Skip to main content

Electrophysiology of the Peripheral Myelinated Nerve

  • Chapter
Frog Neurobiology

Abstract

The authors have agreed that this Chapter should not be an exhaustive compilation of all papers. Instead they intend to submit the essential modern knowledge necessary to neurobiologists working with peripheral nerve of frogs which, in their opinion, is an essential test object to develop the theoretical and experimental basis of the function of excitable membranes of vertebrates. They want, in particular, to present a chapter which in the future can be used to familiarize newcomers with the methods and theories used in this field. Since there is almost no work on unmyelinated amphibian fibers, the discussion is almost exclusively on myelinated nerve.

Author of Section 1: R. Stämpfli

Author of Section 2: B. Hille.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbud, L., Nonner, W., Stämpfli, R.: Membrane properties of Ranvier nodes from South American toads and frogs (Bufo marinus and Leptodactylus ocellatus). Rev. Zool. e. Biol. Mar., N.S. 30, 105–116 (1973).

    Google Scholar 

  • Adrian, E.D., Bronk, D.V.: The discharge of impulses in motor nerve fibres. I. Impulses in single fibres of the phrenic nerve. J. Physiol. (Lond.) 66, 81–101 (1928).

    CAS  Google Scholar 

  • Albrecht-Bühler, G.: Messung des Calcium-Einflusses auf die Strom-Spannungsbeziehung der erregbaren Membran am Ranvier-Knoten. Pflügers Arch. ges. Physiol. 300, 23–34 (1968).

    Google Scholar 

  • Århem, P., Frankenhaeuser, B.: Local anesthetics: Effects on permeability properties of nodal membrane in myelinated nerve fibres from Xenopus. Potential clamp experiments. Acta physiol. scand. 91, 11–21 (1974).

    PubMed  Google Scholar 

  • Århem, P., Frankenhaeuser, B., Moore, L.E.: Ionic currents at resting potential in nerve fibres from Xenopus laevis. Potential clamp experiments. Acta physiol. scand. 88, 446–454 (1973).

    PubMed  Google Scholar 

  • Armstrong, C.M.: Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. gen. Physiol. 58, 413–437 (1971).

    PubMed  CAS  Google Scholar 

  • Armstrong, C.M., Bezanilla, F.: Currents related to movement of the gating particles of the sodium channels. Nature (Lond.) 242, 459–461 (1973).

    CAS  Google Scholar 

  • Armstrong, C.M., Hille, B.: The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier. J. gen. Physiol. 59, 388–400 (1972).

    PubMed  CAS  Google Scholar 

  • Asano, T., Hurlbut, W.P.: Effects of potassium, sodium, and azide on the ionic movements that accompany activity in frog nerves. J. gen. Physiol. 41, 1187–1203 (1958).

    PubMed  CAS  Google Scholar 

  • Barillot, J.-C.: Etude électrophysiologique comparée des fibres nerveuses myélinisées motrices et sensitives chez Rana esculenta et Xenopus laevis. Thèse du 3ème Cycle, Poitiers (1966).

    Google Scholar 

  • Barillot, J.-C.: Etude électrophysiologique comparée des fibres nerveuses myélinisées motrices et sensorielles chez Rana esculenta et Xenopus laevis. C.R. Soc. Biol. (Paris) 161, 169–172 (1967).

    CAS  Google Scholar 

  • Bennett, M.V.L., Hille, B., Obara, S.: Voltage threshold in excitable cells depends on stimulus form. J. Neurophysiol. 33, 585–594 (1970).

    PubMed  CAS  Google Scholar 

  • Bergman, C.: Increase of sodium concentration near the inner surface of the nodal membrane. Pflügers Arch. 317, 287–302 (1970).

    PubMed  CAS  Google Scholar 

  • Bergman, C., Dubois, J.-M.: Compétition entre ions sodium et potassium sur la face externe de la membrane nodale. C.R. Acad. Sci. (Paris) 271, 411–414 (1970).

    CAS  Google Scholar 

  • Bergman, C., Dubois, M.-M.: Réévaluation des effets du calcium sur la perméabilité au potassium de la membrane nodale de la fibre myélinisée. C.R. Acad. Sci. (Paris) 275, 987–990 (1972).

    CAS  Google Scholar 

  • Bergman, C., Nonner, W., Stämpfli, R.: Sustained spontaneous activity of Ranvier nodes induced by the combined actions of TEA and lack of calcium. Pflügers Arch. 302, 24–37 (1968).

    Google Scholar 

  • Bergman, C., Stämpfli, R.: Différence de perméabilité des fibres nerveuses myélinisées sensorielles et motrices a l’ion potassium. Helv. physiol. pharmacol. Acta 24, 247–258 (1966).

    CAS  Google Scholar 

  • Bergman, J.: Contribution à l’étude de l’hyperpolarisation posttétanique d’un faisceau de fibres nerveuses de grenouille. C.R. Acad. Sci. (Paris) 274, 1172–1174 (1972).

    CAS  Google Scholar 

  • Brink, F.: The role of calcium ions in neural processes. Pharmacol. Rev. 6, 243–298 (1954).

    PubMed  CAS  Google Scholar 

  • Brismar, T.: Effects of ionic concentration on permeability properties of nodal membrane in myelinated nerve fibers of Xenopus laevis. Potential clamp experiments. Acta physiol. scand. 87, 474–484 (1973).

    PubMed  CAS  Google Scholar 

  • Brismar, T., Frankenhaeuser, B.: The effect of calcium on the potassium permeability in the myelinated nerve fibre of Xenopus laevis. Acta physiol. scand. 85, 237–241 (1972).

    PubMed  CAS  Google Scholar 

  • Burg, D.: Untersuchungen am Ranvierschen Schnürring einzelner Taubennervenfasern. Pflügers Arch. 317, 278–286 (1970).

    PubMed  CAS  Google Scholar 

  • Burkel, W.E.: The histological fine structure of perineurium. Anat. Rec. 158, 177–190 (1967).

    PubMed  CAS  Google Scholar 

  • Cahalan, M.: Modification of sodium channel gating by scorpion venom. J. Physiol. (Lond.) 244, 511–534 (1974).

    Google Scholar 

  • Cole, K.S., Moore, J.W.: Potassium ion current in the squid giant axon: Dynamic characteristic. Biophys. J. 1, 1–14 (1960).

    CAS  Google Scholar 

  • Connelly, C.M.: Recovery processes and metabolism of nerve. Rev. mod. Phys. 31, 475–484 (1959).

    CAS  Google Scholar 

  • del Castillo, J., Lettvin, J.Y., McCulloch, W.S., Pitts, Pompeiano, O.: Sui rapporti anatomo-funzionali tra cervelletto e midollo spinale. In: V. Floris, Ed. Fisiopatologia e clinica del cervelletto. Riv. Pat. nerv. ment. 33Â164 (1966a).: Membrane currents in clamped vertebrate nerve. Nature (Lond.) 180, 1290–1291 (1957).

    Google Scholar 

  • Derksen, H.E.: Axon membrane voltage fluctuations. Acta physiol. pharmacol. neerl. 13, 373–466 (1965).

    PubMed  Google Scholar 

  • Dettbarn, Pompeiano, O., Brodal, A.: The origin of vestibulospinal fibres in the cat. An experimental-anatomical study, with comments on the descending medial longitudinal fasciculus. Arch. ital. Biol. 95, 166–195 (1957a)., Higman, H., Rosenberg, P., Nachmansohn, D.: Rapid and reversible block of electrical activity by powerful marine biotoxins. Science (Wash.) 32, 300–301 (1960).

    Google Scholar 

  • Dodge, F.A.: Ionic permeability changes underlying nerve excitation. In: Biophysics of Physiological and Pharmacological Actions. Washington, D.C.: AAAS 1961.

    Google Scholar 

  • Dodge, F.A.: A study of ionic permeability changes underlying excitation in myelinated nerve fibers of the frog. Ph.D. Thesis, The Rockefeller University. University Microfilms (No. 64–7333), Ann Arbor, Michigan (1963).

    Google Scholar 

  • Dodge, F.A., Frankenhaeuser, B.: Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J. Physiol. (Lond.) 143, 76–90 (1958).

    CAS  Google Scholar 

  • Dodge, F.A., Frankenhaeuser, B.: Sodium currents in the myelinated nerve fibres of Xenopus laevis investigated with the voltage clamp technique. J. Physiol. (Lond.) 148, 188–200 (1959).

    CAS  Google Scholar 

  • Drouin, H., Neumcke, B.: Specific and unspecific charges at the sodium channel of the nerve membrane. Pflügers Arch. 351, 207–229 (1974).

    PubMed  CAS  Google Scholar 

  • Drouin, H., The, R.: The effect of reducing extracellular pH on the membrane currents of the Ranvier node. Pflügers Arch. 313, 80–88 (1969).

    PubMed  CAS  Google Scholar 

  • DuBois, J.-M., Bergman, C.: Conductance sodium de la membrane nodale: Inhibition compétitive calcium-sodium. C.R. Acad. Sci. (Paris) 272, 2924–2927 (1971).

    CAS  Google Scholar 

  • Egar, M., Singer, M.: A quantitative electron microscope analysis of peripheral nerve in the urodele amphibian in relation to limb regenerative capacity. J. Morph. 133, 387–398 (1971).

    PubMed  CAS  Google Scholar 

  • Erlanger, J., Blair, E.A.: Manifestation of segmentation in myelinated axons. Amer. J. Physiol. 110, 287–311 (1934).

    Google Scholar 

  • Erlanger, J., Blair, E.A.: Comparative observations on motor and sensory fibers with special reference to repetitous-ness. Amer. J. Physiol. 212, 431–453 (1938).

    Google Scholar 

  • Erlanger, J., Gasser, H.D.: Electrical Signs of Nervous Activity. Philadelphia: Univ. Pennsylvania Press 1937.

    Google Scholar 

  • Evans, M.H.: Tetrodotoxin, saxitoxin, and related substances: Their applications in neurobiology. Int. Rev. Neurobiol. 15, 83–166 (1972).

    PubMed  CAS  Google Scholar 

  • Feng, T.P.: The heat production of nerve. Ergebn. Physiol. 38, 73–132 (1936).

    Google Scholar 

  • FitzHugh, R.: Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophys. J. 2, 11–21 (1962).

    PubMed  CAS  Google Scholar 

  • Fox, J.M., Stämpfli, R.: Modification of ionic membrane currents of Ranvier nodes by UV-radiation under voltage clamp conditions. Experientia (Basel) 27, 1289–1290 (1971).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: The hypothesis of saltatory conduction. Cold Spr. Harb. Symp. quant. Biol. 17, 27–36 (1952).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: A method for recording resting and action potentials in the isolated myelinated nerve fibre of the frog. J. Physiol. (Lond.) 135, 550–559 (1957).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: Steady state inactivation of sodium permeability in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 148, 671–676 (1959).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: Quantitative description of sodium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 151, 491–501 (1960a).

    CAS  Google Scholar 

  • Frankenhaeuser, Sherrington, C. S.: Experiments in examination of the peripheral distribution of the fibers of the posterior roots of some spinal nerves. Phil. Trans. B 190, 45–286 (1898).: Sodium permeability in toad nerve and in squid nerve. J. Physiol. (Lond.) 152, 159–166 (1960b).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: Delayed currents in myelinated nerve fibres of Xenopus laevis investigated with voltage clamp technique. J. Physiol. (Lond.) 160, 40–45 (1962a).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: Instantaneous potassium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 160, 46–53 (1962b).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: Potassium permeability in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 160, 54–61 (1962c).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: A quantitative description of potassium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 169, 424–430 (1963a).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: Inactivation of the sodium-carrying mechanism in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 169, 445–457 (1963b).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: Computed action potential in nerve from Xenopus laevis. J. Physiol. (Lond.) 180, 780–787 (1965).

    CAS  Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A.L.: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.) 137, 218–244 (1957).

    CAS  Google Scholar 

  • Frankenhaeuser, Spiegel, E.A., Scala, N.P.: Vertical nystagmus following lesions of the cerebellar vermis. Arch. Ophthal. (N.Y.) 26, 661–669 (1941)., Huxley, A.F.: The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data. J. Physiol. (Lond.) 171, 302–315 (1964).

    CAS  Google Scholar 

  • Frankenhaeuser, B., Moore, L.E.: The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 169, 431–437 (1963a).

    CAS  Google Scholar 

  • Frankenhaeuser, B., Moore, L.E.: The specificity of the initial current in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 169, 438–444 (1963b).

    CAS  Google Scholar 

  • Gitlin, G., Singer, M.: Myelin movements in mature mammalian peripheral nerve fibers. J. Morph. 143, 167–186 (1974).

    PubMed  CAS  Google Scholar 

  • Goldman, D.E.: Potential, impedance and rectification in membranes. J. gen. Physiol. 27, 37–60 (1943).

    PubMed  CAS  Google Scholar 

  • Goldman, L., Albus, J.S.: Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity-diameter relation. Biophys. J. 8, 596–607 (1968).

    PubMed  CAS  Google Scholar 

  • Hardy, W.L.: Propagation in myelinated nerve: Dependence on external sodium. Ph.D. Thesis, University of Washington. University Microfilms, Ann Arbor, Michigan (1969).

    Google Scholar 

  • Hardy, W.L.: Propagation speed in myelinated nerve, II. Theoretical dependence on external Na+ and on temperature. Biophys. J. 13, 1071–1089 (1973).

    PubMed  CAS  Google Scholar 

  • Heene, P.: Das Aktionspotential des isolierten Ranvierschen Schnürrings bei Erhöhung der extracellulären Wasserstoffionen-Konzentration in calciumhaltigen und calciumarmen Lösungen. Pflügers Arch. ges. Physiol. 275, 1–11 (1962).

    CAS  Google Scholar 

  • Hille, B.: The common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature (Lond.) 210, 1220–1222 (1966).

    CAS  Google Scholar 

  • Hille, B.: Quaternary ammonium ions that block the potassium channel of nerves. Biophys. Soc. Abstr., 11th Annual Meeting, A19 (1967a).

    Google Scholar 

  • Hille, B.: The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J. gen. Physiol. 50, 1287–1302 (1967b).

    PubMed  CAS  Google Scholar 

  • Hille, B.: A pharmacological analysis of the ionic channels of nerve. Ph.D. Thesis, Rockefeller Univ. University Microfilms (No. 68–9,584), Ann Arbor, Michigan (1967c).

    Google Scholar 

  • Hille, Wall, P.D.: Excitability changes in afferent fibre terminations and their relation to slow potentials. J. Physiol. (Lond.) 142, 1–21 (1958).: Pharmacological modifications of the sodium channels of frog nerve. J. gen. Physiol. 51, 199–219 (1968a).

    PubMed  CAS  Google Scholar 

  • Hille, B.: Charges and potentials at the nerve surface: Divalent ions and pH. J. gen. Physiol. 51, 221–236 (1968b).

    PubMed  CAS  Google Scholar 

  • Hille, B.: Voltage clamp studies on myelinated nerve fibers. In: Biophysics and Physiology of Excitable Membranes (W.J. Adelman, ed.), p. 230–246. New York: Van Nostrand Reinhold 1971a.

    Google Scholar 

  • Hille, B.: The permeability of the sodium channel to organic cations in myelinated nerve. J. gen. Physiol. 58, 599–619 (1971b).

    PubMed  CAS  Google Scholar 

  • Hille, B.: The permeability of the sodium channel to metal cations in myelinated nerve. J. gen. Physiol. 59, 637–658 (1972).

    PubMed  CAS  Google Scholar 

  • Hille, B.: Potassium channels in myelinated nerve: Selective permeability to small cations. J. gen. Physiol. 61, 669–686 (1973).

    PubMed  CAS  Google Scholar 

  • Hille, B.: Ionic selectivity of Na and K channels of nerve membranes. In: Membranes-A Series of Advances (G. Eisenman, ed.), vol. 3, Dynamic Properties of Lipid Bi-layers and Biological Membranes, ch. 4. New York: Marcel Dekker, Inc. 1975.

    Google Scholar 

  • Hille, Wilson, V.J., Kato, M., Peterson, B.W.: Convergence of inputs on Deiters neurones. Nature (Lond.) 211, 1409–1411 (1966b)., Courtney, K.R., Dum, R.: Rate and site of action of local anesthetics. Molecular Mechanisms of Anesthesia (B.R. Fink, ed.), p. 13–20. New York: Raven Press 1975.

    Google Scholar 

  • Hille, B., Woodhull, A.M., Shapiro, B.I.: Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions, and pH. Phil. Trans. 270, 301–318 (1975).

    CAS  Google Scholar 

  • Hodgkin, A.L.: The Conduction of the Nervous Impulse. Springfield, Illinois: Charles C. Thomas 1964.

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116, 449–472 (1952a).

    CAS  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 473–496 (1952b).

    CAS  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 496–506 (1952c).

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952d).

    CAS  Google Scholar 

  • Hodgkin, A.L., Katz, B.: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 108, 37–77 (1949).

    CAS  Google Scholar 

  • Honerjäger, P.: Die repetitive Aktivität motorischer und sensibler markhaltiger Nervenfasern des Froschs. Pflügers Arch. 303, 55–70 (1968).

    PubMed  Google Scholar 

  • Horáčkova, M., Nonner, W., Stämpfli, R.: Action potentials and voltage clamp currents of single rat Ranvier nodes. Proc. VIIth Int. Physiol. Sci. 594 (1968).

    Google Scholar 

  • Howarth, J.V., Keynes, R.D., Ritchie, J.M.: The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres. J. Physiol. (Lond.) 194, 745–793(1968).

    CAS  Google Scholar 

  • Hurlbut, W.P.: Salicylate: Effects on ion transport and after-potentials in frog sciatic nerve. Amer. J. Physiol. 209, 1295–1303 (1965).

    PubMed  CAS  Google Scholar 

  • Hutchinson, N.A., Koles, Z.J., Smith, R.S.: Conduction velocity in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 208, 270–289 (1970).

    Google Scholar 

  • Huxley, A.F., Stämpfli, R.: Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. (Lond.) 108, 315–339 (1949).

    Google Scholar 

  • Huxley, A.F., Stämpfli, R.: Direct determination of membrane resting potential and action potential in single myelinated nerve fibres. J. Physiol. (Lond.) 112, 476–495 (1951a).

    CAS  Google Scholar 

  • Huxley, A.F., Stämpfli, R.: Effect of potassium and sodium on resting and action potentials of single myelinated nerve fibres. J. Physiol. (Lond.) 112, 496–508 (1951b).

    CAS  Google Scholar 

  • Kao, C.Y.: Tetrodotoxin, saxitoxin, and their significance in the study of excitation phenomena. Pharmacol. Rev. 18, 997–1049 (1966).

    PubMed  CAS  Google Scholar 

  • Kao, C.Y., Nishiyama, A.: Actions of saxitoxin on peripheral neuromuscular systems. J. Physiol. (Lond.) 180, 50–66 (1965).

    CAS  Google Scholar 

  • Kato, G.: The Microphysiology of Nerve. Tokyo: Maruzen 1934.

    Google Scholar 

  • Kato, G.: On the excitation, conduction and narcotisation of single nerve fibres. Cold Spr. Harb. Symp. quant. Biol. 4, 202–213 (1936).

    CAS  Google Scholar 

  • Keynes, R.D., Ritchie, J.M.: The movements of labelled ions in mammalian non-myelinated nerve fibres. J. Physiol. (Lond.) 179, 333–367 (1965).

    CAS  Google Scholar 

  • Keynes, R.D., Rojas, E.: Characteristics of the sodium gating current in the squid giant axon. J. Physiol. (Lond.) 233, 28–30P (1973).

    Google Scholar 

  • Khodorov, B.I.: The Problem of Excitability: Electrical Excitability and Ionic Permeability of the Nerve Membrane. New York: Plenum Press 1974 [Translated from the Russian.]

    Google Scholar 

  • Khodorov, B.I., Belyaev, V.: Physiological electrotonics of single node of Ranvier under the action of tetraethylammo-nium. In: Biophysics of the Cell. Moscow 1965. [In Russian.]

    Google Scholar 

  • Koles, Z.J., Rasminsky, M.: A computer simulation of conduction in demyelinated nerve fibres. J. Physiol. (Lond.) 227, 351–364 (1972).

    CAS  Google Scholar 

  • Koppenhöfer, E.: Die Wirkung von Tetraäthylammoniumchlorid auf die Membranströme Ranvierscher Schnürringe von Xenopus laevis. Pflügers Arch. ges. Physiol. 293, 34–55 (1967).

    Google Scholar 

  • Koppenhöfer, E., Schmidt, H.: Die Wirkung von Skorpiongift auf die Ionenströme des Ranvierschen Schnürrings. I. Die Permeabilitaten P Na und P K. Pflügers Arch. 303, 133–149 (1968 a).

    PubMed  Google Scholar 

  • Koppenhöfer, E., Schmidt, H.: Die Wirkung von Skorpiongift auf die Ionenströme des Ranvierschen Schnürrings, II. Unvollständige Natrium-Inaktivierung. Pflügers Arch. 303, 150–161 (1968b).

    PubMed  Google Scholar 

  • Koppenhöfer, E., Vogel, W.: Effects of tetrodotoxin and tet-raethylammonium chloride on the inside of the nodal membrane of Xenopus laevis. Pflügers Arch. 313, 361–380 (1969).

    PubMed  Google Scholar 

  • Krishnan, N., Singer, M.: Penetration of peroxidase into peripheral nerve fibers. Amer. J. Anat. 136, 1–14 (1973).

    PubMed  CAS  Google Scholar 

  • Landon, D.N., Langley, O.K.: The local chemical environment of Ranvier: A study of cation binding. J. Anat. (Lond.) 108, 419–432 (1971).

    CAS  Google Scholar 

  • Landon, D.N., Williams, P.L.: Ultrastructure of the node of Ranvier. Nature (Lond.) 199, 575–577 (1963).

    CAS  Google Scholar 

  • Larramendi, L.M.H., Lorentede Nó, R., Vidal, F.: Restoration of sodium deficient frog nerve fibers by an isotonic solution of guanidinium chloride. Nature (Lond.) 178, 316–317 (1956).

    CAS  Google Scholar 

  • Lillie, R.S.: Factors affecting transmission and recovery in the passive iron nerve model. J. gen. Physiol. 7, 473–507 (1925).

    PubMed  CAS  Google Scholar 

  • Livingston, R.B., Pfenninger, K., Moor, H., Akert, K.: Specialized paranodal and interparanodal glial-axonal junctions in the peripheral and central nervous system: A freeze etching study. Brain Res. 58, 1–24 (1973).

    PubMed  CAS  Google Scholar 

  • Lorente de Nó, R.: A study of nerve physiology. Stud. Rockefeller Inst. 131 and 132 (1947).

    Google Scholar 

  • Lorente de Nó, R., Vidal, F., Larramendi, L.M.H.: Restoration of sodium-deficient frog nerve fibres by onium ions. Nature (Lond.) 179, 737–738 (1957).

    Google Scholar 

  • Lubinska, L.: “Intercalated” internodes in nerve fibres. Nature (Lond.) 181, 957–958 (1958).

    CAS  Google Scholar 

  • Lüttgau, H.C.: Sprunghafte Schwankungen unterschwelliger Potentiale an markhaltigen Nervenfasern. Z. Naturforsch. 13b, 692–693 (1958).

    Google Scholar 

  • Lüttgau, H.C.: Weitere Untersuchungen über den passiven Ionentransport durch die erregbare Membran des Ranvier-knotens. Pflügers Arch. ges. Physiol. 273, 302–310 (1961).

    Google Scholar 

  • Meves, H.: Die Nachpotentiale isolierter markhaltiger Nervenfasern des Froschs bei Einzelreizung. Pflügers Arch. ges. Physiol. 271, 655–669 (1960).

    CAS  Google Scholar 

  • Moore, L.E.: Membrane currents at large positive internal potentials in single myelinated nerve fibres of Rana pipiens. J. Physiol. (Lond.) 193, 433–442 (1967).

    CAS  Google Scholar 

  • Moore, L.E.: Effect of temperature and calcium ions on rate constants of myelinated nerve. Amer. J. Physiol. 221, 131–137 (1971).

    PubMed  CAS  Google Scholar 

  • Mozhayev, G.A.: Measurement of the potential difference of the nodal membrane. Biofizika 12, 930–937 (1970).

    Google Scholar 

  • Mozhayev, G.A., Mozhayeva, G.N., Naumov, A.P.: The influence of calcium ions on steady-state potassium conductance of the Ranvier node membrane. Biofizika 12, 993–1001 (1970).

    Google Scholar 

  • Mozhayeva, G.N., Naumov, A.P.: Effect of surface charge on the steady-state potassium conductance of nodal membrane. Nature (Lond.) 228, 164–165 (1970).

    CAS  Google Scholar 

  • Mozhayeva, G.N., Naumov, A.P.: Effect of surface charge on stationary potassium conductivity of Ranvier node membrane, I. Change of pH of exterior solution. Biofizika 17, 412–420 (1972a).

    Google Scholar 

  • Mozhayeva, G.N., Naumov, A.P.: Effect of surface charge on stationary potassium conductivity of Ranvier node membrane, II. Change of ionic strength of external solution. Biofizika 17, 618–622 (1972b).

    Google Scholar 

  • Mozhayeva, G.N., Naumov, A.P.: Effect of surface charge on stationary potassium conductance of Ranvier node membrane, III. Effect of divalent cations. Biofizika 17, 801–808 (1972c).

    Google Scholar 

  • Mozhayeva, G.N., Naumov, A. P.: Tetraethylammonium ion inhibition of potassium conductance of the nodal membrane. Biochim. biophys. Acta 290, 248–255 (1972d).

    PubMed  CAS  Google Scholar 

  • Mozhayeva, G.N., Naumov, A.P.: Potassium conductance of the Ranvier node membrane in the presence of La3+, Zn2+, Cu2+ ions in the media. Tsitologia 15, 1431–1435 (1973).

    Google Scholar 

  • Müller-Mohnssen, H.: Morphologische Veränderungen des überlebenden Ranvierschen Schnürrings unter Einwirkung anisoosmotischer Außenlösungen. Z. Zellforsch. 49, 287–318 (1959).

    PubMed  Google Scholar 

  • Müller-Mohnssen, H.: Der Einfluß elektrophysiologisch wirksamer Substanzen auf das mikroskopische Bild des überlebenden Ranvierschen Schnürrings. Z. Zellforsch. 52, 9–26 (1960).

    Google Scholar 

  • Müller-Mohnssen, H.: Strukturveränderungen des Ranvierschen Schnürrings während des Elektrotonus und während der funktionellen Zerstörung. Z. Zellforsch. 54, 468–498 (1961).

    Google Scholar 

  • Muralt, A. von: Die Signalübermittlung im Nerven. Basal: Birkhäuser 1946.

    Google Scholar 

  • Noble, D., Tsien, R.W.: Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J. Physiol. (Lond.) 200, 205–231 (1969).

    CAS  Google Scholar 

  • Nonner, W.: A new voltage clamp method for Ranvier nodes. Pflügers Arch. 309, 176–192 (1969).

    PubMed  CAS  Google Scholar 

  • Nonner, W., Rojas, E., Stämpfli, R.: Displacement currents in the node of Ranvier. Pflügers Archiv 354, 1–18 (1974).

    Google Scholar 

  • Nonner, W., Stämpfli, R.: A new voltage clamp method. In: Laboratory Techniques in Membrane Biophysics (H. Passow and R. Stämpfli, eds), p. 171–175. Berlin-Heidelberg-New York: Springer 1969.

    Google Scholar 

  • Okada, Y., McDougal, Jr., D.B.: Physiological and biochemical changes in frog sciatic nerve during anoxia and recovery. J. Neurochem. 18, 2335–2353 (1971).

    PubMed  CAS  Google Scholar 

  • Peganov, E.M.: Kinetics of the process of inactivation of sodium channels in the node of Ranvier of frogs. Bull. exp. Biol. Med. (USSR) 11, 5–9 (1973).

    Google Scholar 

  • Peganov, E.M., Khodorov, B.I., Shishkova, L.D.: Slow sodium inactivation related to external potassium in the membrane of Ranvier’s node. The role of external K. Bull. exp. Biol. Med. (USSR) 9, 15–19 (1973).

    Google Scholar 

  • Peganov, E.M., Timin, E.N., Khodorov, B.I.: Interrelationship between the processes of sodium activation and inactivation. Bull. exp. Biol. Med. (USSR) 10, 7–11 (1973).

    Google Scholar 

  • Rasminsky, M., Sears, T.A.: Internodal conduction in un-dissected demyelinated nerve fibres. J. Physiol. (Lond.) 227, 323–350 (1972).

    CAS  Google Scholar 

  • Ritchie, J.M.: Energetic aspects of nerve conduction: The relationships between heat production, electrical activity, and metabolism. Progr. Biophys. molec. Biol. 26, 147–187 (1973).

    CAS  Google Scholar 

  • Ritchie, J.M., Ritchie, B., Greengard, P.: The active structure of local anesthetics. J. Pharmacol, exp. Ther. 150, 152–159 (1965 a).

    CAS  Google Scholar 

  • Ritchie, J.M., Ritchie, B., Greengard, P.: The effect of the nerve sheath on the action of local anesthetics. J. Pharmacol, exp. Ther. 150, 160–164 (1965b).

    CAS  Google Scholar 

  • Robertson, J.D.: Preliminary observations on the ultrastructure of nodes of Ranvier. Z. Zellforsch. 50, 553–560 (1959).

    Google Scholar 

  • Robertson, J.D.: The molecular structure and contact relationship of cell membranes. Progr. Biophys. 10, 344–418 (1960).

    Google Scholar 

  • Rushton, W.A.H.: A theory of the effects of fibre size in medullated nerve. J. Physiol. (Lond.) 115, 101–122 (1951).

    CAS  Google Scholar 

  • Sanders, F.K., Whitteridge, D.: Conduction velocity and myelin thickness in regenerating nerve fibres. J. Physiol. (Lond.) 105, 152–174 (1946).

    Google Scholar 

  • Schmidt, H.: Die Wirkung von Tetraäthylammoniumchlorid auf das Membranpotential und den Membranwiderstand von Bündeln markhaltiger Nervenfasern. Pflügers Arch. ges. Physiol. 282, 351–361 (1965).

    CAS  Google Scholar 

  • Schmidt, H., Schmitt, O.: Effect of aconitine on sodium permeability of the node of Ranvier. Pflügers Arch. 349, 133–148 (1974).

    PubMed  CAS  Google Scholar 

  • Schmidt, H., Stämpfli, R.: Nachweis unterschiedlicher elek-trophysiologischer Eigenschaften motorischer und sensibler Nervenfasern des Froschs. Helv. physiol. pharmacol. Acta 22, C143–C145 (1964a).

    Google Scholar 

  • Schmidt, H., Stämpfli, R.: Elektrophysiologisch erkennbare Unterschiede zwischen einzelnen motorischen und sensorischen markhaltigen Nervenfasern. Pflügers Arch. ges. Physiol. 281, 77–78 (1964b).

    Google Scholar 

  • Schmidt, H., Stämpfli, R.: Die Wirkung von Tetraäthylammoniumchlorid auf den einzelnen Ranvierschen Schnürring. Pflügers Arch. ges. Physiol. 287, 311–325 (1966).

    CAS  Google Scholar 

  • Schmitt, O., Schmidt, H.: Influence of calcium ions on the ionic currents of nodes of Ranvier treated with scorpion venom. Pflügers Arch. 333, 51–61 (1972).

    PubMed  CAS  Google Scholar 

  • Schoepfle, G.M., Johns, G.C.: Factors controlling simulated responses of medullated nerve fibers. Amer. J. Physiol. 219, 636–640 (1970).

    PubMed  CAS  Google Scholar 

  • Schoepfle, G.M., Johns, G.C., Molnar, C.E.: Simulated responses of depressed and hyperpolarized medullated nerve fibers. Amer. J. Physiol. 216, 932–938 (1969).

    PubMed  CAS  Google Scholar 

  • Schoepfle, G.M., Katholi, C.R.: Post-tetanic changes in membrane potential of single medullated nerve fibers. Amer. J. Physiol. 225, 1501–1507 (1973).

    PubMed  CAS  Google Scholar 

  • Schwarz, J.R., Ulbricht, W., Wagner, H.-H.: The rate of action of tetrodotoxin on myelinated nerve fibres of Xenopus laevis and Rana esculenta. J. Physiol. (Lond.) 233, 167–194 (1973).

    CAS  Google Scholar 

  • Schwarz, J.R., Vogel, W.: Potassium inactivation in single myelinated nerve fibres of Xenopus laevis. Pflügers Arch. 330, 61–73 (1971).

    PubMed  CAS  Google Scholar 

  • Shanes, A.M.: Electrochemical aspects of physiological and pharmacolocal action in excitable cells, I. The resting cell and its alteration by extrinsic factors. Pharmacol. Rev. 10, 59–164 (1958 a).

    PubMed  CAS  Google Scholar 

  • Shanes, A.M.: Electrochemical aspects of physiological and pharmacological action in excitable cells, II. The action potential and excitation. Pharmacol. Rev. 10, 165–274 (1958 b).

    PubMed  CAS  Google Scholar 

  • Shanes, A.M.: Drugs and nerve conduction. Ann. Rev. Pharmacol. 3, 185–204 (1963).

    Google Scholar 

  • Shantha, T.R., Bourne, G.H.: The perineural epithelium—a new concept. In: The Structure and Function of Nervous Tissue (G.H. Bourne, ed.), vol. I, Structure I., ch. 10, p. 379–459. New York: Academic Press 1968.

    Google Scholar 

  • Siebenga, E., Meyer, A.W.A., Verveen, A.A.: Membrane shot-noise in electrically depolarized nodes of Ranvier. Pflügers Arch. 341, 87–96 (1973).

    PubMed  CAS  Google Scholar 

  • Singer, M., Bryant, S.V.: Movements in the myelin Schwann sheath of the vertebrate axon. Nature (Lond.) 221, 1148–1150(1969).

    CAS  Google Scholar 

  • Smith, R.S., Koles, Z.J.: Myelinated nerve fibers: Computed effect of myelin thickness on conduction velocity. Amer. J. Physiol. 219, 1256–1258 (1970).

    PubMed  CAS  Google Scholar 

  • Stämpfli, R.: Bau und Funktion isolierter markhaltiger Nervenfasern. Ergebn. Physiol. 47, 70–165 (1952).

    PubMed  Google Scholar 

  • Stämpfli, R.: Saltatory conduction in nerve. Physiol. Rev. 34, 101–111 (1954a).

    PubMed  Google Scholar 

  • Stämpfli, R.: A new method for measuring membrane potentials with external electrodes. Experientia (Basel) 10, 508–511 (1954 b).

    Google Scholar 

  • Stämpfli, R.: Is the resting potential of Ranvier nodes a potassium potential? Ann. N.Y. Acad. Sci. 81, 265–284 (1959).

    Google Scholar 

  • Stämpfli, R.: Dissection of single nerve fibres and measurement of membrane potential changes of Ranvier nodes by means of the double air gap method. In: Laboratory Techniques in Membrane Biophysics (H. Passow and R. Stämpfli, eds.), p. 157–166. Berlin-Heidelberg-New York: Springer 1969.

    Google Scholar 

  • Stämpfli, R.: Intraaxonal iodate inhibits sodium inactivation. Experientia (Basel) 30, 505–508 (1974).

    Google Scholar 

  • Stevens, C.F.: Inferences about membrane properties from electrical noise measurements. Biophys. J. 12, 1028–1047 (1972).

    PubMed  CAS  Google Scholar 

  • Straub, R.: Die Wirkung von Veratridin und Ionen auf das Ruhepotential markhaltiger Nervenfasern des Frosches. Helv. physiol. pharmacol. Acta 14, 1–28 (1956).

    PubMed  CAS  Google Scholar 

  • Strichartz, G.R.: The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J. gen. Physiol. 62, 37–57 (1973).

    PubMed  CAS  Google Scholar 

  • Tasaki, I.: The strength duration relation of the normal polarized and narcotized nerve fiber. Amer. J. Physiol. 125, 367–379 (1939).

    Google Scholar 

  • Tasaki, I.: Nervous Transmission. Springfield, Illinois: Charles C. Thomas 1953.

    Google Scholar 

  • Tasaki, I.: New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber. Amer. J. Physiol. 181, 639–650 (1955).

    PubMed  CAS  Google Scholar 

  • Tasaki, I.: Demonstration of two stable states of the nerve membrane in K-rich media. J. Physiol. (Lond.) 148, 306–331 (1959a).

    CAS  Google Scholar 

  • Tasaki, I.: Conduction of the nerve impulse. In: Handbook of Physiology, vol. Section 1. Washington, D.C.: Am. Physiol. Soc. 1959 b.

    Google Scholar 

  • Tasaki, I., Bak, A.F.: Current-voltage relations of single nodes of Ranvier as examined by voltage-clamp technique. J. Neurophysiol. 21, 124–137 (1958).

    PubMed  CAS  Google Scholar 

  • Tasaki, I., Frank, K.: Measurement of the action potential of myelinated nerve fiber. Amer. J. Physiol. 182, 572–578 (1955).

    PubMed  CAS  Google Scholar 

  • Tasaki, I., Freygang, Jr., W.H.: The parallelism between the action potential, action current, and membrane resistance at a node of Ranvier. J. gen. Physiol. 39, 211–223 (1955).

    PubMed  CAS  Google Scholar 

  • Tasaki, I., Hagiwara, S.: Demonstration of two stable potential states in the squid giant axon under tetraethylammo-nium chloride. J. gen. Physiol. 40, 859–885 (1957).

    PubMed  CAS  Google Scholar 

  • Tasaki, I., Takeuchi, T.: Der am Ranvierschen Knoten entstehende Aktionsstrom und seine Bedeutung für die Erregungsleitung. Pflügers Arch. ges. Physiol. 244, 696–711 (1941).

    Google Scholar 

  • Tasaki, I., Takeuchi, T.: Weitere Studien über den Aktionsstrom der markhaltigen Nervenfasern und über die elektro-saltatorische Übertragung des Nervenimpulses. Pflügers Arch. ges. Physiol. 245, 764–782 (1942).

    Google Scholar 

  • Thomas, R.C.: Electrogenic sodium pump in nerve and muscle cells. Physiol. Rev. 52, 563–594 (1972).

    PubMed  CAS  Google Scholar 

  • Twitty, V.C.: Experiments on the phenomenon of paralysis produced by a toxin contained in Triturus embryos. J. exp. Zool. 76, 67–104 (1937).

    CAS  Google Scholar 

  • Ulbricht, W.: Some effects of calcium ions on the action potentials of single nodes of Ranvier. J. gen. Physiol. 48, 113–137(1964).

    PubMed  CAS  Google Scholar 

  • Ulbricht, W.: Voltage clamp studies of veratrinized frog nodes. J. cell. comp. Physiol. 66 (Suppl. 2), 91–98 (1965).

    CAS  Google Scholar 

  • Ulbricht, W.: The effect of veratridine on excitable membranes of nerve and muscle. Ergebn. Physiol. 61, 18–71 (1969 a).

    PubMed  CAS  Google Scholar 

  • Ulbricht, W.: Effect of temperature on the slowly changing sodium permeability of veratrinized nodes of Ranvier. Pflügers Arch. 311, 73–95 (1969b).

    PubMed  CAS  Google Scholar 

  • Ulbricht, W.: Rate of veratridine action on the nodal membrane, I. Fast phase determined during sustained depolarization in the voltage clamp. Pflügers Arch. 336, 187–199 (1972a).

    PubMed  CAS  Google Scholar 

  • Ulbricht, W.: Rate of veratridine action on the nodal membrane, II. Fast and slow phase determined with periodic impulses in the voltage clamp. Pflügers Arch. 336, 201–212 (1972b).

    PubMed  CAS  Google Scholar 

  • Ulbricht, W., Flacke, W.: After-potentials and large depolarizations of single nodes of Ranvier treated with veratridine. J. gen. Physiol. 48, 1035–1046 (1965).

    PubMed  CAS  Google Scholar 

  • VerVeen, A.A., Derksen, H.E.: Amplitude distribution of axon membrane noise voltage. Acta physiol. pharmacol. neerl. 15, 353–379(1969).

    PubMed  CAS  Google Scholar 

  • Vierhaus, J., Ulbricht, W.: Effect of a sudden change in sodium concentration on repetitively evoked action potentials of single nodes of Ranvier. Pflügers Arch. 326, 76–87 (1971a).

    PubMed  CAS  Google Scholar 

  • Vierhaus, J., Ulbricht, W.: Rate of action of tetraethylammo-nium ions on the duration of action potentials in single Ranvier nodes. Pflügers Arch. 326, 88–100 (1971b).

    PubMed  CAS  Google Scholar 

  • Vogel, W.: Calcium and lanthanum effects at the nodal membrane. Pflügers Arch. 350, 25–40 (1974).

    PubMed  CAS  Google Scholar 

  • Waggener, J.D., Beggs, J.: The membranous coverings of neural tissues: An electron microscopy study. J. Neuropath, exp. Neurol. 26, 412–426 (1967).

    CAS  Google Scholar 

  • Wagner, H.-H., Ulbricht, W.: Interaction of tetrodotoxin and H ions at the nodal membrane. Pflügers Arch. 339, R70 (1973).

    Google Scholar 

  • Wagner, H.-H., Ulbricht, W.: Do TTX and H+ compete for the same site of the sodium channel? Pflügers Arch. 347, R34 (1974).

    Google Scholar 

  • Williams, P.L., Landon, D.N.: Fig. 7.25G. In: Gray’s Anatomy, 35th ed. (R. Warwick, and P.L. Williams, eds). London: Longmans 1973.

    Google Scholar 

  • Wood, J.G., King, N.: Turnover of basic protein of rat brain. Nature (Lond.) 229, 56–57 (1971).

    CAS  Google Scholar 

  • Woodbury, J.W.: Linear current-voltage relation for Na+ channel from Eyring rate theory. Abstr. Biophys. Soc, 13th Ann. Meeting, A250 (1969).

    Google Scholar 

  • Woodhull, A.M.: Ionic blockage of sodium channels in nerve. J. gen. Physiol. 61, 687–708 (1973).

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Stämpfli, R., Hille, B. (1976). Electrophysiology of the Peripheral Myelinated Nerve. In: Frog Neurobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66316-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66316-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66318-5

  • Online ISBN: 978-3-642-66316-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics