ewert, J.-P.: Neural mechanisms of prey-catching and avoidance behavior in the toad (Bufo bufo L.). Brain, Behav. Evol. 3, 36–56 (1970 c).Google Scholar
  131. Ewert, J.-P.: Single unit response of the toad’s (Bufo americanus) caudal thalamus to visual objects. Z. vergl. Physiol. 74, 81–102 (1971).Google Scholar
  132. Ewert, J.-P.: Lokalisation und Identifikation im visuellen System der Wirbeltiere. Fortschr. Zool. 21, 307–333 (1973).PubMedGoogle Scholar
  133. Ewert, J.-P.: The neural basis of visually guided behavior. Sci. Amer. 230, 34–42 (1974).PubMedGoogle Scholar
  134. Ewert, J.-P., Birukow, G.: Über den Einfluß des Zentralnervensystems auf die Ermüdbarkeit der Richtbewegung im Beuteschema der Erdkröte (Bufo bufo L.). Naturwissenschaften 52, 1–4 (1965).Google Scholar
  135. Ewert, J.-P., Borchers, H.-W.: Reaktionscharakteristik von Neuronen aus dem Tectum opticum und Subtectum der Erdkröte Bufo bufo (L.). Z. vergl. Physiol. 71, 165–189 (1971).Google Scholar
  136. Ewert, J.-P., Borchers, H.-W.: Antworten retinaler Ganglienzellen bei freibeweglichen Kröten. J. comp. Physiol. 92, 117–130 (1974 a).Google Scholar
  137. Ewert, J.-P., Borchers, H.-W.: Inhibition of toad (Bufo bufo L.) retinal on-off and off-ganglion cells via active eye closing. Vision Res. 14, 1275–1276 (1974 b).PubMedGoogle Scholar
  138. Ewert, J.-P., Gebauer, L.: Größenkonstanzphänomene im Beutefangverhalten der Erdkröte (Bufo bufo L.). J. comp. Physiol. 85, 303–315 (1973).Google Scholar
  139. Ewert, J.-P., Härter, H.-A.: Der hemmende Einfluß gleichzeitig bewegter Beuteattrappen auf das Beutefangverhalten der Erdkröte (Bufo bufo L.). Z. vergl. Physiol. 64, 135–153 (1969).Google Scholar
  140. Ewert, J.-P., Hock, F.: Movement-sensitive neurons in the toad’s retina. Exp. Brain Res. 16, 41–59 (1972).PubMedGoogle Scholar
  141. Ewert, J.-P., Hock, F.J., Wietersheim, A. v.: Thalamus, Praetectum, Tectum: Retinale Topographie und physiologische Interaktionen bei der Kröte Bufo bufo (L.). J. comp. Physiol. 92, 343–356 (1974).Google Scholar
  142. Ewert, J.-P., Ingle, D.: Excitatory effects following habituation of prey-catching activity in frogs and toads. J. comp. physiol. Psychol. 77, 369–374 (1971).PubMedGoogle Scholar
  143. Ewert, J.-P., Rehn, B.: Wirksamkeit optischer Reizmuster beim Auslösen des Fluchtverhaltens der Wechselkröte. Naturwissenschaften 55, 351 (1968).Google Scholar
  144. Ewert, J.-P., Rehn, B.: Quantitative Analyse der Reiz-Reaktionsbeziehungen bei visuellem Auslösen des Fluchtverhaltens der Wechselkröte (Bufo viridis Laur.). Behaviour 35, 212–234 (1969).Google Scholar
  145. Ewert, J.-P., Seelen, W. v.: Neurobiologie und System-Theorie eines visuellen Mustererkennungsmechanismus bei Kröten. Kybernetik 14, 167–183 (1974).PubMedGoogle Scholar
  146. Ewert, J.-P., Siefert, G.: Seasonal change of contrast detection in the toad’s Bufo bufo (L.) visual system. J. comp. Physiol. 94, 177–186 (1974).Google Scholar
  147. Ewert, J.-P., Siefert, G.: Neuronal correlates of seasonal changes in contrast-detection of prey-catching behavior in toads (Bufo bufo L.). Vision Res. 14, 431–432 (1974).PubMedGoogle Scholar
  148. Ewert, J.-P., Speckhardt, I., Amelang, W.: Visuelle Inhibition und Exzitation im Beutefangverhalten der Erdkröte Bufo bufo (L.). Z. vergl. Physiol. 68, 84–110 (1970).Google Scholar
  149. Ewert, J.-P., Wietersheim, A. v.: Musterauswertung durch Tectum- und Thalamus/Praetectum-Neurone im visuellen System der Kröte Bufo bufo (L.). J. comp. Physiol. 92, 131–148 (1974 a).Google Scholar
  150. Ewert, J.-P., Wietersheim, A. v.: Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte Bufo bufo (L.). J. comp. Physiol. 92, 149–160 (1974 b).Google Scholar
  151. Ewert, J.-P., Wietersheim, A. v.: Ganglienzellen in der retinotectalen Projektion der Kröte Bufo bufo (L.). Acta anat. (Basel) 88, 56–66 (1974 c).Google Scholar
  152. Feldman, J.D., Gaze, R.M., Keating, M.J.: Delayed innervation of the optic tectum during development in Xenopus laevis. Brain Res. 14, 16–23 (1971).Google Scholar
  153. Ferguson, D.E.: Orientation in three species on anuran amphibians. Ergeb. Biol. 26, 128–134 (1963).Google Scholar
  154. Ferguson, D.E., Landreth, H.F.: Celestial orientation of Fowlers toad Bufo fowleri. Behaviour 26, 105–123 (1966).Google Scholar
  155. Ferguson, D.E., Landreth, H.F., McKeown, J.P.: Sun compass orientation of the northern cricket frog, Acris crepitans. Animal Behav. 15, 45–53 (1967).Google Scholar
  156. Ferguson, D.E., McKeowna, J.P., Bosarge, O.S.: Sun-compass orientation of bullfrogs. Copeia 1968, 230–235 (1968).Google Scholar
  157. Finkelstein, D., Grüsser, O.-J.: Frog retina: Detection of movement. Science 150, 1050–1051 (1965).PubMedGoogle Scholar
  158. Finkelstein, D., Grüsser, O.-J., Reich-Motel, H.: Reaktionen einzelner Retinaneurone des Frosches (Rana esculenta) auf bewegte Reize verschiedener Winkelgeschwindigkeit. Pflügers Arch. ges. Physiol. 283, R 48 (1965).Google Scholar
  159. Fisher, L.J.: Changes during maturation and metamorphosis in the synaptic organization of the tadpole retina inner plexiform layer. Nature (Lond.) 235, 391–393 (1972).Google Scholar
  160. Fite, K.V.: Single unit analysis of binocular neurons in the frog optic tectum. Exp. Neurol. 24, 475–486 (1969).PubMedGoogle Scholar
  161. Fite, K.V.: The visual fields of the frog and toad: A comparative study. Behav. Biol. 9, 707–718 (1973).PubMedGoogle Scholar
  162. Franz, V.: Zur tierpsychologischen Stellung von Rana temporaria und Bufo calamita. Biol. Zbl. 47, 1–12 (1927).Google Scholar
  163. Franz, V.: III. Höhere Sinnesorgane. I. Vergleichende Anatomie des Wirbeltierauges. Handb. vergl. Anat. 2, 989–1093 (1934).Google Scholar
  164. Freisling, J.: Studien zur Biologie und Physiologie der Wechselkröte (B. viridis Laur.). Öst. Zool. Z. 1, 383–440 (1948).Google Scholar
  165. Fritz, F.: Ueber die Struktur des Chiasma nervorum opticorum bei Amphibien. Jenaische Z. Naturwissenschaften 33 (1900).Google Scholar
  166. Frontera, J.G.: A study of the anuran diencephalon. J. comp. Neurol. 96, 1–69 (1952).PubMedGoogle Scholar
  167. Gaillard, F., Liègea, B., Galand, G.: About the binocular visual field of the frog: Existence of a horopter. Doc. ophthal. (Basel) 1974, manuscript in preparation.Google Scholar
  168. Galand, G., Liège, B.: Unités à convergence visuelle et hétérosensorielle dans le système nerveux central de la Grenouille, (Units with visual and heterosensorial convergence in the frog’s CNS). J. Physiol. (Paris) 62, Suppl. 1, 154 (1970).Google Scholar
  169. Galand, G., Liège, B., Morin, G.: Convergence visuelle dans le tronc cérébral de la Grenouille au niveau des unités proprioceptives répondant à l’abaissement de la mâchoire (Visual convergence recorded in the frog’s brain stem at the level of proprioceptive units responding to the lowering of the jaw). J. Physiol. (Paris) 63, 52 (1971).Google Scholar
  170. Gaupp, E.: A. Ecker’s und R. Wiederheim’s Anatomie des Frosches auf Grund eigener Untersuchungen durchaus neu bearbeitet. 2. ed. 1.–3. Abt. Braunschweig: Vieweg 1896 (229 p.), 1899 (548 p.), 1904 (961 p.).Google Scholar
  171. Gaze, R.M.: Binocular vision in frogs. J. Physiol. (Lond.) 143, 20 (1958 a).Google Scholar
  172. Gaze, R.M.: The representation of the retina on the optic lobe of the frog. Quart. J. exp. Physiol. 43, 209 (1958 b).PubMedGoogle Scholar
  173. Gaze, R.M.: Regeneration of the optic nerve in X. laevis. J. Physiol. (Lond.) 146, 40 (1959).Google Scholar
  174. Gaze, R.M.: The formation of nerve connections: A consideration of neural specificity, modulation and comparable phenomena. London: Academic Press 1970.Google Scholar
  175. Gaze, R.M.: Neuronal specificity. Brit. med. Bull. 30, 116–121 (1974).PubMedGoogle Scholar
  176. Gaze, R.M., Jacobson, M.: The projection of the binocular visual field on the optic tecta of the frog. Quart. J. exp. Physiol. 47, 273–280 (1962).Google Scholar
  177. Gaze, R.M., Jacobson, M.: A study of the retinotectal projection during regeneration of the optic nerve in the frog. Proc. roy. Soc. 157, 420–448 (1963 a).Google Scholar
  178. Gaze, R.M., Jacobson, M.: The path from the retina to the ipsilateral optic tectum of the frog. J. Physiol. (Lond.) 165, 73 (1963 b).Google Scholar
  179. Gaze, R.M., Jacobson, M.: Convexity detectors in the frog’s visual system. Proc. physiol. Soc. 169, 1–3 (1963 c).Google Scholar
  180. Gaze, R.M., Jacobson, M., Székely, G.: The retino-tectal projection in Xenopus with compound eyes. J. Physiol. (Lond.) 165, 484–499 (1963).Google Scholar
  181. Gaze, R.M., Jacobson, M., Székely, G.: On the formation of connexions by compound eyes in Xenopus. J. Physiol. (Lond.) 176, 409–417 (1965).Google Scholar
  182. Gaze, R.M., Keating, M.J.: Visual responses from ipsilateral tectal units in the frog. J. Physiol. (Lond.) 192, 52–53 (1967).Google Scholar
  183. Gaze, R.M., Keating, M.J.: The depth distribution of visual units in the tectum of the frog following regeneration of the optic nerve. J. Physiol. (Lond.) 200, 128–129 (1968).Google Scholar
  184. Gaze, R.M., Keating, M.J.: Receptive field properties of single units from the visual projection to the ipsilateral tectum in the frog. Quart. J. exp. Physiol. 55, 143–152 (1970).PubMedGoogle Scholar
  185. Gaze, R.M., Keating, M.J., Chung, S.H.: The evolution of the retinotectal map during development in Xenopus. Proc. roy. Soc. 185, 301–330 (1974).Google Scholar
  186. Gaze, R.M., Keating, M.J., Székely, G., Beazley, L.: Binocular interaction in the formation of specific intertectal neuronal connexions. Proc. roy. Soc. B 175, 107–147 (1970).Google Scholar
  187. Genderen Stort, A.G.H. v.: Über Form- und Ortsveränderungen der Netzhautelemente unter Einfluß von Licht und Dunkel. Albrecht v. Graefes Arch. Ophthal. 33, Abt. III, 107–115 (1887).Google Scholar
  188. George, A.: Mikroelektrodenableitung einzelner Neurone im Tectum opticum von R.esculenta. Med. Diss. Berlin, 1975.Google Scholar
  189. George, A., Grüsser, O.-J., Grüsser-Cornehls, U.: Responses of tectal cells of the frog (Rana esculenta) to moving stimuli of different size, shape, contrast and angular velocity. Brain, Behav. Evol. (in preparation, 1975).Google Scholar
  190. George, A., Grüsser-Cornehls, U.: Responses of frog tectal cells to moving and stationary visual stimuli. Pflügers Arch. ges. Physiol. 359, 203 (1975).Google Scholar
  191. George, S.A., Marks, W.B.: Optic nerve terminal arborizations in the frog: Shape and orientation inferred from electrophysiological measurements. Exp. Neurol. 42, 467–482 (1974).PubMedGoogle Scholar
  192. Gernandt, B.: Color sensitivity, contrast and polarity of the retinal elements. J. Neurophysiol. 10, 303–308 (1947).PubMedGoogle Scholar
  193. Gernandt, B., Granit, R.: Single fibre analysis of inhibition and the polarity of retinal elements. J. Neurophysiol. 10, 295–301 (1947).PubMedGoogle Scholar
  194. Glezer, V.D., Bertulis, A.V., Ivanov, V.A., Kostelyanets, N.B., Podvigin, N.F.: Functional Organization of the Receptive Fields of the Retina. Sensory Processes at the Neuronal and Behavioral Level, p. 19–46. New York and London: Academic Press 1971.Google Scholar
  195. Glickstein, M., Millodot, M.: Retinoscopy and eye size. Science 168, 605–606 (1970).PubMedGoogle Scholar
  196. Goldberg, S., Kotani, M.: The projection of optic nerve fibers in the frog R. catesbiana as studied by radiography. Anat. Rec. 158, 325–332 (1967).PubMedGoogle Scholar
  197. Goltz, F.: Beiträge zur Lehre von den Funktionen der Nervenzentren des Frosches. Berlin: A. Hirschwald 1869.Google Scholar
  198. Gordon, J., Graham, N.: Early light and dark adaptation in frog on-off ganglion cells. Vision Res. 13, 647–660 (1973).PubMedGoogle Scholar
  199. Govardovskiǐ, V.I., Zueva, L.V.: Spectral sensitivity of the frog eye in the ultraviolet and visible region. Vision Res. 14, 1317–1321 (1974).PubMedGoogle Scholar
  200. Graham, L.T., Baxter, C.F., Lolley, R.N.: In vivo influence of light or darkness on the Gaba system in the retina of the frog (R. pipiens). Brain Res. 20, 379–388 (1970).PubMedGoogle Scholar
  201. Granit, R.: Rotation activity and spontaneous rhythms in the retina. Acta physiol. scand. 1, 370–379 (1941).Google Scholar
  202. Granit, R.: Colour receptors of the frog’s retina. Acta physiol. scand. 3, 137–151 (1942).Google Scholar
  203. Granit, R.: Sensory mechanisms of the retina. London: Oxford Univ. Press 1947.Google Scholar
  204. Granit, R.: Neural organization of the retinal elements, as revealed by polarization. J. Neurophysiol. 11, 239–251 (1948).PubMedGoogle Scholar
  205. Granit, R.: The organization of the vertebrate retinal elements. Ergebn. Physiol. 46, 31–70 (1950).Google Scholar
  206. Granit, R., Munsterhjelm: The electrical responses of dark-adapted frogs’ eyes to monochromatic stimuli. J. Physiol. (Lond.) 88, 436–458 (1937).Google Scholar
  207. Granit, R., Ridell, H.A.: The electrical responses of light- and dark-adapted frogs’ eyes to rhythmic and continuous stimuli. J. Physiol. (Lond.) 81, 1–28 (1934).Google Scholar
  208. Granit, R., Svaetichin, G.: Principles and technique of the electrophysiological analysis of color reception with the aid of microelectrodes. Upsala Läk.-Foren. Förh. 65, 161–177 (1939).Google Scholar
  209. Granit, R., Wrede, C.M.: The electrical responses of light-adapted frogs’ eyes to monochromatic stimuli. J. Physiol. (Lond.) 89, 239–256 (1937).Google Scholar
  210. Grauer, C., Grüsser-Cornehls, U., Reich-Motel, H.: Neuronal adaptation in the anuran retina. (in preparation, 1975).Google Scholar
  211. Grind, W.A. van de, Grüsser, O.-J., Lunkenheimer, H.U.: Temporal transfer properties of the afferent visual system. Psychophysical, neurophysiological and theoretical investigations. In: Handbook of Sensory Physiology, vol. VII/3A (R. Jung, ed.), p. 431–573. Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  212. Gruberg, E.R., Ambros, V.R.: A forebrain visual projection in the frog (R. pipiens). Exp. Neurol. 44, 187–197 (1974).PubMedGoogle Scholar
  213. Groethuysen, G.: Dioptrik des Auges. Refraktionsanomalien. Augenleuchten und Augenspiegel. In: Handbuch der normalen und pathologischen Physiologie (A. Bethe et al., ed.), vol. XII/1. Berlin: Springer 1929.Google Scholar
  214. Grüsser, O.-J.: Ein Analogmodell der Funktion bewegungsempfindlicher Neurone der Froschnetzhaut. Pflügers Arch. ges. Physiol. 294, 65 (1967).Google Scholar
  215. Grüsser, O.-J.: Organization and performance of the anuran visual system. Europ. Prog. Brain Behav. Res.: Mechanisms of Visual Perception. Zuoz 1974.Google Scholar
  216. Grüsser, O.-J., Dannenberg, H.: Eine Perimeter-Apparatur zur Reizung mit bewegten visuellen Mustern. Pflügers Arch. ges. Physiol. 285, 373–378 (1965).Google Scholar
  217. Grüsser, O.-J., Finkelstein, D.: Analyse eines auf ”Bewegungswahrnehmung“spezialisierten Neuronensystems in der Froschnetzhaut. In: Fortschritte der Kybernetik (W. Kroebel, ed.), p. 83–96. München: R. Oldenbourg-Verl. 1967.Google Scholar
  218. Grüsser, O.-J., Finkelstein, D., Grüsser-Cornehls, U.: The effect of stimulus velocity on the response of movement sensitive neurons of the frog’s retina. Pflügers Arch. ges. Physiol. 300, 49–66 (1968).Google Scholar
  219. Grüsser, O.-J., Grüsser-Cornehls, U.: Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z. vergl. Physiol. 59, 1–24 (1968 a).Google Scholar
  220. Grüsser, O.-J., Grüsser-Cornehls, U.: Die Informationsverarbeitung im visuellen System des Frosches. Kybernetik 331–360 (1968 b).Google Scholar
  221. Grüsser, O.-J., Grüsser-Cornehls, U.: Neurophysiologie des Bewegungssehens. Bewegungsempfindliche und richtungsspezifische Neurone im visuellen System. Ergebn. Physiol. 61, 178–265 (1969).PubMedGoogle Scholar
  222. Grüsser, O.-J., Grüsser-Cornehls, U.: Die Steuerung des Beutefang- und Fluchtverhaltens von Anuren durch verschiedene Nervenzellklassen im Tectum opticum. Pflügers Arch. 319, R 149 (1970 a).Google Scholar
  223. Grüsser, O.-J., Grüsser-Cornehls, U.: Die Neurophysiologie visuell gesteuerter Verhaltensweisen bei Anuren. Verhandlungsbericht Dtsch. zool. Ges. 64, 201–218 (1970 b).Google Scholar
  224. Grüsser, O.-J., Grüsser-Cornehls, U.: Comparative physiology of movement-detecting neuronal systems in lower vertebrates (Anura and Urodela). Bibl. Ophthal. (Basel) 82, 260–273 (1972).Google Scholar
  225. Grüsser, O.-J., Grüsser-Cornehls, U.: Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations. In: Handbook of Sensory Physiology (R. Jung, ed.), vol. VII/3A, p. 333–429. Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  226. Grüsser, O.-J., Grüsser-Cornehls, U., Bullock, T.H.: Functional organization of receptive fields of movement detecting neurons in the frog’s retina. Pflügers Arch. ges. Physiol. 279, 88–93 (1964).Google Scholar
  227. Grüsser, O.-J., Grüsser-Cornehls, U., Finkelstein, D., Henn, V., Patutschnik, M., Butenandt, E.: A quantitative analysis of movement detecting neurons in the frog’s retina. Pflügers Arch. ges. Physiol. 293, 100–106 (1967).Google Scholar
  228. Grüsser, O.-J., Grüsser-Cornehls, U., Licker, M.D.: Die Geschwindigkeitsfunktion von bewegungsspezifischen Neuronen der Froschnetzhaut. I. Intern. Symp. Biokybernetik Leipzig (1967). Wiss. Z. Karl-Marx-Univ. Leipzig 2, 161–164 (1968 a).Google Scholar
  229. Grüsser, O.-J., Grüsser-Cornehls, U., Licker, M.D.: Further studies on the velocity function of movement-detecting class-2-neurons in the frog retina. Vision Res. 8, 1173–1185 (1968 b).PubMedGoogle Scholar
  230. Grüsser, O.-J., Henn, V.: Mikroelektrodenuntersuchungen an bewegungsspezifischen Neuronen der Froschnetzhaut. Ergeb. exp. Med. 3, 194–207 (1970).Google Scholar
  231. Grüsser-Cornehls, U.: Reaktionen bewegungsempfindlicher Neurone der Froschnetzhaut bei stroboskopischer Belichtung des Reizmusters. Pflügers Arch. ges. Physiol. 294, 65 (1967).Google Scholar
  232. Grüsser-Cornehls, U.: Response of movement-detecting neurons of the frog’s retina to moving patterns under stroboscopic illumination. Pflügers Arch. 303, 1–13 (1968 a).PubMedGoogle Scholar
  233. Grüsser-Cornehls, U.: A twofold projection of the visual field to the ipsilateral optic tectum of R. pipiens and R. esculenta. (Unpubl. 1968 b, cf. Grüsser and Grüsser-Cornehls, 1969.)Google Scholar
  234. Grüsser-Cornehls, U.: Bewegungsempfindliche Neuronensysteme im visuellen System von Amphibien. Eine vergleichende neurophysiologische Untersuchung. Nova Acta Leopoldina (Halle), N.F. 37(2), 117–136 (1973).Google Scholar
  235. Grüsser-Cornehls, U.: The effect of light-dark adaptation on the response of movement sensitive neurons of the anuran retina. Vision Res. (in preparation, 1976).Google Scholar
  236. Grüsser-Cornehls, U., Grüsser, O.-J., Bullock, Th.H.: Reaktionen einzelner Retinaneurone des Frosches (R. pipiens) bei Reizung mit bewegten optischen Mustern. Pflügers Arch. ges. Physiol. 278, 60 (1963 a).Google Scholar
  237. Grüsser-Cornehls, U., Grüsser, O.-J., Bullock, Th.H.: Unit responses in the frog’s tectum to moving and non-moving visual stimuli. Science 141, 820–822 (1963b).Google Scholar
  238. Grüsser-Cornehls, U., Himstedt, W.: Responses of retinal and tectal neurons of the salamander (Salamandra salamandra L.) to moving visual stimuli. Brain, Behav. Evol. 7, 145 (1973).Google Scholar
  239. Grüsser-Cornehls, U., Lüdcke, M.: Vergleichende neurophysiologische Untersuchungen zur Signalverarbeitung in der Netzhaut von Anuren. Pflügers Arch. 319, R 148 (1970).Google Scholar
  240. Grüsser-Cornehls, U., Saunders, R.McD.: The spectral properties of class 1, 2, 3, and 4 neurons of the frog’s optic tectum. Europ. J. Physiol. 359, Suppl. R 101 (1975).Google Scholar
  241. Grüsser-Cornehls, U., Wolynski, H.: The dependence of the response of movement sensitive neurons of the anuran retina on the level of light dark adaptation. Europ. J. Physiol. 343, R 90 (1973).Google Scholar
  242. Guth, E.: Untersuchungen über die directe motorische Wirkung des Lichtes auf den Sphincter pupillae des Aal- und Froschauges. Pflügers Arch. ges. Physiol. 85, 119–142 (1901).Google Scholar
  243. Hafter, E.: Untersuchungen über den Mechanismus der retinalen Umstimmung hinsichtlich einer Abhängigkeit vom vegetativen Nervensystem. Pflügers Arch. ges. Physiol. 229, 446–465 (1932).Google Scholar
  244. Halpern, M.: Some connections of the telencephalon of the frog, R. pipiens. Brain, Behav. Evol. 6, 42–68 (1972).Google Scholar
  245. Hartline, H.K.: Impulses in single optic nerve fibres of the vertebrate retina. Amer. J. Physiol. 113, 59–60 (1935).Google Scholar
  246. Hartline, H.K.: The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Amer. J. Physiol. 121, 400–415 (1938).Google Scholar
  247. Hartline, H.K.: The receptive fields of the optic nerve fibers. Amer. J. Physiol. 130, 690–699 (1940 a).Google Scholar
  248. Hartline, H.K.: The effects of spatial summation in the retina on the excitation of the fibers of the optic nerve. Amer. J. Physiol. 130, 700–711 (1940 b).Google Scholar
  249. Heine, H.: Sämtliche Werke, vol. I. Leipzig: P. Reclam 1887.Google Scholar
  250. Henn, V.: Die Summation unabhängiger Eingänge an bewegungsspezifischen Ganglienzellen der Froschretina. Dissertation Freie Universität Berlin, 31p. (1968).Google Scholar
  251. Henn, V., Grüsser, O.-J.: The summation of excitation in the receptive field of movement sensitive neurons of the frog’s retina. Vision Res. 9, 57–69 (1968).Google Scholar
  252. Henn, V., Reiter, H.: Die Erregungsintegration im excitatorischen rezeptiven Feld bewegungsspezifischer Retinaneurone des Frosches (R. esculenta). Pflügers Arch. ges. Physiol. 289, 86 (1966).Google Scholar
  253. Herk, A.W.H. v.: Le rétrécissement par éclairage de la pupille de l’iris isolé. Arch. néerl. Physiol. 13, 534–569 (1928).Google Scholar
  254. Herrick, D.J.: The amphibian forebrain III. The optic tract and centers of Amblystoma and the frog. J. comp. Neurol. 36, 433–489 (1925).Google Scholar
  255. Herter, K.: Die Physiologie der Amphibien. Hb. Zool. 6, 30–44, 173–176, 212–233, 208 (1941).Google Scholar
  256. Hertzler, D.R., Hayes, W.N.: Cortical and tectal function in visually guided behaviour of turtles. J. comp. Physiol. Psychol. 63, 444–447 (1967).PubMedGoogle Scholar
  257. Hess, W.R., Bürgi, S., Bucher, V.: Motorische Funktion des Tektal- und Tegmentalgebietes. Mschr. Psychiat. Neurol. 112, 1–52 (1946).Google Scholar
  258. Heusser, H.: Die Lebensweise der Erdkröte Bufo bufo (L.). S.-B. Ges. naturforsch. Freunde Berlin (N.F.) 8, 148–156 (1968 a).Google Scholar
  259. Heusser, H.: Die Lebensweise der Erdkröte Bufo bufo; Laichzeit: Umstimmung, Ovulation, Verhalten. Vjschr. naturforsch. Ges. Zürich 113, 257–289 (1968 b).Google Scholar
  260. Heusser, H.: Die Lebensweise der Erdkröte. Rev. suisse Zool. 75, 928–946 (1968 c).Google Scholar
  261. Heusser, H.: Die Lebensweise der Erdkröte Bufo bufo (L.). Das Orientierungsproblem. Rev. suisse Zool. 76, 444–518 (1969).Google Scholar
  262. Himstedt, F., Nagel, W.A.: Versuche über die Reizwirkung verschiedener Strahlenarten auf Menschen- und Tieraugen. In: Festschrift der Albrecht-Ludwigs-Universität in Freiburg, p. 259–274. Freiburg i.Br.: C.A. Wagner 1902.Google Scholar
  263. Hinsche, G.: Kampfreaktionen bei einheimischen Anuren. Biol. Zbl. 48, 577–617 (1928).Google Scholar
  264. Hinsche, G.: Ein Schnappreflex nach ”Nichts“bei Anuren. Zool. Anz. 111, 113–122 (1935).Google Scholar
  265. Hirsch, H.V., Jacobson, M.: Development and maintenance of connectivity in the visual system of the frog. II. The effects of eye removal. Brain Res. 49, 67–74 (1973).PubMedGoogle Scholar
  266. Hirschberg, J.: Zur vergleichenden Ophthalmoskopie. Arch. Anat. Physiol. (Physiol. Abth.) 1882.Google Scholar
  267. Hirschberg, J.: Zur Dioptrik und Ophthalmoskopie der Fisch- und Amphibienaugen. Arch. Anat. Physiol. (Physiol. Abth.), 493–526 (1882).Google Scholar
  268. Ingle, D. J.: Visual releasers of prey-catching behavior in frogs and toads. Brain, Behav. Evol. 1, 500–518 (1968).Google Scholar
  269. Ingle, D.J.: Brain mechanisms and vision: subcortical systems. Science 168, 1493–1494 (1970).PubMedGoogle Scholar
  270. Ingle, D.J.: Prey-catching behavior of anurans toward moving and stationary objects. Vision Res. 3, 447–456 (1971).PubMedGoogle Scholar
  271. Ingle, D.J.: Depth vision in monocular frogs. Psychol. Sci. 29, 37–38 (1972).Google Scholar
  272. Ingle, D.J.: Disinhibition of tectal neurons by pretectal lesions in the frog. Science 180, 422–424 (1973 a).PubMedGoogle Scholar
  273. Ingle, D.J.: Spontaneous shape discrimination by frogs during unconditioned escape behavior. Physiol. Psychol. 1, 71–73 (1973 b).Google Scholar
  274. Ingle, D.J.: Two visual systems in the frog. Science 181, 1053–1055 (1973 c).PubMedGoogle Scholar
  275. Ingle, D.J.: Selective choice between double prey objects by frogs. Brain, Behav. Evol. 7, 127–144 (1973 d).Google Scholar
  276. Ingle, D.J.: Reduction of habituation of prey-catching activity by alcohol intoxication in the frog. Behav. Biol. 8, 123–129 (1973 e).PubMedGoogle Scholar
  277. Ingle, D.J.: Evolutionary perspectives on the function of the optic tectum. Brain, Behav. Evol. 8, 211–237 (1973 f).Google Scholar
  278. Ingle, D.J.: Enhancement of postrotary nystagmus by alcohol intoxication in the goldfish and in the frog. Behav. Biol. 9, 479–484 (1973 g).PubMedGoogle Scholar
  279. Ingle, D.J.: Size preferences for prey-catching in frogs: Relationship to motivational state. Behav. Biol. 9, 485–491 (1973 h).PubMedGoogle Scholar
  280. Ingle, D.J., Sprague, J.M.: Sensorimotor function of the midbrain tectum. Neurosci. Res. Progr. 13, 169–288 (1975).Google Scholar
  281. Ishihara, M.: Versuch einer Deutung der photoelektrischen Schwankungen am Froschauge. Pflügers Arch. ges. Physiol. 114, 569–618 (1904).Google Scholar
  282. Jacobson, M.: The representation of the retina on the optic tectum of the frog. Correlation between retino-tectal magnification factor and retinal ganglion cell count. J. exp. Physiol. 47, 170–178 (1962).Google Scholar
  283. Jacobson, M.: Development of specific neuronal connections. Science 163, 543–547 (1969).PubMedGoogle Scholar
  284. Jacobson, M., Hirsch, H.V.B.: Development and maintenance of connectivity in the visual system of the frog. I. The effects of eye rotation and visual deprivation. Brain Res. 49, 47–65 (1973).PubMedGoogle Scholar
  285. Jaeger, R.G., Hailman, J.P.: Two types of phototactic behaviour in anuran amphibians. Nature (Lond.) 230, 189–190 (1971).Google Scholar
  286. Johannes, Th.: Zur Funktion des sensiblen Thalamus. Pflügers Arch. ges. Physiol. 224, 373–385 (1930).Google Scholar
  287. Kalinina, A. V.: Classification of neurones of the retina by their quantitative characteristics. IX Internat. Congr. of Anatomists, Leningrad, Aug. 17–22, p. 233, 1970.Google Scholar
  288. Kalinina, A. V.:Classification of frog retina neurons by their quantitative characteristics. Vision Res. 14, 1305–1316 (1974).PubMedGoogle Scholar
  289. Kaneko, A., Hashimoto, H.: Localization of spike-producing cells in the frog retina. Vision Res. 8, 259–262 (1968).PubMedGoogle Scholar
  290. Kappers, C.U.A., Huber, G.C., Crosby, E.C.: In: The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. New York: Macmillan 1936.Google Scholar
  291. Kappers, C.U.A., Huber, G.C., Crosby, E.C.: The mesencephalic and diencephalic centers in amphibians. In: The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, vol. 2, p. 939–967. New York: Hafner Publ. Co. 1960.Google Scholar
  292. Karamanian, A.I., Vesselkin, N.P., Belekhova, M.G., Zagorulko, T.M.: Electrophysiological characteristics of tectal and thalamo-cortical divisions of the visual system in lower vertebrates. J. comp. Neurol. 127, 559–576 (1966).Google Scholar
  293. Keating, M.J.: The role of visual function in the patterning of binocular visual connexions. Brit. med. Bull. 30, 145–151 (1974).PubMedGoogle Scholar
  294. Keating, M.J., Gaze, R.M.: Rigidity and plasticity in the amphibian visual system. Brain, Behav. Evol. 3, 102–120 (1970 a).Google Scholar
  295. Keating, M.J., Gaze, R.M.: Observations on the “surround” properties of the receptive fields of frog retinal ganglion cells. Quart. J. exp. Physiol. 55, 129–142 (1970 b).PubMedGoogle Scholar
  296. Kemali, M., Agrelli, I.: Osservazioni sulle cellule ad ampia ramificazione dendritica nel tetto ottico della Rana esculenta. Soc. Ital. Biol. Sper. 47, 847–850 (1971).Google Scholar
  297. Kemali, M., Braitenberg, V.: Atlas of the Frog’s Brain. 74 p. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  298. Kennedy, D., Milkman, R.D.: Selective light absorption by the lenses of lower vertebrates and its influence on spectral sensitivity. Biol. Bull. 111, 375–386 (1956).Google Scholar
  299. Keurs, H.E.D.J. ter: An electrophysiological study of the synapses between optic nerve fibres and tectal neurons of R. temporaria. Proefschrift, 45 p. Rijksuniversiteit, Leiden (1970).Google Scholar
  300. Keurs, H.E.D.J. ter: An electrophysiological study of the synapses between optic nerve fibres and tectal neurons of R. temporaria. In: Biokybernetik III (H. Drischel, N. Tiedt, eds.), p. 224–228. Jena: Gustav Fischer 1971.Google Scholar
  301. Kicliter, E.: Flux, wavelength and movement discrimination in frogs: Forebrain and midbrain contributions. Brain, Behav. Evol. 8, 340–365 (1973).Google Scholar
  302. Knapp, H., Scalia, F., Riss, W.: The optic tracts of Rana pipiens. Acta neurol. scand. 41, 325 (1965).Google Scholar
  303. Kogan, A.B., Aleynikowa, T.V., Aleynikov, D., Gogoleva, L.M.: The spatial organization of detector neurons in the caudo-medial portion of the frog optic tectum. [Russ.] Neirofiziologia 5, 468–475 (1973).Google Scholar
  304. Korn, A.: Bewegungsspezifische Filter für optische Signale. Kybernetik 14, 101–116 (1973).PubMedGoogle Scholar
  305. Kostjeljanjets, H.B.: The effect of the stimulus velocity on the responses of off-ganglion cells in the frog retina. Dokl. Akad. Nauk 157, 1225–1227 (1964 a).Google Scholar
  306. Kostjeljanjets, H.B.: The influence of the speed of increment of the test-object upon the characteristics of the response of the ganglion off-cell of the frog’s retina. Biofisika, USSR 157, 1225–1228 (1964 b).Google Scholar
  307. Kostjeljanjets, N.B.: Investigation of receptive off-fields of frog retina by means of dark moving stimuli. Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I.P. Pavlova 15, 521–524 (1965).Google Scholar
  308. Kostjeljanjets, N.B.: Investigation of receptive off-fields of frog retina by means of dark moving stimuli. Fed. Proc. 25 (part 2), 377–380 (1966).Google Scholar
  309. Kostjeljanjets, N.: Investigation of inhibitory processes in the receptive field of off-center neurons of the frog retina (Russ.). In: Investigations of Principles of the Information Processing in the Visual System, p. 40–50. Leningrad: Nauka 1970.Google Scholar
  310. Kostjeljanjets, N.B.: Investigations of the off-responses in the frog retina. The dependence on the angular velocity of the stimulus. In: Investigations of Principles of Information Processing in the Visual System. Acad. Sci. USSR, p. 40–49. Leningrad: Nauka 1970 a.Google Scholar
  311. Krause, W.: Die Retina. III. Die Retina der Amphibien. Int. Mschr. Anat. Physiol. 9, 157–195 (1892)Google Scholar
  312. Krause, W.: Die Retina. III. Die Retina der Amphibien. Int. Mschr. Anat. Physiol. 9 u. 196–236 (1892).Google Scholar
  313. Kreth, H.: Die markhaltigen Fasersysteme im Gehirn der Anuren und Urodelen und ihre Myelogenie. Z. mikr.-anat. Forsch. 48, 192–285 (1940).Google Scholar
  314. Krueger, H., Moser, E.A.: Refraktion und Abbildungsgüte des Froschauges. Pflügers Arch. 326, 334–340 (1971).PubMedGoogle Scholar
  315. Krueger, H., Moser, E.A.: The influence of the modulation transfer function of the dioptric apparatus on the acuity and contrast of the retinal image in R. esculenta. Vision Res. 12, 1281–1289 (1972).PubMedGoogle Scholar
  316. Krueger, H., Moser, E.A.: On the approximation of the optical modulation transfer function (MTF) by analytical functions. Vision Res. 13, 493–494 (1973).PubMedGoogle Scholar
  317. Krueger, H., Moser, E.A., Zrenner, E.: Influence of defocussing on retinal images of test patterns calculated with the modulation transfer function. Ophthal. Res. 5, 331–341 (1973).Google Scholar
  318. Landolt, E.: Beitrag zur Anatomie der Retina vom Frosch, Salamander and Triton. Arch. mikr. Anat. 7, 81–100 (1871)Google Scholar
  319. Lázár, G.: Distribution of optic terminals in the different optic centers of the frog. Brain Res. 16, 1–14 (1969 a).PubMedGoogle Scholar
  320. Lázár, G.: Efferent pathways of the optic tectum in the frog. Acta biol. Acad. Sci. hung. 20, 171–183 (1969b).Google Scholar
  321. Lázár, G.: The projection of the retinal quadrants on the optic centres in the frog. A terminal degeneration study. Acta morph. Acad. Sci. hung. 19, 325–334 (1971).Google Scholar
  322. Lázár, G.: Role of the accessory optic system in the optokinetic nystagmus of the frog. Brain, Behav. Evol. 5, 443–460 (1972).Google Scholar
  323. Lázár, G., Székely, G.: Golgi studies on the optic center of the frog. J. Hirnforsch. 9, 329–344 (1967).PubMedGoogle Scholar
  324. Lázár, G., Székely, G.: Distribution of optic terminals in the different optic centres of the frog. Brain Res. 16, 1–14 (1969).PubMedGoogle Scholar
  325. Lee, Y.W., Schetzen, M.: Measurement of the Winer kernels of a non-linear system by crosscorrelation. Intern. J. Control. 2, 237–254 (1965).Google Scholar
  326. Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., Pitts, W.H.: What the frog’s eye tells the frog’s brain. Proc. I.R.E. 47, 1940–1951 (1959).Google Scholar
  327. Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., Pitts, W.H.: Two remarks on the visual systems of the frog. In: Sensory Communication (W.A. Rosenblith, ed.), p. 757–776. Cambridge, Mass.: M.I.T. Press 1961.Google Scholar
  328. Liberman, E.A.: On the character of information entering the brain of a frog over one nerve fiber from two receptors of the retina. Biophysics 2, 427–430 (1957).Google Scholar
  329. Licker, M.: Changes in receptive field organization of movement detecting neurons of frog retina dependent on adaptation level. Pflügers Arch. ges. Physiol. 294, 64 (1967).Google Scholar
  330. Liebman, P.A.: In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J. 2, 161–178 (1962).PubMedGoogle Scholar
  331. Liebman, P.A.: Spectral sensitivity of retinal screening pigment migration in the frog. Vision Res. 9, 377–384 (1969).PubMedGoogle Scholar
  332. Liebman, P., Entine, G.: Visual pigments of frog and tadpole (R. pipiens). Vision Res. 8, 761–775 (1968).PubMedGoogle Scholar
  333. Liège, B., Gaillard, F., Galand, G.: À propos de la vision binoculaire chez la Grenouille (About the frog binocular vision). J. Physiol. (Paris) 65, 139A (1972).Google Scholar
  334. Liège, B., Gaillard, F., Galand, G.: Peut-on parler d’horop-tère chez la Grenouille? (Has the frog a horopter?). J. Physiol. (Paris) 67, 290A (1973).Google Scholar
  335. Liège, B., Galand, G.: Single unit visual responses in the frog’s brain. Vision Res. 12, 609–622 (1972).PubMedGoogle Scholar
  336. Lipetz, L.E.: Information processing in the frog’s retina. Manuscript Am. Med. Res. Lab. TR-65–24, pp. 1–75 (1965).Google Scholar
  337. Llinàs, R., Precht, W.: The inhibitory vestibular efferent system and its relation to the cerebellum in the frog. Exp. Brain. Res. 9, 19–29 (1969).Google Scholar
  338. Llinàs, R., Precht, W.: Vestibulocerebellar input: Physiology. Progr. Brain Res. 37, 341–359 (1972).Google Scholar
  339. Llinàs, R., Precht, W., Clarke, M.: Cerebellar Purkinje cell responses to physiological stimulation of the vestibular system in the frog. Exp. Brain Res. 13, 408–431 (1971).PubMedGoogle Scholar
  340. Luk’yanov, A.S.: Generation of action potentials by dendrites in the frog optic tectum. Neurosci. translations 16, 74–78 (1970/71).Google Scholar
  341. Mackeben, M.: Die Messung der horizontalen Bewegungen von kleinen Wirbeltieraugen. Dipl. Biol. Thesis; Freie Universität Berlin 1974.Google Scholar
  342. Magnus, R.: Beitrag zur Pupillenreaktion des Aal- und Froschauges. Z. Biol. 38, 567–603 (1899).Google Scholar
  343. Manteifel, U.F.: The direct and transcommissural reactive potentials of the roof of the frog midbrain. [Russ.] Dokl. Akad. Nauk SSSR 148, 179–182 (1963).Google Scholar
  344. Manteifel, Y.B., Dyachkova, L.N.: Axo-axonic synapses in the optic tectum of Rana temporaria. [Russ.] Neurofisiologia 6, 37–43 (1974).Google Scholar
  345. Manz, W.: Über den Mechanismus der Nickhautbewegung beim Frosche. Ber. Verh. Naturf. Ges. Freiburg i. Br. 2 (1862).Google Scholar
  346. Marmarelis, P.Z., Naka, K.-I.: Nonlinear analysis and synthesis of receptive field responses in the catfish retina: I. Horizontal cell to ganglion cell chain. J. Neurophysiol. 36, 605–618 (1973 a).PubMedGoogle Scholar
  347. Marmarelis, P.Z., Naka, K.-I.: Nonlinear analysis and synthesis of receptive field responses in the catfish retina: II. One-input whitenoise analysis. J. Neurophysiol. 36, 619–633 (1973 b).PubMedGoogle Scholar
  348. Martin, H.N.: The normal respiratory movements of the frog and the influence upon its respiratory centre of stimulation of the optic lobes. J. Physiol. (Lond.) 1, 131–170 (1878).Google Scholar
  349. Matsumoto, N., Naka, K.-I.: Identification of intracellular responses in the frog retina. Brain Res. 42, 59–71 (1972).PubMedGoogle Scholar
  350. Maturana, H.R.: Efferent fibres in the optic nerve of the toad (B. bufo L.). J. Anat. (Lond.) 92, 21–27 (1958).Google Scholar
  351. Maturana, H.R.: Number of fibres in the optic nerve and the number of ganglion cells in the retina of anurans. Nature (Lond.) 183, 1406–1407 (1959).Google Scholar
  352. Maturana, H.R.: The fine anatomy of the optic nerve of anurans. An electron microscopy study. J. biophys. biochem. Cytol. 7, 107–120 (1960).PubMedGoogle Scholar
  353. Maturana, H.R.: Especificidad versus ambigüedad en la retina de los vertebrados. Biologica 36, 69–96 (1964).PubMedGoogle Scholar
  354. Maturana, H.R., Lettvin, J.Y., McCulloch, W.S., Pitts, W.H.: Evidence that cut optic fibers in a frog regenerate to their proper places in the tectum. Science 130, 1709–1710 (1959).PubMedGoogle Scholar
  355. Maturana, H.R., Lettvin, J.Y., McCulloch, W.S., Pitts, W.H.: Anatomy and physiology of vision in the frog (R. pipiens). J. gen. Physiol. 43, 129–175 (1960).PubMedGoogle Scholar
  356. Maximov, V., Liège, B., Galand, G.: Influence de la polarisation rétinienne sur la réponse retardée des cellules ganglionnaires de la Grenouille (Influence of a retinal polarization on the delayed response of the frog ganglion cells). J. Physiol. (Paris) 67, 207A (1973).Google Scholar
  357. Maximov, V., Liège, B., Galand, G.: Behaviour of the ganglion cells of the frog’s retina submitted to a polarizing current: An in vivo study. XII ISCERG Symposium, abstract No. 16, Clermont-Ferrand, May 20–22, 1974. In: Docum. Ophthal., in press (1974 a).Google Scholar
  358. Maximov, V., Liège, B., Galand, G.: Modification du comportement des cellules ganglionnaires par une polarisation électrique de la rétine: Étude in vivo chez la grenouille. J. Physiol. (Paris), in press (1974 b).Google Scholar
  359. Maximov, V., Liège, B., Galand, G.: Responses of the frog’s ganglion cells to a transretinal polarizing current: An in vivo study. Docum. ophthal., in press (1974 c).Google Scholar
  360. Meng, M.: Untersuchungen zum Farben- und Formsehen der Erdkröte (B. bufo L.). Zool. Beitr. 3, 313–363 (1958).Google Scholar
  361. Merzbacher, L.: Ueber die Beziehung der Sinnesorgane zu den Reflexbewegungen des Frosches. Pflügers Arch. ges. Physiol. 81, 222–262 (1900).Google Scholar
  362. Millodot, M.: Measurement of the refractive state of the eye in frogs (Rana pipiens). Rev. canad. Biol. 30, 249–252 (1971)PubMedGoogle Scholar
  363. Millodot, M.: Optical measurement of the refraction of the eyes in frogs (R. pipiens). Pflügers Arch. 351, 173–175 (1974).PubMedGoogle Scholar
  364. Mkrtycheva, L.I.: Electrical responses of single neurons in the frog’s optic lobe to chromatic stimulation. [Russ.] Dokl. Akad. Nauk USSR 143, 994–996 (1962).Google Scholar
  365. Mkrtycheva, L.I.: Elements of the functional organization of the visual system in the frog. [Russ.] J. High. Nerv. Activity J. P. Pavlov 15, 513–516 (1964).Google Scholar
  366. Mkrtycheva, L.I., Samsonova, V.G.: Responses of single neurons of the frog optic tectum to light stimuli of different duration. [Russ.] Dokl. Acad. Nauk USSR 161, 1242–1245 (1965 a).Google Scholar
  367. Mkrtycheva, L.I., Samsonova, V.G.: Significance of the time factor for the formation of units’ responses in the visual centre of the frog. [Russ.] J. High. Nerv. Activity J.P. Pavlov 15, 274–284 (1965 b).Google Scholar
  368. Mkrtycheva, L.I., Samsonova, V.G.: Functional characteristics of neurons in the visual centre of frogs, depending on the intensity of the photic stimulus. [Russ.] J. High. Nerv. Activity J.P. Pavlov 16, 125–127 (1966 a).Google Scholar
  369. Mkrtycheva, L.I., Samsonova, V.G.: Sensitivity of neurons of the frog’s tectum to changes in the intensity of light stimulus. Vision Res. 6, 419–426 (1966 b).Google Scholar
  370. Moreno-Diaz, R.: An analytical model of the group 2 ganglion cell in the frog’s retina. Instrumentation Lab., Mass. Inst. Technol., Cambridge 1965.Google Scholar
  371. Morita, Y.: Extra- und intracelluläre Abteilungen einzelner Elemente des lichtempfindlichen Zwischenhirns anurer Amphibien. Pflügers Arch. ges. Physiol. 286, 97–108 (1965).Google Scholar
  372. Morita, Y.: Wellenlängen-diskriminatoren im intrakranialen Pinealorgan von R. catesbiana. Experientia (Basel) 25, 1277 (1969).Google Scholar
  373. Morita, Y., Dodt, E.: Nervous activity of the frog’s epiphysis cerebri in relation to illumination. Experientia (Basel) 21, 221 (1965).Google Scholar
  374. Moser, E.A.: Retinoskopische und neurophysiologische Refraktion beim Frosch. Dissertation, Ludwig-Maximilians-Univ. München, 1973.Google Scholar
  375. Moser, E.A., Krueger, H.: Retinoscopic and neurophysiological refractometry in R. temporaria. Pflügers Arch. 335, 235–242 (1972).PubMedGoogle Scholar
  376. Motokizawa, F.: Olfactory input to the thalamus: Electrophysiological evidence. Brain Res. 67, 334–337 (1974).PubMedGoogle Scholar
  377. Müller-Limmroth, W., Güth, V., Schmitt, G.: Das Flimmer-Elektroretinogramm des Frosches bei Ableitung aus verschiedenen Retinaschichten. Z. Biol. 110, 326–339 (1958).PubMedGoogle Scholar
  378. Muntz, W.R.A.: Microelectrode recordings from the diencephalon of the frog (R. pipiens) and a blue-sensitive system. J. Neurophysiol. 25, 699–711 (1962 a).PubMedGoogle Scholar
  379. Muntz, W.R.A.: Effectiveness of different colors of light in releasing the positive phototactic behavior of frogs, and a possible function of the retinal projection to the diencephalon. J. Neurophysiol. 25, 712–720 (1962 b).Google Scholar
  380. Muntz, W.R.A.: The development of photopic and scotopic vision in the frog (R. temporaria). Vision Res. 4, 241–250 (1964).PubMedGoogle Scholar
  381. Muntz, W.R.A.: Visual pigments and spectral sensitivity in R. temporaria and other European tadpoles. Vision Res. 6, 601–618 (1966).PubMedGoogle Scholar
  382. Naka, K.-I., Inoma, S., Kosugi, Y., Tong, C.-W.: Recording of action potentials from single cells in the frog retina. Jap. J. Physiol. 10, 436–442 (1960).Google Scholar
  383. Noble, G.K.: The biology of the amphibia. 577 p. New York: Dover Public. Inc. 1931 (repr. 1954).Google Scholar
  384. Nomokonova, L.M.: Retino-tegmental projections in the frog, R. temporaria. Ž. Evol. Biochim. fiziol. (Leningrad) 4, 367–375 (1968).Google Scholar
  385. Northcutt, R.G.: Afferent projections of the telencephalon of the bullfrog (R. catesbiana). Anat. Rec. 172, 374 (1972).Google Scholar
  386. Norton, A.L., Spekreijse, H., Wagner, H.G., Wolbarsht, M.L.: Responses to directional stimuli in retinal preganglionic units. J. Physiol. (Lond.) 206, 93–107 (1970).Google Scholar
  387. Nye, P.W., Naka, K.J.: The dynamics of inhibitory interaction in a frog receptive field: A paradigm of paracontrast. Vision Res. 11, 377–392 (1971).PubMedGoogle Scholar
  388. Pache, J.: Formensehen bei Fröschen. Z. vergl. Physiol. 17, 423–463 (1932).Google Scholar
  389. Parker, G.: The skin and the eyes as reception organs in the reactions of frogs to light. Amer. J. Physiol. 10, 28–36 (1904).Google Scholar
  390. Pearse, A.: The reactions of amphibians to light. Proc. Amer. Acad. Arts. Sci. 45, 159–208 (1910).Google Scholar
  391. Peretz, B.: Optic nerve contributions to sensory-motor integration in the frog. 24th Intern. Congr. Phys. Sci. Abstr. 1029, Washington, D.C., 1968.Google Scholar
  392. Peretz, B.: Vertical distribution of optic nerve fiber terminations in the frog optic tectum. Amer. J. Physiol. 217, 181–187 (1969).PubMedGoogle Scholar
  393. Pickering, S.G.: The extremely long latency response from on-off retinal ganglion cells: Relationship to dark adaptation. Vision Res. 8, 383–387 (1968).PubMedGoogle Scholar
  394. Pickering, S.G., Varjú, D.: Ganglion cells in the frog retina: Inhibitory receptive field and long-latency response. Nature (Lond.) 215, 545–546 (1967).Google Scholar
  395. Pickering, S.G., Varjú, D.: Delayed responses of ganglion cells in the frog retina: The influence of stimulus parameters upon the length of the delay time. Vision Res. 9, 865–879 (1969).PubMedGoogle Scholar
  396. Pickering, S.G., Varjú, D.: The retinal ON-OFF components giving rise to the delayed response. Kybernetik 8, 145–150 (1971).PubMedGoogle Scholar
  397. Pigarev, J.N., Zenkin, G.M., Girman, S.B.: The detectors of the frog retina. Responses in unrestrained frogs. [Russ.] Sechenov J. Physiol. USSR 57, 1448–1458 (1971).Google Scholar
  398. Podufal, G.: Zur Entfernungsmessung und Größenbeurteilung durch die Erdkröte (B. bufo L.). Dr. Diss. Univ. Göttingen 1971.Google Scholar
  399. Polyak, S.: The Retina. Chicago, Ill.: Univ. Chicago Press 1941.Google Scholar
  400. Pomeranz, B.: Metamorphosis of frog vision: Changes in ganglion cell physiology and anatomy. Exp. Neurol. 34, 187 – 199 (1972).PubMedGoogle Scholar
  401. Pomeranz, B., Chung, S.H.: Dendritic-tree anatomy codes formvision physiology in tadpole retina. Science (N. Y.) 170, 983–984 (1970).Google Scholar
  402. Potter, H.D.: The distribution and orientation of optic nerve fibers in the optic tectum of the bullfrog. Anat. Rec. 158, 411 (1968).Google Scholar
  403. Potter, H.D.: Structural characteristics of cell and fiber populations in the optic tectum of the frog (Rana catesbiana). J. comp. Neurol. 136, 203–232 (1969).PubMedGoogle Scholar
  404. Precht, W.: Personal Communication (1974).Google Scholar
  405. Precht, W., Llinàs, R., Clarke, M.: Physiological responses of frog vestibular fibers to horizontal angular rotation. Exp. Brain Res. 13, 378–407 (1971).PubMedGoogle Scholar
  406. Prince, J.H.: Comparative Anatomy of the Eye. 418 p. Springfield, Ill.: C.C. Thomas 1956.Google Scholar
  407. Ramon, P.: Investigaciones micrografias en el encephalo de los batraceos y reptiles. Thesis, Fac. Med. Zaragoza 1894.Google Scholar
  408. Reich-Motel, H., Butenandt, E.: Nicht photochemisch bedingte Adaptation in der Netzhaut von Fröschen (Rana esculenta). Pflügers Arch. ges. Physiol. 283, R 28 (1965).Google Scholar
  409. Rensch, B.: Elektrophysiologische Untersuchungen über das Zusammenwirken der Mittelhirnhemisphären beim Frosch. Z. vergl. Physiol. 37, 496–508 (1955).Google Scholar
  410. Reuter, T.: Visual pigments and ganglion cell activity in the retinae of tadpoles and adult frogs (Rana temporaria). Acta zool. Fenn. 122, 1–64 (1969).Google Scholar
  411. Reuter, T.: Synens fysiologi. I. Hur näthinnan översätter ljus till nervsignaler. Ronden 19, 326–330 (1972 a).Google Scholar
  412. Reuter, T.: Synens fysiologi. II. Näthinnans analys av färg och form. Ronden 22, 371–375 (1972 b).Google Scholar
  413. Reuter, T., Virtanen, K.: Border and color coding in the retina of the frog. Nature (Lond.) 239, 260–263 (1972).Google Scholar
  414. Riss, W., Jakway, J.S.: A perspective on the fundamental retinal projections of vertebrates. Brain, Behav. Evol. 3, 30–35 (1970).Google Scholar
  415. Robbins, D.O.: Coding of intensity and wavelength in optic tectal cells of the turtle. Brain, Behav. Evol. 5, 124–142 (1972).Google Scholar
  416. Rochon-Duvigneaud, A.: Les yeux et la vision des vertèbres. 719 p. Paris: Masson et Cie. 1943.Google Scholar
  417. Rodieck, R.W.: The Vertebrate Retina. Principles of Structure and Function. 1044 p. San Francisco: W.H. Freeman and Co. 1973.Google Scholar
  418. Röhler, R.: Die Abbildungseigenschaften der Augenmedien. Vision Res. 2, 391–429 (1962).Google Scholar
  419. Röhler, R., Fischer, W.: Influence of waveguide on the light absorption in photoreceptors. Vision Res. 11, 97–101 (1971).PubMedGoogle Scholar
  420. Röhler, R., Miller, U., Aberl, M.: Zur Messung der Modulationsübertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht. Vision Res. 9, 407–428 (1969).PubMedGoogle Scholar
  421. Röthig, P.: Beiträge zum Studium des Zentralnervensystems der Wirbeltiere. VIII. Über das Zwischenhirn der Amphibien. Arch. mikr. Anat. 98, 616–645 (1923).Google Scholar
  422. Röthig, P.: Beiträge zum Studium des Zentralnervensystems der Wirbeltiere. X. Über die Faserzüge im Vorder- und Zwischenhirn der Anuren. Z. mikr.-anat. Forsch. 5, 23–58 (1926).Google Scholar
  423. Rubinson, K.: Projections of the tectum opticum of the frog. Brain, Behav. Evol. 1, 529–558 (1968).Google Scholar
  424. Rubinson, K.: Retinal projections in the toad Bufo marinus. Anat. Rec. 163, 254 (1969).Google Scholar
  425. Rubinson, K.: Connections of the mesencephalic nucleus of the trigeminal nerve in the frog. An experimental study with silver impregnation methods. Brain Res. 19, 3–14 (1970).PubMedGoogle Scholar
  426. Rubinson, K., Colman, D.R.: Designated discussion: A preliminary report on ascending thalamic afferents in Rana pipiens. Brain, Behav. Evol. 6, 69–74 (1972).Google Scholar
  427. Rushmer, D.S., Woodward, D.J.: Responses of Purkinje cells in the frog cerebellum to electrical and natural stimulation. Brain Res. 33, 324–335 (1971).Google Scholar
  428. Rushton, W.A.H.: Excitation pools in the frog’s retina. J. Physiol. (Lond.) 149, 327–345 (1959).Google Scholar
  429. Samsonova, V.G.: Functional organization of neurons of different types in the visual center of frogs. [Russ.] J. High. Nerv. Act. 15, 491–499 (1965).Google Scholar
  430. Savage, R.M.: The Ecology and Life History of the Common Frog. 221 p. London: Pitman 1961.Google Scholar
  431. Scalia, F.: Autoradiographic demonstration of optic nerve fibers in the stratum zonale of the frog’s tectum. Brain Res. 58, 484–488 (1973).PubMedGoogle Scholar
  432. Scalia, F., Colman, D.R.: Aspects of the central projection of the optic nerve in the frog as revealed by anterograde migration of horseradish peroxidase. Brain Res. 79, 496–512 (1974).PubMedGoogle Scholar
  433. Scalia, F., Fite, K.: A retinotopic analysis of the central connections of the optic nerve in the frog. J. comp. Neurol. 158, 455–478 (1974).PubMedGoogle Scholar
  434. Scalia, F., Gregory, K.: Retinofugal projections in the frog: Location of the postsynaptic neurons. Brain, Behav. Evol. 3, 16–29 (1970).Google Scholar
  435. Scalia, F., Knapp, H., Halpern, M., Riss, W.: New observation on the retinal projection in the frog. Brain, Behav. Evol. 1, 324–353 (1968).Google Scholar
  436. Schaefer, A.A.: Habit formation in frogs. J. animal Behav. 1, 309–335 (1911).Google Scholar
  437. Schaefer, K.-P., Schneider, H.: Reizversuche im Tectum opticum des Kaninchens. Arch. Psychiat. Neurol. 211, 118–137 (1968).Google Scholar
  438. Scheibner, H., Baumann, Ch.: Elektrophysiologische Farbsinnuntersuchungen mittels Reizsubstitution. Ber. dtsch. ophthal. Ges. 69, 124–126 (1969).Google Scholar
  439. Scheibner, H., Baumann, Ch.: Properties of the frog’s retinal ganglion cells as revealed by substitution of chromatic stimuli. Vision Res. 10, 829–836 (1970).PubMedGoogle Scholar
  440. Scheibner, H., Hunold, W., Bezaut, M.: Color discrimination functions of the frog optic tectum (R. esculenta). Vision Res. 15, 1175–1180 (1975).PubMedGoogle Scholar
  441. Scheid-Patutschnick, M.: Der Einfluß des Reiz-Hintergrund-Kontrastes auf die Aktivierung bewegungsspezifischer Neurone der Froschnetzhaut (R. esculenta). Diss. Dr. med. Berlin (1970).Google Scholar
  442. Schiller, P.: The role of the monkey superior colliculus in the eye movement and vision. Invest. Ophthal. 2, 451–460 (1972).Google Scholar
  443. Schipiloff, K.: Über den Einfluß der Nerven auf die Erweiterung der Pupille bei Fröschen. Akad. Preisschrift. Ber. von M. Schiff. Pflügers Arch. ges. Physiol. 38, 219–278 (1886).Google Scholar
  444. Schipperheyn, J. J.: Respiratory eye movements and perception of stationary objects in the frog. Acta physiol. pharmacol. neerl. 12, 157–159 (1963).PubMedGoogle Scholar
  445. Schipperheyn, J.J.: Contrast detection in frog’s retina. Acta physiol. pharmacol. neerl. 13, 231–277 (1965).PubMedGoogle Scholar
  446. Schneider, D.: Beitrag zu einer Analyse des Beute- und Fluchtverhaltens einheimischer Anuren. Biol. Zbl. 73, 225 (1954 a).Google Scholar
  447. Schneider, D.: Das Gesichtsfeld und der Fixiervorgang bei einheimischen Anuren. Z. vergl. Physiol. 36, 147–164 (1954 b).Google Scholar
  448. Schneider, D.: Die Biologie der Wirbeltieraugen. Stud. Gen. 10, 214–230 (1957 a).Google Scholar
  449. Schneider, D.: Die Gesichtsfelder von Bombina variegata, Discoglossus pictus und X. laevis. Z. vergl. Physiol. 39, 524–530 (1957 b).Google Scholar
  450. Schnitzlein, H.N., Hamel, E.G., Jr., Carey, J.H., Brown, J.W., Hoffmann, H.H., Faucette, J.R., Showers, M.J.C.: The interrelations of the striatum with subcortical areas through the lateral forebrain bundle. J. Hirnforsch. 13, 409–455 (1973).PubMedGoogle Scholar
  451. Schrader, M.E.G.: Zur Physiologie des Froschgehirnes. Pflügers Arch. ges. Physiol. 41, 75–90 (1887).Google Scholar
  452. Schützler, G.: Untersuchungen über den Farbensinn der Erdkröte (B. vulgaris L.). Diss. Phil. Fak. Berlin 1933.Google Scholar
  453. Schultze, M.: Zur Anatomie und Physiologie der Retina. Arch. mikr. Anat. 2, 175–286 (1864).Google Scholar
  454. Schultze, M.: Über Stäbchen und Zapfen der Retina. Arch. mikr. Anat. 3, 215–247 (1867).Google Scholar
  455. Servít, Z., Strejčková, A., Volanschi, D.: An epileptogenic focus in the frog telencephalon. Pathways of propagation of focal activity. Exp. Neurol. 21, 383–396 (1968).PubMedGoogle Scholar
  456. Sétáló, G., Székely, G.: The presence of membrane specialization indicative of somato-dendritic synaptic junctions in the optic tectum of the frog. Exp. Brain Res. 4, 237–242 (1967).PubMedGoogle Scholar
  457. Shafa, F., Marks, W.B.: Pathways mediating two types of visual response in the cerebellum of the frog. Fed. Proc. 33, 623 (1974).Google Scholar
  458. Shibkova, S.A.: Ganglion cells of the frog retina. [Russ.] Arch. Anat. Histol. Embryol. 59, 72–77 (1970).Google Scholar
  459. Shkolnik-Yarros, E.G.: Asymmetrical dendritic fields of ganglion cells of the retina. [Russ.] Neurofiziologia 3, 301–307 (1971).Google Scholar
  460. Shortess, G.K.: Binocular interaction in the frog retina. J. opt. Soc. Amer. 53, 1423–1429 (1963).Google Scholar
  461. Shortess, G. K.: Some effects of antidromic stimulation of frog retinal ganglion cells. Exp. Neurol. 29, 243–250 (1970).PubMedGoogle Scholar
  462. Shortess, G.K.: A method for evaluating behavioral activity in R. pipiens induced by changes in illumination. Physiol. Behav. 6, 629–631 (1971).PubMedGoogle Scholar
  463. Sickel, W.: Retinal metabolism in dark and light. In: Handbook of Sensory Physiology (M.G.F. Fuortes, ed.), vol. VII/2, chap. 18, p. 667–728. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  464. Sickel, W., Crescitelli, F.: Delayed electrical response from the isolated frog retina. Pflügers Arch. ges. Physiol. 297, 266–269 (1967).Google Scholar
  465. Sillman, A.J.: The frog cone as site of rapid dark-adaptation. Amer. Zool. 13, 254 (1973).Google Scholar
  466. Sillman, A.J.: Rapid dark-adaptation in the frog cone. Vision Res. 14, 1021–1027 (1974).PubMedGoogle Scholar
  467. Sillman, A.J., Owen, W.G., Fernandez, H.R.: Rapid dark-adaptation in the frog rod. Vision Res. 13, 393–402 (1973).PubMedGoogle Scholar
  468. Skarf, B.: Development of binocular single units in the optic tectum of frog raised with disparate stimulation to the eyes. Brain Res. 51, 352–357 (1973).PubMedGoogle Scholar
  469. Skarf, B., Jacobson, M.: Development of binocularly driven single units in frogs raised with asymmetrical visual stimulation. Exp. Neurol. 42, 669–686 (1974).PubMedGoogle Scholar
  470. Sperry, R.W.: Restoration of vision after crossing of optic nerves and after contralateral transplantation of eye. J. Neurophysiol. 8, 15–29 (1945).Google Scholar
  471. Sperry, R.W.: Mechanisms of neural maturation. Handbook of Experimental Psychology. New York: J.Wiley and Sons 1961.Google Scholar
  472. Steinach, E.: Untersuchungen zur vergleichenden Physiologie der Iris. Erste Mittlg.: Über Irisbewegung bei den Wirbeltieren und über die Beziehung der Pupillarreaction zur Sehnervenkreuzung im Chiasma. Pflügers Arch. ges. Physiol. 47, 289–340 (1890).Google Scholar
  473. Steinach, E.: Untersuchungen zur vergleichenden Physiologie der Iris. Zweite Mittlg.: Ueber die directe motorische Wirkung des Lichtes auf den Sphincter pupillae bei Amphibien und Fischen und über die denselben aufbauenden pigmentierten glatten Muskelfasern. Pflügers Arch. ges. Physiol. 52, 495–525 (1892).Google Scholar
  474. Steiner, J.: Untersuchungen über die Physiologie des Froschhirns. Die Functionen des Centralnervensystems und ihre Phylogenese. 143 S. Braunschweig: Vieweg 1885.Google Scholar
  475. Stevens, R.J.: A cholinergic inhibitory system in the frog optic tectum: Its role in visual electrical responses and feeding behavior. Brain Res. 49, 309–321 (1973).PubMedGoogle Scholar
  476. Stevens, R.J.: A model of an early “off” response in frog optic tectum. Brain Res. 67, 51–63 (1974).PubMedGoogle Scholar
  477. Ströer, W.F.H.: Zur vergleichenden Anatomie des primären optischen Systems bei Wirbeltieren. Z. Anat. Entwickl-Gesch. 110, 301–321 (1939).Google Scholar
  478. Studnitz, G. v.: Studien zur vergleichenden Physiologie der Iris. I. R. temporaria. Pflügers Arch. ges. Physiol. 229, 492–537 (1932).Google Scholar
  479. Supin, A.Y., Guselnikov, V.I.: Representation of visual, auditory and somatosensory analysers in the forebrain hemispheres of the frog (R. temporaria) (russ.). Fiziol. Zh. SSSR 50, 426–434 (1964).PubMedGoogle Scholar
  480. Sutro, L.L.: Information processing and data compression for exobiology missions. Instrumentation Lab., Mass. Inst. Technol., Cambridge 1965.Google Scholar
  481. Székely, G.: The mesencephalic and diencephalic optic centers in the frog. Vision Res., Suppl. 3, 269–279 (1971).PubMedGoogle Scholar
  482. Székely, G.: Anatomy and synaptology of the optic tectum. In: Handbook of Sensory Physiology (R. Jung, ed.), vol. VII/2B. Berlin-Heidelberg-New York: Springer 1973a.Google Scholar
  483. Székely, G.: Fine structure of the frog’s optic tectum: Optic fibre termination layers. J. Hirnforsch. 14, 189–225 (1973 b).PubMedGoogle Scholar
  484. Szent-Györgyi, A.: Untersuchungen über den Glaskörper der Amphibien und Reptilien. Arch. mikr. Anat. 85, 303–359 (1914).Google Scholar
  485. Tasaki, K.: Three fiber groups in the frog optic nerve. J. Physiol. Soc. Jap. 32, 1–2 (1970).Google Scholar
  486. Thomas, E.: Untersuchungen über den Helligkeits- und Farbensinn der Anuren. Zool. Jb. 66, 129–178 (1956).Google Scholar
  487. Tomita, T.: The electroretinogram, as analysed by microelectrode studies. In: Handbook of Sensory Physiology (M.G.F. Fuortes, ed.), vol. VII/2, chap. 17, p. 635–666. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  488. Tomita, T., Murakami, M., Hashimoto, Y., Sasaki, Y.: Electrical activity of single neurons in the frog’s retina. In: The Visual System: Neurophysiology and Psychophysics (R. Jung, H. Kornhuber, eds.), p. 24–31. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  489. Trachtenberg, M.C., Ingle, D.: Thalamo-tectal projections in the frog. Brain Res. 79, 419–430 (1974).PubMedGoogle Scholar
  490. Trepakov, V.V.: Postsynaptic inhibition in the frog’s primordial hippocampus. [Russ.] Neurofiziologia 5, 583–592 (1974).Google Scholar
  491. Twitty, V., Grant, D., Anderson, O.: Amphibian orientation: An unexpected observation. Science 155, 352–353 (1967).PubMedGoogle Scholar
  492. Uexküll, J. v.: Theoretische Biologic 2. Ed. Berlin: Springer 1928.Google Scholar
  493. Uexküll, J. v., Brock, F.: Atlas zur Bestimmung der Orte in den Sehräumen der Tiere. Z. vergl. Physiol. 5, 165–178 (1927).Google Scholar
  494. Varjú, D.: Functional classification of receptive field organization of retinal ganglion cells in the frog. In: Processing of Optical Data by Organism and Machines (W. Reichardt, ed.), p. 366–383. Academic Press 1969.Google Scholar
  495. Varjú, D., Pickering, S.G.: Delayed responses of ganglion cells in the frog retina. Kybernetik 6, 112–119 (1969).PubMedGoogle Scholar
  496. Vesselkin, N.P.: Visual projections in amphibian brain. [Russ.] J. Evol. Biochem. Physiol. 2, 473–479 (1966).Google Scholar
  497. Vesselkin, N.P., Agayan, A.L., Nomokonova, L.M.: A study of thalamo-telencephalic afferent systems in frogs. Brain, Behav. Evol. 4, 295–306 (1971).Google Scholar
  498. Vesselkin, N.P., Kovačevič, N.: Non-olfactory afferent projections to the forebrain of the frog. [Russ.] Neurofisiologia 5, 537–543 (1973).Google Scholar
  499. Walls, G.: The Vertebrate Eye and its Adaptive Radiation. 785 p. New York-London: Hafner Publ. Co. 1963.Google Scholar
  500. Weale, R.A.: Observations of the direct effect of light on the irides of Rana temporaria and Xenopus laevis. J. Physiol. (Lond.) 132, 257–266 (1956).Google Scholar
  501. Wiener, N.: Non-linear Problems in Random Theory. New York: John Wiley and Sons 1958.Google Scholar
  502. Wilska, A.: Aktionspotentialentladungen einzelner Netzhautelemente des Frosches. Acta Soc. Med. Fenn. A 22, 50–62 (1939).Google Scholar
  503. Wilson, M.A.: Optic nerve fibre counts and retinal ganglion cell counts during development of X. laevis (Daudin). J. exp. Physiol. 56, 83–91 (1971).Google Scholar
  504. Wlassak, R.: Die optischen Leitungsbahnen des Frosches. Arch. Anat. Physiol., Physiol. Abth., Suppl., 1–28 (1893).Google Scholar
  505. Yerkes, R.M.: The instincts, habits and reactions of the frog. Harvard Psychol. Studies 1, 579–638 (1903).Google Scholar
  506. Zagorulko, T.M.: On the localization of cerebral centers of the visual analyser in the frog. [Russ.] J. Physiol. USSR, J.M. Sechenov 43, 1156–1165 (1957).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • O.-J. Grüsser
  • Ursula Grüsser-Cornehls

There are no affiliations available

Personalised recommendations