Skip to main content

Cholesterin

Chemie, Physiologie und Pathophysiologie

  • Chapter
Fettstoffwechsel

Part of the book series: Handbuch der inneren Medizin ((INNEREN 7,volume 7 / 4))

  • 78 Accesses

Zusammenfassung

Das Cholesterin ist der quantitativ wichtigste Vertreter der Stoffklasse der Steroide im tierischen Organismus. Es ist das vorherrschende Steroid der Wirbeltiere, während bei den Wirbellosen, den Hefen und Pflanzen zahlreiche andere Steroide neben dem Cholesterin von Wichtigkeit sind. Cholesterin liegt im Körper in freier Form, als Ester langketti-ger Fettsäuren und als Sulfat vor. Cholesterin ist ein wesentlicher Bestandteil der Zellmembran und kann daher in allen tierischen Geweben nachgewiesen werden. Darüber hinaus ist das Cholesterin der Vorläufer der Gallensäuren, der Nebennierenrindenhor-mone und der Sexualhormone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Abell, L.L., Mosbach, E.H., Kendall, F.E.: Cholesterol metabolism in the dog. J. biol. Chem. 220, 527–536 (1956).

    PubMed  CAS  Google Scholar 

  • Agranoff, B.W., Eggerer, H., Henning, U., Lynen, F.: Isopentenyl pyrophosphate isomerase. J. Amer. Chem. Soc. 81, 1254–1255 (1959).

    CAS  Google Scholar 

  • Alexander, G.J., Schwenk, E.: Studies of biosynthesis of cholesterol. IX. Zymosterol as a precursor of cholesterol. Arch. Biochem. 66, 381–387 (1957).

    PubMed  CAS  Google Scholar 

  • Alexandrow, D., Klopotowski, T., Smietanska, Z.: Effect of physical activity upon cholesterol synthesis in the rat lifer. J. Atheroscler. Res. 4, 351–355 (1964).

    Google Scholar 

  • Anderson, K.E., Kok, E., Javitt, N.B.: Bile acid synthesis in man. Metabolism of 7α-hydroxycholesterol—14C und 26-hydroxycholesterol — 3H. J. clin. Invest. 51, 112–117 (1972).

    PubMed  CAS  Google Scholar 

  • Anfinsen, C.B., Horning, M.G.: Enzymatic degradation of the cholesterol side chain in cell free preparations. J. Amer. Chem. Soc. 75, 1511–1512 (1953).

    CAS  Google Scholar 

  • Avigan, J., Steinberg, D.: Sterol and bile acid excretion in man and the effects of dietary fat. J. clin. Invest. 44, 1845–1856 (1965).

    PubMed  CAS  Google Scholar 

  • Avigan, J., Steinberg, D., Berman, M.: Distribution of labelled cholesterol in animal tissues. J. Lipid Res. 3, 216–221 (1962).

    CAS  Google Scholar 

  • Back, P.: Urinary profile of bile acids in liver Disease. In: Bile Acids in Human Diseases (P. Back, W. Gerok, Eds.). Stuttgart: Schattauer 1973.

    Google Scholar 

  • Back, P., Hamprecht, B., Lynen, F.: Regulation of cholesterol biosynthesis in rat liver. Diurnal changes of activity and influence of bile acids. Arch. Biochem. 123, 11–21 (1969).

    Google Scholar 

  • Back, P., Ross, K.: Identification of 3β-Hydroxy-5-cholenoic acid in human meconium. Hoppe-Seylers Z. physiol. Chem. 354, 83–89 (1973).

    PubMed  CAS  Google Scholar 

  • Baker, R.D., Searle, G.W.: Bile salt absorption at various levels of rat small intestine. Proc. Soc. exp. Biol. (N.Y.) 105, 521–523 (1960).

    CAS  Google Scholar 

  • Balasubramaniam, S., Mitropoulos, K.A., Myant, N.B.: Evidence for the compartmentation of cholesterol in rat liver microsomes. Europ. J. Biochem. 34, 77–83 (1973).

    PubMed  CAS  Google Scholar 

  • Barth, C., Hackenschmidt, J., Ullmann, H., Decker, K.: Inhibition of Cholesterol Synthesis by (—)-Hydroxy-citrate in Perfused Rat liver. Evidence for an Extramitochondrial Mevalonate Synthesis from Acetyl Coenzym A. FEBS Letters 22, 343–346 (1972).

    PubMed  CAS  Google Scholar 

  • Barth, C.A., Hackenschmidt, H.J., Weis, E.E., Decker, K.F.A.: Influence of Kynurenate on Cholesterol and Fatty Acid Synthesis in Isolated Perfused Rat Liver. J. biol. Chem. 248, 738–739 (1973).

    PubMed  CAS  Google Scholar 

  • Beher, W.T., Anthony, W.L., Beher, M.E.: Effects of conjugated bile acids on in vivo cholesterol metabolism in the mouse. Proc. Soc. exp. Biol. (N.Y.) 107, 49–51 (1961).

    CAS  Google Scholar 

  • Beher, W.T., Baker, G.D.: Build up and regression of inhibitory effects of cholic acid on in vivo liver cholesterol synthesis. Proc. Soc. exp. Biol. (N.Y.) 101, 214–217 (1959).

    CAS  Google Scholar 

  • Beher, W.T., Baker, G.D., Anthony, W.L.: Effect of dietary cholic acid on in vivo cholesterol metabolism. Proc. Soc. exp. Biol. (N.Y.) 100, 3–6 (1959).

    CAS  Google Scholar 

  • Beher, W.T., Baker, G.D., Anthony, W.L.: Effect of bile acids on fecal excretion of endproducts of cholesterol metabolism. Amer. J. Physiol. 199, 736–740 (1960).

    CAS  Google Scholar 

  • Beher, W.T., Baker, G.D., Anthony, W.L.: Feedback control of cholesterol biosynthesis in the mouse. Proc. Soc. exp. Biol. (N.Y.) 109, 863–868 (1962).

    CAS  Google Scholar 

  • Beher, W.T., Baker, G.D., Penney, G.D.: A comparative study of the effects of bile acids and cholesterol on cholesterol metabolism in the mouse, rat, hamster, and guinea pig. J. Nutr. 79, 523–530 (1963).

    PubMed  CAS  Google Scholar 

  • Beher, W.T., Casazza, K.K., Beher, M.E., Filus, A.M., Bertasius, J.: Effects of cholesterol on bile acid metabolism in the rat. Proc. Soc. exp. Biol. (N.Y.) 134, 595–602 (1970).

    CAS  Google Scholar 

  • Beher, W.T., Rao, B., Beher, M.E., Semenuk, G., Bertasius, J., Vuzpetti, N.: The accumulation of tissue cholesterol and its relationship to bile acid and sterol turnover. Henry Ford Hosp. Med. J. 15, 107–118 (1967).

    CAS  Google Scholar 

  • Bergström, S.: The formation of bile acids from cholesterol in the rat. Kungl. Fysiograf. Sallsk. Lund. Forh. 22, 91–95 (1952).

    Google Scholar 

  • Bergström, S.: Bile acids, formation and metabolism. In: The biosynthesis of Terpenes and Sterols (G.E.W. Wolstenholme, M. O’connor, Eds.), p. 185–203. London: Churchill 1959.

    Google Scholar 

  • Bergström, S., Danielsson, H.: On the regulation of bile acid formation in the rat liver. Bile acids and steroids 58. Acta physiol. scand. 43, 1–7 (1958).

    PubMed  Google Scholar 

  • Bergström, S., Gloor, U.: Metabolism of bile acids in rat liver slices and homogenates. Acta chem. scand. 8, 1373–1377 (1954).

    Google Scholar 

  • Bergström, S., Lindstedt, S., Samuelsson, B., Carey, E.J., Gregoriou, G.A.: The stereochemistry of 7α-hydroxylation in the biosynthesis of cholic acid from cholesterol. J. Amer. chem. Soc. 80, 2337–2338 (1958).

    Google Scholar 

  • Berndt, J., Gaumert, R.: Evidence for an activating-inactivating system of 3-hydroxy-3-methylglutaryl CoA reductase in mouse liver. Hoppe-Seylers Z. physiol. Chem. 355, 905–910 (1974).

    PubMed  CAS  Google Scholar 

  • Berseus, D.: Conversion of cholesterol to bile acids in rat: Purification and properties of a Δ 4–3-ketoste-roid-5β-reductase and a 3α-hydroxy steroid dehydrogenase. Europ. J. Biochem. 2, 493–502 (1967).

    PubMed  CAS  Google Scholar 

  • Berseus, D., Danielsson, H., Kallner, A.: Synthesis and meabolism of cholest-4-en,7α,12α-diol-3-on and 5β-Cholestane-7α,12α-diol-3on. J. biol. Chem. 240, 2396–2401 (1965).

    PubMed  CAS  Google Scholar 

  • Berseus, D., Einarsson, K.: On the conversion of cho-lest-5en-3β,7α-diol to 7α-hydroxy-cholest-4-en-3on in rat liver homogenates. Acta chem. scand. 21, 1105–1108 (1967).

    CAS  Google Scholar 

  • Bhattacharyya, A., Connor, W.E., Spector, A.A.: Excretion of sterols from the skin of normal and hypercholesterolemic humans. J. clin. Invest. 51, 2060–2070 (1972).

    PubMed  CAS  Google Scholar 

  • Bhattathiry, E.P., Siperstein, M.D.: Feedback control of cholesterol synthesis in man. J. clin. Invest. 42, 1613–1618 (1963).

    PubMed  CAS  Google Scholar 

  • Björkhem, I., Danielsson, H., Einarsson, K.: On the conversion of cholesterol to 5β-cholestane-3α,7α-diol in guinea pig liver homogenates. Europ. J. Biochem. 2, 294–302 (1967).

    PubMed  Google Scholar 

  • Björkhem, I., Danielsson, H., Einarsson, K., Johansson, G.: Formation of bile acids in man: conversion of cholesterol in to 5β-Cholestane 3α,7α,12α-triol in liver homogenates. J. clin. Invest. 47, 1573–1582 (1968).

    Google Scholar 

  • Björkhem, I., Einarsson, K., Johansson, G.: Formation and metabolism of 3β-hydroxy-cholest-5-en-7one and cholest-5-en-3β,7α-diol. Acta chem. scand. 22, 1595–1605 (1968).

    Google Scholar 

  • Blaton, V.H., Peeters, H.: Integrated approach to plasma lipid and lipoprotein analysis in Blood lipids and lipoproteins. In: Quantitation, Composition and Metabolism (G.J. Nelson, Ed.), p. 275–313. New York: Wiley 1972.

    Google Scholar 

  • Bloch, K.: The biological conversion of cholesterol to pregnanediol. J. biol. Chem. 157, 661–666 (1945).

    CAS  Google Scholar 

  • Bloch, K.: Über die Herkunft des Kohlenstoffatoms 7 in Cholesterin. Ein Beitrag zur Kenntnis der Biosynthese der Steroide. Helv. chim. Acta 36, 1611–1614 (1953).

    CAS  Google Scholar 

  • Bloch, K.: In: Biochemistry of Steroids (O. Hoffmann-Ostenhoff, Ed.), vol. 2. London: Pergamon Press 1959.

    Google Scholar 

  • Bloch, K., Berg, B.N., Rittenberg, D.: The biological conversion of cholesterol to cholic acid. J. biol. Chem. 149, 511–517 (1943).

    CAS  Google Scholar 

  • Bloch, K., Chaykin, S., Phillips, A.H., De Waard, A.: Mevalonic Acid Pyrophosphate and Isopentenyl-pyrophosphat. J. biol. Chem. 234, 2595–2604 (1959).

    PubMed  CAS  Google Scholar 

  • Bloch, K., Rittenberg, D.: On utilization of acetic acid for cholesterol formation. J. biol. Chem. 145, 625–636 (1942).

    CAS  Google Scholar 

  • Bloch, K., Rittenberg, D.: Estimation of acetic acid formation in rat. J. biol. Chem. 159, 45–48 (1945).

    CAS  Google Scholar 

  • Blomhof, J.P., Skrede, S., Ritland, S.: Lecithin Cholesterol acyl transferase and plasma proteins in liver disease. Clin. chim. Acta 53, 197–207 (1974).

    Google Scholar 

  • Blomstrand, R., Ahrens, E.H., Jr.: The absorption of fats studied in a patient with chyluria III cholesterol. J. biol. Chem. 233, 327–330 (1958).

    PubMed  CAS  Google Scholar 

  • Bloomfield, D.K.: Dynamics of cholesterol metabolism. I. Factors regulating total sterol biosynthesis and accumulation in the rat. Proc. nat. Acad. Sci. (Wash.) 50, 117–124 (1963).

    CAS  Google Scholar 

  • Bonner, J., Arreguin, B.: The Biochemistry of rubber formation in the guayule. I. Rubber formation in seedlings. Arch. Biochem. 21, 109–124 (1949).

    PubMed  CAS  Google Scholar 

  • Borgström, B.: Studies on intestinal cholesterol absorption in the human. J. clin. Invest. 39, 809–815 (1960).

    PubMed  Google Scholar 

  • Borgström, B.: Quantitative aspects of the intestinal absorption and metabolism of cholesterol and β-sitosterol in the rat. J. Lipid Res. 9, 473–481 (1968).

    PubMed  Google Scholar 

  • Borgström, B.: Qualification of cholesterol absorption in man by fecal analysis after the feeding of a single isotope labelled meal. J. Lipid Res. 10, 331–337 (1969).

    PubMed  Google Scholar 

  • Borgström, B., Lindhe, B.A., Wlodawer, P.: Absorption and distribution of cholesterol 4–14C in the rat. Proc. Soc. exp. Biol. (N.Y.) 99, 365–368 (1958).

    Google Scholar 

  • Borkowski, A., Delcroix, C., Levin, S.: Metabolism of adrenal cholesterol in man. I. In vivo studies. J. clin. Invest. 51, 1664–1678 (1972a).

    PubMed  CAS  Google Scholar 

  • Borkowski, A., Delcroix, C., Levin, S.: Metabolism of adrenal cholesterol in man. II. In vitro studies including a comparison of adrenal cholesterol synthesis with the synthesis of the glucosteroid humans. J. clin. Invest. 51, 1679–1687 (1972b).

    PubMed  CAS  Google Scholar 

  • Bortz, W.M.: Fat feeding and cholesterol synthesis. Biochim. biophys. Acta (Amst.) 137, 533–539 (1967).

    CAS  Google Scholar 

  • Bortz, W.M.: Nor-adrenalin induced increase in hepatic cholesterol synthesis and its blockage by puromycin. Biochim. biophys. Acta (Amst.) 152, 619–626 (1968).

    CAS  Google Scholar 

  • Bortz, W.M., Steele, L.A.: Synchronization of hepatic cholesterol synthesis, cholesterol and bile acid content, fatty acid synthesis and plasma free fatty acids levels in the fed and fasted rats. Biochim. biophys. Acta (Amst.) 306, 85–94 (1973).

    CAS  Google Scholar 

  • Boyd, G.S.: In: Hormones and Atherosclerosis (G. Pincus, Ed.), p. 49–62. New York: Academic Press 1959.

    Google Scholar 

  • Boyd, G.S., Eastwood, M.A., McLean, N.: Bile acids in the rat: studies in experimental occlusion of the bile duct. J. Lipid Res. 7, 83–94 (1966).

    PubMed  CAS  Google Scholar 

  • Boyd, G.S., Scholan, N.A., Mitton, J.R.: Factors influencing cholesterol 7α-hydroxylase activity in the rat liver. In: Drugs Affecting Lipid Metabolism (W.L. Hölmes, L.A. Carlson, R. Paoletti, Eds.), p. 443–456. New York: Plenum Press 1969.

    Google Scholar 

  • Bricker, L.A., Levey, G.S.: Evidence for regulation of cholesterol and fatty acid synthesis in liver by cyclic adenosine 3′,5′ monophosphate. J. biol. Chem. 247, 4914–4915 (1972).

    PubMed  CAS  Google Scholar 

  • Brodie, J.D., Wasson, G., Porter, J.: Enzyme-bound intermediates in the biosynthesis of mevalonic and palmitic acid. J. biol. Chem. 239, 1346–1356 (1964).

    PubMed  CAS  Google Scholar 

  • Brown, M.S., Dana, E.S., Dietschy, J.M., Siperstein, M.D.: 3-Hydroxy-3-methylglutaryl Coenzym A Reductase. Solubilization and purification of a cold sensitive microsomal enzyme. J. biol. Chem. 248, 4731–4738 (1973a).

    PubMed  CAS  Google Scholar 

  • Brown, M.S., Dana, S.E., Goldstein, J.L.: Regulation of HMG-CoA reductase activity in human fibroblasts by lipoproteins. Proc. nat. Acad. Sci. (Wash.) 70, 2162–2166 (1973b).

    CAS  Google Scholar 

  • Brown, M.S., Dana, S.E., Goldstein, J.L.: Regulation of HMG-CoA reductase activity in cultured human fibroblasts: Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J. biol. Chem. 249, 789–796 (1974).

    PubMed  CAS  Google Scholar 

  • Brunner, D., Manelis, G., Loebel, K.: Influence of age and race on lipid levels in Israel. Lancet 1959, 1071–1073.

    Google Scholar 

  • Bucher, N.L.R., McGarrahan, K.: The biosynthesis of cholesterol from acetate-l-C14 by cellular fractions of rat liver. J. biol. Chem. 222, 1–16 (1956).

    PubMed  CAS  Google Scholar 

  • Bucher, N.L.R., McGarrahan, K., Gould, E., Loud, A. V.: Cholesterol biosynthesis in preparations of liver from normal, fasting, x-irradiated, cholesterol fed, triton, or Δ 4cholesten-3-one treated rats. J. biol. Chem. 234, 262–267 (1959).

    PubMed  CAS  Google Scholar 

  • Bucher, N.L.R., Overath, P., Lynen, F.: β-hydroxy-β-methylglutaryl coenzym A reductase, cleavage and condensing enzymes in relation to cholesterol formation in rat liver. Biochim. biophys. Acta (Amst.) 40, 491–501 (1960).

    CAS  Google Scholar 

  • Burchard, H.: Beiträge zur Kenntnis der Cholesterine. Dissertation. Univ. Rostock 1889.

    Google Scholar 

  • Byers, S.D., Biggs, M.W.: Cholic acid and cholesterol: studies concerning possible intraconversion. Arch. Biochem. 39, 301–304 (1952).

    PubMed  CAS  Google Scholar 

  • Calandra, S., Marlin, M.J., McIntyre, N.: Plasma lecithin: cholesterol Acyltransferase activity in liver disease. Europ. J. clin. Invest. 1, 352–360 (1971).

    PubMed  CAS  Google Scholar 

  • Carey, J.B., Haslewood, G.A.D.: Crystallization of trihydroxycoprostanic acid from human bile. J. biol. Chem. 238, 855–856 (1963).

    PubMed  Google Scholar 

  • Carey, J.B., Williams, G.: Metabolism of lithocholic acid in bile fistula patients. J. clin. Invest. 42, 450–455 (1963).

    PubMed  Google Scholar 

  • Carey, M.C., Small, D.M.: The characteristics of mixed micellar solutions with particular reference to bile. Amer. J. Med. 49, 590–608 (1970).

    PubMed  CAS  Google Scholar 

  • Carrol, K.K.: Acetate incorporation into cholesterol and fatty acids by liver slices from rats fed commercial or semisynthetic diets. The effect of dietary fats. Canad. J. Biochem. 42, 71–78 (1964).

    Google Scholar 

  • Cayen, M.N.: The effect of starvation and cholesterol feeding on the intestinal cholesterol synthesis in the rat. Biochim. biophys. Acta (Amst.) 187, 546–554 (1969).

    CAS  Google Scholar 

  • Chaikoff, J.L., Siperstein, M.D., Dauben, W.G., Bradlow, H.L., Eastham, J.F., Tomkins, G.M., Meier, J.R., Chen, R.W., Hotta, S., Srere, P.A.: 14C-Cholesterol. II. Oxidation of carbon 4 and 26 to carbon dioxide by the intact rat. J. biol. Chem. 194, 413–416 (1952).

    PubMed  CAS  Google Scholar 

  • Channon, H.J.: The biological significance of the unsaponifiable matter of oils. I. Experiments with the unsaturated hydrocarbon squalene. Biochem. J. 20, 400–408 (1926).

    PubMed  CAS  Google Scholar 

  • Chaykin, S., Law, J., Phillips, A.H., Tchen, T.T., Bloch, K.: Phosphorylated intermediates in the synthesis of squalene. Proc. nat. Acad. Sci. (Wash.) 44, 998–1004 (1958).

    CAS  Google Scholar 

  • Cheng, S.H., Stanley, M.M.: Secretion of cholesterol by intestinal mucosa in patients with complete common bile duct obstruction. Proc. Soc. exp. Biol. (N.Y.) 101, 223–225 (1959).

    CAS  Google Scholar 

  • Chobanian, A.V., Hollander, W.: Body cholesterol metabolism in man. I. The equilibration of serum and tissue cholesterol. J. clin. Invest. 41, 1732–1737 (1962a).

    PubMed  CAS  Google Scholar 

  • Chobanian, A.V., Burrows, B.A., Hollander, W.: Body cholesterol metabolism in man. II. Measurement of the body cholesterol miscible pool and turnover rate. J. clin. Invest. 41, 1738–1744 (1962b).

    PubMed  CAS  Google Scholar 

  • Clayton, R.B., Bloch, K.: The biological conversion of lanosterol to cholesterol. J. biol. Chem. 218, 319–325 (1956).

    PubMed  CAS  Google Scholar 

  • Clayton, R.D.: Steroids and Terpenoids. In: Methods in Enzymology (S.P. Colowick, N.O. Kaplan, Eds.). New York: Academic Press 1969.

    Google Scholar 

  • Clinkenbeard, K.D., Sugiyama, T., Moss, J., Reed, W.D., Lane, M.D.: Molecular and Catalytic Properties of Cytosolic Acetoacetyl Coenzym A Thiolase from Avian Liver. J. biol. Chem. 248, 2275–2284 (1973).

    PubMed  CAS  Google Scholar 

  • Coleman, D.L., Baumann, C.A.: Intestinal sterols IV. Δ 7-coprostanol. Arch. Biochem. 71, 287–292 (1957a).

    PubMed  CAS  Google Scholar 

  • Coleman, D.L., Baumann, C.A.: Intestinal sterols, V. Reduction of sterols by intestinal microorganisms. Arch. Biochem. 72, 219–225 (1957b).

    PubMed  CAS  Google Scholar 

  • Coleman, D.L., Wells, W.W., Baumann, C.A.: Intestinal sterols II. Determination of coprostanol and certain related sterols. Arch. Biochem. 60, 412–418 (1956).

    PubMed  CAS  Google Scholar 

  • Connor, W.E., Hodges, R.E., Bleiler, R.A.: The serum lipids in man receiving high cholesterol and cholesterol-free diets. J. clin. Invest. 40, 894–901 (1961).

    PubMed  CAS  Google Scholar 

  • Connor, W.E., Lin, D.S.: The intestinal absorption of dietary cholesterol in human being. Effect of dietary cholesterol. J. Lab. clin. Med. 76, 870 (1970).

    Google Scholar 

  • Connor, W.E., Lin, D.S.: The intestinal absorption of dietary cholesterol by hypercholesterolemic (Type II) und normocholesterolemic humans. J. clin. Invest. 53, 1062–1070 (1974).

    PubMed  CAS  Google Scholar 

  • Connor, W.E., Witiak, D.T., Stone, D.B., Armstrong, M.L.: Cholesterol balance and fecal neutral steroid and bile acid excretion in normal men, fed dietary fats of different fatty acid composition. J. clin. Invest. 48, 1363–1375 (1969).

    PubMed  CAS  Google Scholar 

  • Cook, R.P.: Comparative aspects of lipid absorption and excretion. Biochem. Soc. Symposium 9, 14 (1952).

    Google Scholar 

  • Cook, R.P.: Cholesterol, Chemistry, Biochemistry and Pathology. New York: Academic Press 1958.

    Google Scholar 

  • Cook, R.P., Edwards, D.C., Riddell, C.: Cholesterol metabolism. 7. Cholesterol absorption and excretion in man. Biochem. J. 62, 225–234 (1956).

    PubMed  CAS  Google Scholar 

  • Cooper, A.D., Ockner, R.K.: Studies of hepatic cholesterol synthesis in experimental acute biliary obstruction. Gastroenterology 66, 586–594 (1974).

    PubMed  CAS  Google Scholar 

  • Cornforth, J.W., Cornforth, R.H., Pelter, A., Horning, M.G., Popjak, G.: Studies on the biosynthesis of cholesterol. Rearrangemant of methyl groups during enzymic cyclisation of squalen. Tetrahedron Letters 5, 311–399 (1959).

    Google Scholar 

  • Cornforth, J.W., Hunter, G.D., Popjak, G.: Studies of cholesterol biosynthesis. 1. A new chemical degradation of cholesterol. Biochem. J. 54, 590–597 (1953).

    PubMed  CAS  Google Scholar 

  • Cornforth, J.W., Popjak, G.: Mechanism of biosynthesis of squalene from sesquiterpenoids. Tetrahedron Letters 19, 29–35 (1959).

    Google Scholar 

  • Cornforth, J.W., Youhotsky-Gore, I., Popjak, G.: Studies on the biosynthesis of cholesterol. Degradation of rings C and D. Biochem. J. 65, 94–109 (1957).

    PubMed  CAS  Google Scholar 

  • Cox, G.E., Counts, M., Wolski, J., Alvarez, J., Taylor, C.B.: The effect of dietary cholesterol upon the synthesis of plasma cholesterol in the human. Circulation 18, 193–494 (1958).

    Google Scholar 

  • Cox, G.E., Taylor, C.B., Patton, D., Davis, C.B., Blandin, N.: Origin of plasma cholesterol in man. Arch. Path. 76, 60–88 (1963).

    PubMed  CAS  Google Scholar 

  • Danielsson, H.: On the oxidation of 3α,7α,12α-trihy-droxycoprostan by mouse and rat liver homogenate. Acta chem. scand. 14, 348–352 (1960a).

    CAS  Google Scholar 

  • Danielsson, H.: On the origin of neutral fecal sterols and their relation to cholesterol metabolism in the rat. Acta physiol. scand. 48, 364–371 (1960b).

    PubMed  CAS  Google Scholar 

  • Danielsson, H.: Formation and metabolism of 26-hydroxycholesterol. Arkiv. Kemi. 17, 373–379 (1961).

    CAS  Google Scholar 

  • Danielsson, H.: Present status of research on catabolism and excretion of cholesterol. Advanc. Lipid Res. 1, 335–385 (1963).

    CAS  Google Scholar 

  • Danielsson, H.: Mechanism of bile acid formation. In: Bile Salt Metabolism (L. Schiff, J.D. Carey, J.M. Dietschy, Eds.), p. 91–102. Springfield/Ill.: Thomas 1969.

    Google Scholar 

  • Danielsson, H., Einarsson, K.: On the conversion of cholesterol to 7α, 12α-dihydroxycholest-4en 3-on. J. biol. Chem. 241, 1449–1454 (1966).

    PubMed  CAS  Google Scholar 

  • Danielsson, H., Einarsson, K.: Enzymatic transformations of the sterol nucleus in bile acid biosynthesis. In: Methods in Enzymology (R.D. Clayton, Ed.), Vol. 15. New York: Academic Press 1969.

    Google Scholar 

  • Danielsson, H., Einarsson, K., Johansson, G.: Effect of biliary drainage on individual reactions in the conversion of cholesterol to cholic acid. Europ. J. Biochem. 2, 44–49 (1967).

    PubMed  CAS  Google Scholar 

  • Danielsson, H., Gustaffson, B.: On serum-cholesterol levels and neutral fecal sterols in germ free rats. Arch. Biochem. 83, 482–485 (1959).

    PubMed  CAS  Google Scholar 

  • Danielsson, H., Tchen, T.T.: Steroid metabolism. In: Metabolic Pathways (D.M. Greenberg, Ed.), 3rd Ed. New York: Academic Press 1968.

    Google Scholar 

  • Davignon, J., Simmons, W.J., Ahrens, E.H.: Usefulness of chromic oxide as an internal standard for balance studies in formula fed patients and for assessment of colonic function. J. clin. Invest. 47, 127–138 (1968).

    PubMed  CAS  Google Scholar 

  • Davis, C.B., Cox, G.E., Taylor, C.B., Cross, S.L.: Cholesterol synthesis in human liver. Surg. Forum 9, 486–489 (1958).

    PubMed  Google Scholar 

  • DeMatteis, F.: Increased hepatic synthesis of cholesterol following trauma. Biochem. J. 106, 16P (1968).

    CAS  Google Scholar 

  • Denbesten, L., Connor, W.E., Kent, T.H., Lin, D.: Effect of cellulose in the diet on the recovery of dietary plant sterols from the feces. J. Lipid Res. 11, 341–345 (1970).

    PubMed  CAS  Google Scholar 

  • De Waard, A., Popjak, G.: Studies of the biosynthesis of Cholesterol. 9. Formation of Phosphorylated derivatives of Mevalonic Acid in Liver Enzyme Preparations. Biochem. J. 73, 410–415 (1959).

    Google Scholar 

  • Dietschy, J.M.: Effects of bile salts on intermediate metabolism of the intestinal mucosa. Fed. Proc. 26, 1589–1598 (1967).

    PubMed  CAS  Google Scholar 

  • Dietschy, J.M.: The role of bile salts in controlling the rate of intestinal cholesterogenesis. J. clin. Invest. 47, 286–299 (1968).

    PubMed  CAS  Google Scholar 

  • Dietschy, J.M., Siperstein, M.D.: Cholesterol synthesis by the gastrointestinal tract: Localisation and mechanisms of control. J. clin. Invest. 44, 1311–1327 (1965).

    PubMed  CAS  Google Scholar 

  • Dietschy, J.M., Siperstein, M.D.: Effects of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat. J. Lipid Res. 8, 97–104 (1967).

    PubMed  CAS  Google Scholar 

  • Dietschy, J.M., Wilson, G.D.: Cholesterol synthesis in the squirrel monkey: relative rates of synthesis in various tissues and mechanisms of control. J. clin. Invest. 47, 166–174 (1968).

    PubMed  CAS  Google Scholar 

  • Dietschy, J.M., Wilson, J.D.: Regulation of cholesterol metabolism. New Engl. J. Med. 282, 1128–1138, 1179–1183, 1241–1249 (1970).

    PubMed  CAS  Google Scholar 

  • Djerassi, C., Knight, J.C., Wilkinson, D.J.: The structure of the cactus sterol Macdougallin. A novel link in sterol biogenesis. J. Amer. chem. Soc. 85, 835 (1963).

    CAS  Google Scholar 

  • Djerassi, C., Mills, J.S., Villotti, R.: The structure of the cactus sterol lophenol. A link in sterol biogenesis. J. Amer. chem. Soc. 80, 1005–1006 (1958).

    CAS  Google Scholar 

  • Dubach, U., Relant, L., Hatch, E., Koch, M.D.: Negative feedback mechanism of cholesterol synthesis in experimental nephrosis. Proc. Soc. exp. Biol. (N.Y.) 106, 136–139 (1961).

    CAS  Google Scholar 

  • Dugan, R.E., Ness, G.C., Laksamanan, M.R., Nepokroeff, L.M., Porter, J.W.: Regulation of hepatic HMG-CoA reductase by the interplay of hormones. Arch. Biochem. 161, 499–504 (1974).

    PubMed  CAS  Google Scholar 

  • Durr, J.F., Rudney, H.: The reduction of β-Mrydroxy-β-methylglutaryl Coenzym A to mevalonic acid. J. biol. Chem. 235, 2572–2578 (1960).

    PubMed  CAS  Google Scholar 

  • Economou, S.G., Tews, B.J., Taylor, C.B.: Studies on lipid metabolism in dogs with altered biliary physiology. Surg. Forum 8, 218–221 (1958).

    Google Scholar 

  • Edwards, P.A.: Effect of adrenalectomy and hypophysectomy on the circadian rhythm of HMG-CoA reductase activity in rat liver. J. biol. Chem. 248, 2912–2917 (1973).

    PubMed  CAS  Google Scholar 

  • Edwards, P.A., Gould, R.G.: Turnover rate of hepatic HMG-CoA reductase as determined by use of cycloheximide. J. biol. Chem. 247, 1520–1524 (1972).

    PubMed  CAS  Google Scholar 

  • Edwards, P.A., Green, C.: Incorporation of plant sterols into membranes and its relation to sterol absorption. FEBS Letters 20, 97–99 (1972).

    PubMed  CAS  Google Scholar 

  • Edwards, P.A., Muroya, N., Gould, R.G.: In vivo demonstration of the circadian rhythm of cholesterol biosynthesis in the liver and intestine of the rat. J. Lipid Res. 13, 396–400 (1972).

    PubMed  CAS  Google Scholar 

  • Eggen, D.A.: Cholesterol metabolism in rhesus monkey, squirrel monkey, and baboon. J. Lipid Res. 15, 139–145 (1974).

    PubMed  CAS  Google Scholar 

  • Elliot, W.H.: Allo bile acids. In: The Bile Acids: Chemistry, Physiology and Metabolism (P.P. Nair, K. Kritscheysky, Eds.), Vol. 1. New York: Plenum Press 1971.

    Google Scholar 

  • Elliot, W.H., Hyde, P.M.: Metabolic pathways of bile acid synthesis. Amer. J. Med. 51, 568–579 (1971).

    Google Scholar 

  • Eneroth, P., Gordon, B., Ryhage, R., Sjövall, J.: Identification of mono- and dihydroxy bile acids in human feces by gas-liquid chromatography and mass spectrometry. J. Lipid Res. 7, 511–523 (1966).

    PubMed  CAS  Google Scholar 

  • Eriksson, S.: Biliary excretion of bile acids and cholesterol in bile fistula rats. Bile acids and steroids 42. Proc. Soc. exp. Biol. (N.Y.) 94, 578–582 (1957).

    CAS  Google Scholar 

  • Eschenmoser, A., Ruziska, L., Jeger, O., Arigoni, D.: Zur Kenntnis der Triterpene. Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen. Helv. chim. Acta 38, 1890–1904 (1955).

    CAS  Google Scholar 

  • Favarger, P., Metzger, E.F.: La resorption intestinale du deuteriocholesterol et sa repartition dans l’organisme animal sous forme libre et esterifee. Helv. chim. Acta 35, 1811–1819 (1952).

    CAS  Google Scholar 

  • Feyfe, T., Dunnigan, M.A., Hamilton, E., Rae, R.J.: Seasonal variations in serum lipids, and incidence and mortality of ischaemic heart disease. J. Atheroscler. Res. 8, 591–596 (1968).

    Google Scholar 

  • Fieser, L., Fieser, M.: Steroide. Weinheim/Bergstr.: Verlag Chemie 1961.

    Google Scholar 

  • Fimognari, G.M., Rodwell, V.W.: Cholesterol biosynthesis: mevalonate synthesis inhibited by bile salts. Science 147, 1038 (1965).

    PubMed  CAS  Google Scholar 

  • Fletcher, K., Myant, N.B.: Influence of the thyroid on the synthesis of cholesterol by liver and skin in vitro. J. Physiol. 144, 361–372 (1958).

    PubMed  CAS  Google Scholar 

  • Fletcher, K., Myant, N.B.: Effects of thyroxine on the synthesis of cholesterol and fatty acids by cell free fractions of rat liver. J. Physiol. 154, 145–152 (1960).

    PubMed  CAS  Google Scholar 

  • Frantz, J.D., Schneider, H.S., Hinkelman, B.T.: Suppression of hepatic cholesterol synthesis in the rat by cholesterol feeding. J. biol. Chem. 206, 465–469 (1954).

    PubMed  CAS  Google Scholar 

  • Frantz, J.D., Jr., Hinkelman, D.T.: Acceleration of hepatic cholesterol synthesis by Triton WR 1339. J. exp. Med. 101, 225–232 (1955).

    PubMed  CAS  Google Scholar 

  • Fredrickson, D.S., Levy, R.I., Lees, R.S.: Fat transport in lipoproteins an integrated approach to mechanisms and disorders. New Engl. J. Med. 276, 32, 94, 148, 215, 273 (1967).

    Google Scholar 

  • Fredrickson, D.S., Lord, A.K., Hinkelman, B.T., Frantz, J.D.: The effect of ligation of the common bile duct on cholesterol synthesis in the rat. J. exp. Med. 99, 43–53 (1954).

    PubMed  CAS  Google Scholar 

  • Fredrickson, D.S., Ono, K.: The in vitro production of 25- and 26-hydroxycholesterol and their in vivo metabolism. Biochim. biophys. Acta (Amst.) 22, 183–184 (1956).

    CAS  Google Scholar 

  • Friedman, M., Byers, S.D.: Hypercholesteremic roles of plasma cholate and phospholipid in biliary obstruction. Amer. J. Physiol. 191, 551–554 (1957).

    PubMed  CAS  Google Scholar 

  • Fuyiwara, T., Hirono, H., Arakawa, T.: Idiopathic hypercholesterolemia: demonstration of an impaired feedback control of cholesterol synthesis in vivo. Tohoku J. exp. Med. 87, 155–167 (1965).

    Google Scholar 

  • Gallo, L.L., Treadwell, C.R.: Localization of cholesterol esterase and cholesterol in mucosal fractions of rat small intestine. Proc. Soc. exp. Biol. (N.Y.) 114, 69–72 (1963).

    CAS  Google Scholar 

  • Ganguly, J., Krishnamurthy, S., Mahadevan, S.: The transport of carotenoids, Vitamin A, and cholesterol across the intestines of rat and chickens. Biochem. J. 71, 756–762 (1959).

    PubMed  CAS  Google Scholar 

  • Gautschi, F., Bloch, K.: On the structure of on intermediate in the biological demethylation of lanosterol. J. Amer. chem. Soc. 79, 684–689 (1957).

    CAS  Google Scholar 

  • Gautschi, F., Bloch, K.: Synthesis of isomeric 4,4,dimethylcholestenols and identification of a lanosterol metabolite. J. biol. Chem. 233, 1343–1347 (1958).

    PubMed  CAS  Google Scholar 

  • Gibbons, G.F., Mitropoulos, K.A.: The role of cytochrome P 450 in cholesterol biosynthesis. Europ. J. Biochem. 40, 267–273 (1973).

    PubMed  CAS  Google Scholar 

  • Gielen, J., van Cantfort, J.: Rôle des acides biliaires dans la régulation de la cholestérol 7α-hydroxylase. Arch. Int. Physiol. 77, 965–966 (1969).

    PubMed  CAS  Google Scholar 

  • Gielen, J., van Cantfort, J., Robaye, B., Renson, J.: Rythme circadien de la cholestérol-7α-hydroxylase chez le rat. C.R. Acad. Sci. (Paris) 269, 731–732 (1969).

    CAS  Google Scholar 

  • Gjone, E.: Familial LCAT deficiency. Acta med. scand. 194, 353–356 (1973).

    PubMed  CAS  Google Scholar 

  • Gjone, E., Norum, K.R.: Recent Research on lecithin: cholesterolacyl transferase. Scand. J. clin. Lab. Invest. 33, Suppl. 137 (1974).

    Google Scholar 

  • Glickmann, R.M., Kirsch, K., Isselbacher, K.J.: Fat absorption during inhibition of protein synthesis. Studies of lymph chylomicrons. J. clin. Invest. 51, 356–363 (1972).

    Google Scholar 

  • Glomset, J.A.: The plasma lecithin: Cholesterol esterification reaction. Biochim. biophys. Acta (Amst.) 70, 389–395 (1963).

    CAS  Google Scholar 

  • Glomset, J.A.: The plasma lecithin: Cholesterol acyltransferase reaction. J. Lipid Res. 9, 155–167 (1968).

    PubMed  CAS  Google Scholar 

  • Glomset, J.A., Norum, K.R.: The metabolic role of lecithin: cholesterol acyltransferase: perspectives from pathology. Advanc. Lipid Res. 11, 1–65 (1973).

    CAS  Google Scholar 

  • Glover, J., Green, C.: The distribution and transport of sterols across the intestinal mucosa of the guinea pig. Biochem. J. 67, 308–316 (1957).

    PubMed  CAS  Google Scholar 

  • Glover, J., Morton, R.A.: The absorption and metabolism of sterols. Brit. med. Bull. 14, 226–233 (1958).

    PubMed  CAS  Google Scholar 

  • Glover, J., Stainer, D.W.: Sterol metabolism. 4. The absorption of 7-dehydrocholesterol in the rat. Biochem. J. 72, 79–82 (1959).

    Google Scholar 

  • Goh, E.H., Heimberg, M.: Stimulation of hepatic cholesterol biosynthesis by oleic acid. Biochem. Biophys. Res. Com. 55, 382–388 (1973).

    PubMed  CAS  Google Scholar 

  • Goldfarb, S.: Submicrosomal localization of hepatic HMG-CoA reductase. FEBS Letters 24, 153–155 (1972).

    PubMed  CAS  Google Scholar 

  • Goldfarb, S., Pitot, H.C.: Stimulatory effect of dietary lipid and cholestyramin on hepatic HMG-CoA reductase. J. Lipid Res. 13, 797–801 (1972).

    PubMed  CAS  Google Scholar 

  • Goldman, D.S.: Studies on the fatty acid oxidizing system of animal tissues. VII. The β-ketoacyl-CoA cleavage enzyme. J. biol. Chem. 208, 345–357 (1954).

    PubMed  CAS  Google Scholar 

  • Goodman, D.S.: Cholesterol ester metabolism. Physiol. Rev. 45, 747–839 (1965).

    PubMed  CAS  Google Scholar 

  • Goodman, D.S., Noble, R.P.: Turnover of plasma cholesterol in man. J. clin. Invest. 47, 231–241 (1968).

    PubMed  CAS  Google Scholar 

  • Goodman, D.S., Noble, R.P., Dell, R.B.: Three-pool model of the long-term turnover of plasma cholesterol in man. J. Lipid Res. 14, 178–188 (1973).

    PubMed  CAS  Google Scholar 

  • Goodman, D.S., Popjak, G.: Studies on the biosynthesis of cholesterol XII. Synthesis of allylpyrophosphates from mevalonate and their conversion into squalene with liver enzymes. J. Lipid Res. 1, 286–300 (1960).

    PubMed  CAS  Google Scholar 

  • Goodman, D.S., Shiratori, T.: In vivo turnover of different cholesterol esters in rat liver and plasma. J. Lipid Res. 5, 578–586 (1964).

    PubMed  CAS  Google Scholar 

  • Goodwin, L.D., Margolis, S.: Specific activation of in vitro cholesterol biosynthesis by preincubation of rat liver homogenates. J. biol. Chem. 248, 7610–7613 (1973).

    PubMed  CAS  Google Scholar 

  • Gould, R.G.: Lipid metabolism and atherosclerosis. Amer. J. Med. 11, 209–227 (1951).

    PubMed  CAS  Google Scholar 

  • Gould, R.G.: Symposium on sitosterol. IV. Absorbability of Beta sitosterol. Trans. N.Y. Acad. Sci. 18, 129–134 (1955).

    PubMed  CAS  Google Scholar 

  • Gould, R.G.: The relationship between thyroid hormones and cholesterol biosynthesis and turnover. In: Hormones and atherosclerosis (G. Pincus, Ed.), p. 76–82. New York: Academic Press 1959.

    Google Scholar 

  • Gould, R., Bell, V.L., Lilly, E.H.: Effects of X-Irradiation on cholesterol, fatty acid, and protein synthesis in rat tissues. Radiat. Res. 5, 609 (1965).

    Google Scholar 

  • Gould, R.G., Jones, R.J., Leroy, G.V., Wissler, R.W., Taylor, C.B.: Absorbality of β-sitosterol in humans. Metabolism 18, 652–662 (1969).

    PubMed  CAS  Google Scholar 

  • Gould, R.G., Le Roy, G.K., Okita, G.T., Kabara, J.J., Keegan, P., Bergenstal, D.M.: Use of 14C labelled acetate to study cholesterol metabolism in man. J. Lab. clin. Med. 46, 374–384 (1955).

    Google Scholar 

  • Gould, R.G., Swyryd, E.A.: Sites of control of hepatic cholesterol biosynthesis. J. Lipid Res. 7, 698–707 (1966).

    PubMed  CAS  Google Scholar 

  • Gould, R.G., Taylor, C.B.: Effect of dietary cholesterol on hepatic cholesterol synthesis. Fed. Proc. 9, 179 (1950).

    Google Scholar 

  • Gould, R.G., Taylor, C.B., Hagerman, J.S., Warner, J., Cambell, D.J.: Cholesterol metabolism. I. Effect of dietary cholesterol on synthesis of cholesterol in dog tissue in vitro. J. biol. Chem. 201, 519–528 (1953).

    PubMed  CAS  Google Scholar 

  • Grabowsy, G.A., Dempsey, M.E., Hanson, R.F.: Role of the squalene and sterol carrier protein (SCP) in bile acid synthesis. Fed. Proc. 32, 520 (1973).

    Google Scholar 

  • Green, K., Samuelsson, B.: Mechanism of bile acid biosynthesis studied with 3α-3H- and 4β-3H-cholesterol. Bile acids and steroids 144. J. biol. Chem. 239, 2804–2808 (1964).

    PubMed  CAS  Google Scholar 

  • Greim, H., Trülzsch, D., Roboz, J., Dressler, K., Czygan, P., Hutterer, F., Schaffner, F., Popper, H.: Mechanismn of cholestasis 5. Bile acids in normal rat livers and in those after bile duct ligation. Gastroenterology 63, 837–845 (1972).

    PubMed  CAS  Google Scholar 

  • Grundy, S.M., Ahrens, E.H., Jr.: An evaluation of the relative merits of two methods for measuring the balance of sterols in man. Isotopic balance versus chromatographic analysis. J. clin. Invest. 45, 1503–1515 (1966).

    PubMed  CAS  Google Scholar 

  • Grundy, S.M., Ahrens, E.H., Jr.: Measurements of cholesterol turnover, synthesis and absorption in man, carried out by isotope kinetic and sterol balance methods. J. Lipid Res. 10, 91–107 (1969).

    PubMed  CAS  Google Scholar 

  • Grundy, S.M., Ahrens, E.H., Jr.: The effects of unsaturated dietary fats on absorption, excretion, synthesis and distribution of cholesterol in man. J. clin. Invest. 49, 1135–1152 (1970).

    PubMed  CAS  Google Scholar 

  • Grundy, S.M., Ahrens, E.H., Jr., Miettinen, T.A.: Quantitative isolation and gas-liquid chromatographic analysis of total fecal bile acids. J. Lipid Res. 6, 397–410 (1965).

    PubMed  CAS  Google Scholar 

  • Grundy, S.M., Ahrens, E.H., Jr., Salen, G.: Dietary β-sitosterol as an internal standard to correct for cholesterol losses in sterol balance studies. J. Lipid. Res. 9, 374–387 (1968).

    PubMed  CAS  Google Scholar 

  • Grundy, S.M., Ahrens, E.H., Jr., Salen, G.: Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism. J. Lab. clin. Med. 78, 94–121 (1971).

    PubMed  CAS  Google Scholar 

  • Grundy, S.M., Hofman, A.F., Davignon, J., Ahrens, E.H., Jr.: Human cholesterol synthesis is regulated by bile acids. J. clin. Invest. 45, 1018–1019 (1966).

    Google Scholar 

  • Guder, W., Nolte, J., Wieland, O.: The influence of thyroid hormones on β-hydroxy-β-methyl-glutaryl-Coenzym A reductase of rat liver. Europ. J. Biochem. 4, 273–278 (1968).

    PubMed  CAS  Google Scholar 

  • Gurpide, E., Mann, J., Sandberg, E.: Determination of kinetic parameters in a two-pool system by administration of one or more tracers. Biochemistry 3, 1250–1255 (1964).

    PubMed  CAS  Google Scholar 

  • Hamprecht, B.: Regulation der Cholesterol-Synthese. Naturwissenschaften 56, 398–405 (1969).

    PubMed  CAS  Google Scholar 

  • Hamprecht, B., Lynen, F.: Verfahren zur Bestimmung der 3-Hydroxy-3-methylglutaryl Coenzym A-Reductase-Aktivität in Rattenleber. Europ. J. Biochem. 14, 323–336 (1970).

    PubMed  CAS  Google Scholar 

  • Hamprecht, B., Nüssler, L., Lynen, F.: Rhythmic changes of hydroxymethylglutaryl Coenzym A reductase acticity in liver of fed and fasted rats. FEBS Letters 4, 117–121 (1969).

    PubMed  CAS  Google Scholar 

  • Hamprecht, B., Nüssler, L., Waltinger, G., Lynen, F.: Influence of bile acids on the activity of rat liver HMG-CoA reductase. 1. Effect of bile acids in vitro and in vivo. Europ. J. Biochem. 18, 10–14 (1971a).

    PubMed  CAS  Google Scholar 

  • Hamprecht, B., Roscher, R., Waltinger, G., Nüssler, C.: Influence of bile acids on the activity of rat liver HMG-CoA reductase 2. Effect of cholic acid in lymph fistula rats. Europ. J. Biochem. 18, 15–19 (1971b).

    PubMed  CAS  Google Scholar 

  • Hanson, R.F., Klein, P.D., Williams, G.C.: Bile acid formation in man: metabolism of 7α-hydroxy 4-cholesten-3-on in bile fistula patients. J. Lipid Res. 14, 50–53 (1973 a).

    PubMed  CAS  Google Scholar 

  • Hanson, R.F., McCoy, K., Dempsey, M.E.: The role of a carrier protein in bile acid synthesis. Gastroenterology 64, 154 (1973b).

    Google Scholar 

  • Harry, D.S., Dini, M., McIntyre, N.: Effect of cholesterol feeding and biliary obstruction on hepatic cholesterol biosynthesis in the rat. Biochim. biophys. Acta (Amst.) 296, 209–220 (1973).

    CAS  Google Scholar 

  • Haslewood, G.A.D.: Bile Salts. London: Methuen 1967.

    Google Scholar 

  • Hechler, O., Solomom, M., Zaffaroni, A., Pincus, G.: Transformation of cholesterol and acetate to adrenal cortical humans. Arch. Biochem. 46, 201–214 (1953).

    Google Scholar 

  • Heller, R.A., Gould, R.G.: Solubilization and partial purification of hepatic HMG-CoA reductase. Biochem. Biophys. Res. Com. 50, 859–865 (1973).

    PubMed  CAS  Google Scholar 

  • Hellman, L., Frazell, E.L., Rosenfeld, R.S.: Direct measurement of cholesterol absorption via the thoracic duct in man. J. clin. Invest. 39, 1288 (1960).

    PubMed  CAS  Google Scholar 

  • Hellman, L., Rosenfeld, R.S., Gallagher, T.F.: Cholesterol synthesis from 14C-acetate in man. J. clin. Invest. 33, 142–149 (1954).

    PubMed  CAS  Google Scholar 

  • Hellman, L., Rosenfeld, R.S., Insull, W., Jr., Ahrens, E.H., Jr.: Intestinal excretion of cholesterol: A mechanism for regulation of plasma levels. J. clin. Invest. 36, 898 (1957).

    Google Scholar 

  • Henning, U., Möslein, E.M., Lynen, F.: Biosynthesis of terpenes. V. Formation of 5-pyrophosphomevalonic acid by phosphomevalonic kinase. Arch. Biochem. 83, 259–267 (1959).

    PubMed  CAS  Google Scholar 

  • Hernandez, H.H., Chaikoff, I.L.: Purification and properties of pancreatic cholesterol esterase. J. biol. Chem. 228, 447–457 (1957).

    PubMed  CAS  Google Scholar 

  • Hernandez, H.H., Chaikoff, I.L., Dauben, W.G., Abraham, S.: The absorption of 14C labelled epicholesterol in the rat. J. biol. Chem. 206, 757–765 (1954).

    PubMed  CAS  Google Scholar 

  • Hickman, P.E., Horton, B.J., Sabine, J.R.: Effect of adrenalectomy on the diurnal variation of hepatic cholesterogenesis in the rat. J. Lipid Res. 13, 17–22 (1972).

    PubMed  CAS  Google Scholar 

  • Higgins, M.J.P., Brady, D., Rudney, H.: Rat liver HMG-CoA reductase: a comparison and immunological study of purified solubilized preparations, and alteration of enzym levels by cholestyramine feeding. Arch. Biochem. 163, 271–282 (1974).

    PubMed  CAS  Google Scholar 

  • Higgins, M., Kawashi, T., Rudney, H.: The mechanism of the diurnal variation of hepatic HMG-CoA reductase activity in the rat. Biochem. Biophys. Res. Com. 45, 138–144 (1971).

    PubMed  CAS  Google Scholar 

  • Higgins, M.J.P., Kekwick, R.G.O.: An investigation into the role of malonyl-coenzym A in isoprenoid biosynthesis. Biochem. J. 134, 295–310 (1973).

    PubMed  CAS  Google Scholar 

  • Higgins, M., Rudney, H.: Regulation of rat liver HMG-CoA reductase activity by cholesterol. Nat. New Biol. 246, 60–61 (1973).

    PubMed  CAS  Google Scholar 

  • Hofmann, A.F., Small, D.M.: Detergent properties of bile salts: correlation with physiological function. Ann. Rev. Med. 18, 333–376 (1967).

    PubMed  CAS  Google Scholar 

  • Hsia, S.L., Fulton, J.E., Jr., Fulghum, D., Buch, M.M.: Lipid synthesis from acetate-I-14C by suction blister epidermis and other skin components. Proc. Soc. exp. Biol. (N.Y.) 135, 285–291 (1970).

    CAS  Google Scholar 

  • Huber, J., Guder, W., Latzin, S., Hamprecht, B.: The influence of insulin and glucagon on hydroxy-methylglutaryl Coenzym A reductase acticity in rat liver. Hoppe-Seylers, Z. physiol. Chem. 354, 795–798 (1973).

    CAS  Google Scholar 

  • Huber, J., Hamprecht, B., Müller, O.A., Guder, W.: Tageszeitlicher Rhythmus der HMG-CoA Reduktase in der Rattenleber. II. Rhythmus bei adrenalek-tomierten Tieren. Hoppe-Seylers, Z. physiol. Chem. 353, 313–317 (1972).

    CAS  Google Scholar 

  • Huff, J.W., Gilfillan, J.C., Hunt, V.M.: Effect of cholestyramine, a bile acid binding polymer, on plasma cholesterol and fecal bile acid excretion in the rat. Proc. Soc. exp. Biol. (N.Y.) 114, 352–355 (1963).

    CAS  Google Scholar 

  • Hutchens, T.T., Van Bruggen, J.T., Cockburn, R.M., West, E.S.: The effect of fasting upon tissue lipogenesis in the intact rat. J. biol. Chem. 208, 115–122 (1954).

    PubMed  CAS  Google Scholar 

  • Hutton, H.R.B., Boyd, G.S.: The metabolism of cholest-5-en-3β, 7α-diol by rat liver cell fractions. Biochim. biophys. Acta (Amst.) 116, 336–361 (1966).

    CAS  Google Scholar 

  • Jansen, G.R., Zanetti, M.E., Hutchison, C.F.: Studies on lipogenesis in vivo. Effects of starvation and refeeding and studies on cholesterol synthesis. Biochem. J. 99, 333–340 (1960).

    Google Scholar 

  • Javitt, N.B., Emermann, S.: 26-hydroxycholesterol, an intermediate in bile acid synthesis: In: Bile Salt Metabolism (L. Schiff, J.B. Carey, J.M. Dietschy, Eds.), p. 109–113. Springfield/Ill.: Thomas 1969.

    Google Scholar 

  • Javitt, N., Emermann, S.: Metabolic pathways of bile acid formation in the rat. Mt. Sinai J. Med. 37, 477–481 (1970).

    PubMed  CAS  Google Scholar 

  • Johnston, J.D., Bloch, K.: In vitro conversion of zymosterol and dihydroyzymosterol to cholesterol. J. Amer. chem. Soc. 79, 1145–1149 (1957).

    CAS  Google Scholar 

  • Kandutsch, A.A., Russell, A.E.: Preputial gland tumor sterols. II. The identification of 4-α-methyl-Δ 8-cholesten-3β-ol. J. biol. Chem. 235, 2253–2255 (1960a).

    PubMed  CAS  Google Scholar 

  • Kandutsch, A.A., Russell, A.E.: Preputial gland tumor sterols. I. The occurence of 24,25-dihydrolanosterol and a comparison with liver and normal gland. J. biol. Chem. 234, 2037–2042 (1906b).

    Google Scholar 

  • Kandutsch, A.A., Russell, A.E.: Preputial gland tumor sterols. III. A metabolic pathway from lanosterol to cholesterol. J. biol. Chem. 235, 2256–2261 (1960 c).

    PubMed  CAS  Google Scholar 

  • Kandutsch, A.A., Saucier, S.E.: Prevention of cyclic and Triton induced increases in HMG-CoA reductase and sterol synthesis by puromycin. J. biol. Chem. 244, 2299–2305 (1969).

    PubMed  CAS  Google Scholar 

  • Kannel, W.B., Dawber, T.R., Friedman, C.D., Glennon, W.E., McNamara, D.M.: Risk factors in coronary artery disease: an evaluation of several serum lipids as predictors of coronary heart disease. The Framingham Study. Ann. int. Med. 61, 888–899 (1964).

    CAS  Google Scholar 

  • Kaplan, J.A., Cox, G.E., Taylor, C.D.: Cholesterol metabolism in man: studies on absorption. Arch. Path. 76, 359–368 (1963).

    PubMed  CAS  Google Scholar 

  • Karvinen, E., Lin, T.M., Ivy, A.C.: Capacity of human intestine to absorb exogenous cholesterol. J. appl. Physiol. 11, 143–147 (1957).

    PubMed  CAS  Google Scholar 

  • Kattermann, R., Creutzfeld, W.: The effect of experimental cholestasis on the negative feed back regulation of cholesterol synthesis in rat liver. Scand. J. Gastroenterol. 5, 337–342 (1970).

    PubMed  CAS  Google Scholar 

  • Kawachi, T., Rudney, H.: Solubilization and purification of β-Miydroxy-β-methylglutaryl coenzyme A reductase from rat liver. Biochemistry 9, 1700–1705 (1970).

    PubMed  CAS  Google Scholar 

  • Kay, R.E., Entenman, C.: Stimulation of taurocholic acid synthesis and biliary excretion of lipids. Amer. J. Physiol. 200, 855–859 (1961).

    PubMed  CAS  Google Scholar 

  • Keys, A. (Ed.): Coronary heart disease in seven countries. Circulation 41, Suppl. I (1970).

    Google Scholar 

  • Keys, A., Anderson, J.T., Grande, F.: Serum cholesterol response to changes in the diet. II. The effect of cholesterol in the diet. Metabolism 14, 759 (1965).

    CAS  Google Scholar 

  • Keys, A., Michelsen, O., Miller, E.O., Hayes, E.R., Todd, R.: The concentration of cholesterol in the blood serum of normal man in relation to age. J. clin. Invest. 29, 1347–1353 (1950).

    PubMed  CAS  Google Scholar 

  • Knappe, J., Ringelmann, E., Lynen, F.: Über die β-Hydroxy-β-methyl-glutaryl-Reductase der Hefe. Zur Biosynthese der Terpene IX. Biochem. Z. 332, 195–213 (1959).

    PubMed  CAS  Google Scholar 

  • Korzenovsky, M., Walters, C.P., Harvey, O.A., Diller, E.R.: Some factors which influence the catalytic activity of pancreatic cholesterol esterase. Proc. Soc. exp. Biol. (N.Y.) 105, 303–305 (1960).

    CAS  Google Scholar 

  • Kritchevsky, D., Staple, E., Rabinowitz, J.L., Whitehouse, M.W.: Differences in cholesterol oxidation and biosynthesis in liver of male and female rats. Amer. J. Physiol. 200, 519–522 (1961).

    PubMed  CAS  Google Scholar 

  • Kudchodkar, B.J., Horlick, L., Sodhi, H.S.: Effects of nicotininic acid and plant sterols on cholesterol metabolism in man. Proceedings of fourth International Symposium of Drug affecting lipid metabolism. Philadelphia, USA (1971a).

    Google Scholar 

  • Kudchodkar, B.J., Sodhi, H.S., Horlick, L.: Absorption of dietary cholesterol in man. Circulation 44, Suppl. III (1971b).

    Google Scholar 

  • Kudchodkar, B.J., Sodhi, H.S.: Enterohepatic metabolism of cholesterol in types IIa and IIb hyperlipoproteinemia. Circulation 46, Suppl. II, 267 (1972).

    Google Scholar 

  • Kudchodkar, B.J., Sodhi, H.S.: Turnover of cholesterol esters in hyperlipoproteinemias. Proc. Can. Fed. Biol. Soc. 16, 93 (1973).

    Google Scholar 

  • Kudchodkar, B.J., Sodhi, H.S., Horlick, L.: Absorption of dietary cholesterol in man. Metabolism 22, 155–163 (1973a).

    PubMed  CAS  Google Scholar 

  • Kudchodkar, B.J., Sodhi, H.S., Horlick, L.: Effect of positol on cholesterol metabolism in man. Unpublished results (1973b).

    Google Scholar 

  • Kudchodkar, B.J., Sodhi, H.S., Horlick, L.: Mechanism of action of nicotinic acid on cholesterol metabolism in man. Unpublished results (1973c).

    Google Scholar 

  • Kurland, G.S., Lucas, J.L., Friedberg, A.S.: The metabolism of intravenously infused C14-labelled cholesterol in enthyroidism and myxedema. J. Lab. clin. Med. 57, 574 (1961).

    PubMed  CAS  Google Scholar 

  • Laksamanan, M.R., Nepokroeff, C.M., Ness, G.C., Dugan, R.E., Porter, J.W.: Stimulation by insulin of rat liver β-Miydroxy-β-methyl-glutarylcoenzym A reductase and cholesterol synthezising activities. Biochem. Biophys. Res. Com. 50, 704–710 (1973).

    Google Scholar 

  • Langdon, R.G., Bloch, K.: The utilization of squalene in the biosynthesis of cholesterol. J. biol. Chem. 200, 135–144 (1952).

    Google Scholar 

  • Langdon, R.G., Bloch, K.: The effect of some dietary additions on the synthesis of cholesterol from acetate in vitro. J. biol. Chem. 202, 77–81 (1953).

    PubMed  CAS  Google Scholar 

  • Leal, R.: Effect of growth hormones in lipid synthesis. Rev. Port. Quin 4, 3–7 (1962).

    CAS  Google Scholar 

  • Lefevre, A.F., Decarli, L.M., Lieber, C.S.: Effect of ethanol on cholesterol and bile acid metabolism. J. Lipid Res. 13, 48–55 (1972).

    PubMed  CAS  Google Scholar 

  • Levy, R.I., Fredrickson, D.S., Laster, L.: Lipoproteins and lipid transport in abetalipoproteinemia. J. clin. Invest. 45, 531–541 (1966).

    PubMed  CAS  Google Scholar 

  • Lewis, B., Myant, N.B.: Studies in the metabolism of cholesterol in subjects with normal plasma cholesterol levels and in patients with essential hypercholesterolemia. Clin. Sci. 32, 201–213 (1967).

    PubMed  CAS  Google Scholar 

  • Liebermann, G.: Über das Oxychinoterpen. Chem. Ber. 18, 1803–1809 (1885).

    Google Scholar 

  • Liersch, E.A.M., Barth, C.A., Hackenschmidt, J.H., Ullmann, H.L., Decker, K.F.A.: Influence of bile salts on cholesterol synthesis in the isolated perfused rat liver. Europ. J. Biochem. 32, 365–371 (1973).

    PubMed  CAS  Google Scholar 

  • Lindberg, M., Gautschi, F., Bloch, K.: Ketonic inter-mediates in the demethylation of lanosterol. J. biol. Chem. 238, 1661–1664 (1963).

    PubMed  CAS  Google Scholar 

  • Lindberg, M., Yuan, C., DeWaard, A., Bloch, K.: On the mechanism of formation of isopentenyl-pyrophosphate. Biochemistry 1, 182–188 (1962).

    PubMed  CAS  Google Scholar 

  • Lindstedt, S., Ahrens, E.H., Jr.: Conversion of cholesterol to bile acids in man. Proc. Soc. exp. Biol. (N.Y.) 108, 286–188 (1961).

    CAS  Google Scholar 

  • Linn, T.C.: The demonstration and solubilization of β-Miydroxy-β-methylglutaryl coenzyme A reductase from rat liver microsomes. J. biol. Chem. 242, 984–989 (1967a).

    PubMed  CAS  Google Scholar 

  • Linn, T.C.: The effect of cholesterol feeding and fasting upon β-Miydroxy-β-methylglutaryl coenzym A reductase. J. biol. Chem. 242, 990–993 (1967b).

    PubMed  CAS  Google Scholar 

  • Lipsky, S.R., Bondy, P.K., Man, E.B., McGuire, J.S., Jr.: The effects of trijodo-thyronine on the biosynthesis of plasma lipids from acetate-l-14C in myxedematous subjects. J. clin. Invest. 34, 950 (1955).

    Google Scholar 

  • Little, H.N., Bloch, K.: Studies on the utilization of acetic acid for the biological synthesis of cholesterol. J. biol. Chem. 183, 33–46 (1950).

    CAS  Google Scholar 

  • Lofland, H.B., Clarkson, T.B., St’Clair, R.W., Lehner, N.D.M.: Studies on the regulations of plasma cholesterol levels in squirrel monkeys of two genotypes. J. Lipid Res. 13, 39–47 (1972).

    PubMed  CAS  Google Scholar 

  • Lupien, P.J., Migicowsky, B.D.: Ability of starvation and of dietary cholesterol to suppress incorporation of labelled precursors into chick liver and plasma cholesterol. Canad. J. Biochem. 42, 443–449 (1964).

    PubMed  CAS  Google Scholar 

  • Lynen, F.: In: Ciba Foundation Symposion on the “Biosynthesis of Terpenes and Sterols” (G.E.W. Wolstenholme, M. O’Connor, Eds.). London: Churchill 1959.

    Google Scholar 

  • Lynen, F., Agranoff, B.W., Eggerer, H., Henning, U., Möslein, E.M.: γ,γ-Dimethyl-allyl-pyrophosphat und Geranyl-pyrophosphat, biologische Vorstufen des Squalens. Zur Biosynthese der Terpene VI. Angew. Chem. 71, 657–663 (1959).

    CAS  Google Scholar 

  • Lynen, F., Henning, U., Bublitz, L., Sörbo, B., Kroeplin-Rueff, L.: Der chemische Mechanismus der Acetessigsäurebildung in der Leber. Biochem. Z. 330, 269–295 (1958a).

    PubMed  CAS  Google Scholar 

  • Lynen, F., Eggerer, H., Henning, U., Kessel, J.: Far-nesylpyrophosphat und 3-Methyl-Δ 3butenyl-l-pyrophosphat, die biologischen Vorstufen des Squalens. Angew. Chem. 70, 738–742 (1958b).

    CAS  Google Scholar 

  • Lynen, F., Knappe, J., Lorch, E., Jutting, G., Ringelmann, E., Lachance, J.A.: Zur Biochemischen Funktion des Biotins: II. Reinigung und Wirkungsweise der β-methyl-crotonyl-Carboxylase. Biochem. Z. 335, 123–167 (1961).

    PubMed  CAS  Google Scholar 

  • Mac Nintch, J.E., Stelair, R.W., Lehner, N.D., Clarkson, T.B., Lofland, H.B.: Cholesterol metabolism and atherosclerosis in cebus monkeys in relation to age. Lab. Invest. 16, 444–452 (1967).

    CAS  Google Scholar 

  • Makino, J., Sjövall, J., Norman, A., Strandvik, B.: Excretion of 3β-hydroxy-5-cholenoic and 3α-hydroxy-5α-cholanoic acids in urine of infants with biliary atresia. FEBS Letters 15, 161–164 (1971).

    PubMed  CAS  Google Scholar 

  • Marsh, J.B., Drabkin, D.L.: Metabolic channeling in experimental nephrosis. V. Lipid metabolism in the early stages of the disease. J. biol. Chem. 230, 1083–1091 (1958).

    PubMed  CAS  Google Scholar 

  • Masui, T., Staple, E.: The formation of cholic acid from 3α, 7α, 12α, 24ξ tretrahydroxy-coprostanic acid by rat liver. Biochim. biophys. Acta (Amst.) 104, 305–307 (1965).

    CAS  Google Scholar 

  • Mattson, F.H., Erickson, B.A., Kligman, A.M.: Effect of dietary cholesterol on serum cholesterol in man. Amer. J. clin. Nutr. 25, 589–594 (1972).

    PubMed  CAS  Google Scholar 

  • Maudgal, R.K., Tchen, T.T., Bloch, K.: 1,2-Methyl shifts in the cyclisation of squalene to lanosterol. J. Amer. chem. Soc. 80, 2589–2590 (1958).

    CAS  Google Scholar 

  • McIntyre, N., Isselbacher, K.J.: Role of the small intestine in cholesterol metabolism. Amer. J. clin. Nutr. 26, 647–656 (1973).

    PubMed  CAS  Google Scholar 

  • McIntyre, N., Kirsch, K., Orr, C., Isselbacher, K.J.: Sterols in the small intestine of the rat, guinea pig and rabbit. J. Lipid Res. 12, 336–346 (1971).

    PubMed  CAS  Google Scholar 

  • McNamara, D.J., Quackenbush, F.W., Rodwell, V.W.: Regulation of hepatic HMG-CoA reductase. Developmental pattern. J. biol. Chem. 247, 5805–5810 (1972).

    PubMed  CAS  Google Scholar 

  • Mendelsohn, D., Mendelsohn, L., Staple, E.: The in vitro catabolism of cholesterol: a comparison of the formation of cholest-4-en 7α-ol-3on and 5β-cholestan-7α-ol-3on from cholesterol in rat liver. Biochemistry 5, 1286–1290 (1966).

    PubMed  CAS  Google Scholar 

  • Mendelsohn, D., Staple, E.: The in vitro catabolism of cholesterol. Formation of 3α,7α,12α-trihydroxy-koprostan from cholesterol in rat liver. Biochemistry 2, 577–579 (1963).

    PubMed  CAS  Google Scholar 

  • Miettinen, T.A., Ahrens, E.H., Jr., Grundy, S.M.: Quantitative isolation and gas liquid chromatographic analysis of total dietary and fecal neutral steriods. J. Lipid Res. 6, 411–424 (1965).

    PubMed  CAS  Google Scholar 

  • Miettinen, T.A., Penttila, I.M.: Leucine and mevalonate as precursors of serum cholesterol in man. Acta med. scand. 184, 159–164 (1968).

    PubMed  CAS  Google Scholar 

  • Migicowsky, B.D., Wood, J.D.: Effect of starvation on cholesterol biosynthesis in vitro. Canad. J. Biochem. 33, 858–866 (1955).

    Google Scholar 

  • Mitropoulos, K.A., Dean, P.D.G., Waitehouse, M.W., Myant, N.B.: Conversion of 3β-hydroxy-cholest-5-en-26-oic acid into bile acids in vivo. Biochem. J. 105, 31 (1967).

    Google Scholar 

  • Mitropoulos, K.A., Myant, N.B.: The formation of lithocholic acid, chenodeoxycholic acid and α- and β-muricholic acids from cholesterol incubated with rat liver mitochondria. Biochem. J. 103, 472–479 (1967).

    PubMed  CAS  Google Scholar 

  • Moir, N.J., Gaylor, J.L., Yanni, J.B.: Effect of cholestyramine on the terminal reactions of sterol biosynthesis. Arch. Biochem. 141, 465–472 (1970).

    PubMed  CAS  Google Scholar 

  • Moore, R.B., Anderson, J.T., Taylor, H.L., Frantz, I.D., Jr.: Effects of dietary fat on the fecal excretion of cholesterol and its degradation products in man. J. clin. Invest. 47, 1517–1534 (1968).

    PubMed  CAS  Google Scholar 

  • Mosbach, E.H., Rothshild, M.A., Bekersky, J., Oratz, M., Mongelli, J.: Bile acid synthesis in the isolated, perfused rabbit liver. J. clin. Invest. 50, 1720–1730 (1971).

    PubMed  CAS  Google Scholar 

  • Murthy, S.K., Ganguly, J.: Studies on cholesterol esterases of the small intestine and pancreas of rats. Biochem. J. 83, 460–469 (1962).

    PubMed  CAS  Google Scholar 

  • Myant, N.B., Eder, H.A.: The effect of biliary drainage upon the synthesis of cholesterol in the liver. J. Lipid Res. 2, 363–368 (1961).

    CAS  Google Scholar 

  • Nair, P.P., Kritchevsky, D.: The Bile Acids, Chemistry, Physiology and Metabolism. New York-London: Plenum Press 1971/1973. National Diet and Heart Study. Circulation 37, Suppl. I (1968).

    Google Scholar 

  • Nazir, D.J., Horlick, L., Kudchodkar, B.J., Sodhi, H.S.: Mechanism of action of cholestyramine in the treatment of hypercholesterolemia. Circulation 46, 95–102 (1972).

    PubMed  CAS  Google Scholar 

  • Nervi, F.O., Dietschy, J.M.: Failure of adrenal corticosteroids to influence the major mechanisms of hepatic cholesterogenesis. Biochim. biophys. Acta (Amst.) 369 351–360 (1974).

    CAS  Google Scholar 

  • Nestel, P.J.: Cholesterol turnover in man. Advanc. Lipid. Res. 8, 1–39 (1970a).

    CAS  Google Scholar 

  • Nestel, P.J.: Turnover of plasma esterified cholesterol. Influence of dietary fat and carbohydrate and relation to plasmalipids and body weight. Clin. Sci. 38, 593–600 (1970b).

    PubMed  CAS  Google Scholar 

  • Nestel, P.J., Couzens, E., Hirsch, E.Z.: Comparison of turnover of individual cholesterol esters in subjects with low and high plasma cholesterol concentration. J. Lab. clin. Med. 66, 582–595 (1965).

    PubMed  CAS  Google Scholar 

  • Nestel, P.J., Havenstein, N., Whyte, H.M., Scott, T.J., Cook, L.J.: Lower plasma cholesterol after eating polyunsaturated ruminant fats. New Engl. J. Med. 288, 379–382 (1973).

    PubMed  CAS  Google Scholar 

  • Nestel, P.J., Whyte, H.M., Goodman, D.S.: Distribution and turnover of cholesterol in humans. J. Clin. Invest. 48, 982–991 (1969).

    PubMed  CAS  Google Scholar 

  • Nilsson, A., Sundler, R., Äkesson, B.: Biosynthesis of fatty acids and cholesterol in isolated rat liver parenchymal cells. Effect of albumin bound fatty acids. Europ. J. Biochem. 39, 613–620 (1973).

    PubMed  CAS  Google Scholar 

  • Okishio, T., Nair, P.P.: Studies on bile acids. Some observations on the intracellular localization of maior bile acids in rat liver. Biochemistry 5, 3662–3668 (1966).

    PubMed  CAS  Google Scholar 

  • Olson, J.A., Lindberg, M., Bloch, K.: On the demethylation of lanosterol to cholesterol. J. biol. Chem. 226, 941–956 (1957).

    PubMed  CAS  Google Scholar 

  • Pawliger, D.F., Shipp, J.C.: Familial hypercholesterolemia: Effect of exogenous cholesterol on cholesterol biosynthesis in vivo and by liver in vitro. Clin. Res. 16, 51 (1968).

    Google Scholar 

  • Philips, G.B.: The lipid composition of human bile. Biochim. biophys. Acta (Amst.) 41, 361–363 (1960).

    Google Scholar 

  • Piehl, A.: Effect of bile acids on cholesterol absorption, deposition and synthesis in rat. Cholesterol studies. Acta physiol. scand. 34, 206–217 (1955).

    Google Scholar 

  • Playoust, M.R., Isselbacher, K.J.: Studies on the transport and metabolism of conjugated bile salts by intestinal mucosa. J. clin. Invest. 43, 467–476 (1964).

    PubMed  CAS  Google Scholar 

  • Pope, J.L., Parkinson, T.M., Olson, J.A.: Action of bile salts on the metabolism and transport of water soluble nutrients by perfused rat jejunum in vitro. Biochim. biophys. Acta (Amst.) 130, 218–232 (1966).

    CAS  Google Scholar 

  • Popjak, G.: The biosynthesis of derivatives of allylic alcohols from [2–14C]mevalonate in liver enzyme preparations and their relation to synthesis of squalene. Tetrahedron Letters 19, 19–28 (1959).

    Google Scholar 

  • Popjak, G., Beeckmans, M.C.: Extrahepatic lipid synthesis. Biochem. J. 47, 233–238 (1950).

    PubMed  CAS  Google Scholar 

  • Popjak, G., Cornforth, J.W., Cornforth, R.H., Ryhage, R., Goodman, P.S.: Studies on the biosynthesis of cholesterol. XVI. Chemical synthesis of 1–3H2–2-14C- and 1-D2–2-14C-trans-transfarnesyl pyrophosphate and their utilization in squalene biosynthesis. J. biol. Chem. 237, 56–61 (1962).

    PubMed  CAS  Google Scholar 

  • Popjak, G., Goodman, P.S., Cornforth, J.W., Cornforth, R.H., Ryhage, R.: Studies on the biosynthesis of cholesterol, XV. Mechanisms of squalene biosynthesis from farnesyl pyrophosphate and from mevalonate. J. biol. Chem. 236, 1934–1947 (1961).

    PubMed  CAS  Google Scholar 

  • Popjak, G., Lowe, A.E., Moore, D., Brown, L., Smith, F.A.: Scintillation counter for the measurement of radioacticity of vapors in conjugation with gas liquid chromatography. J. Lipid Res. 1, 29–39 (1959).

    CAS  Google Scholar 

  • Pudles, J., Bloch, K.: Conversion of 4-hydroxy methylene- Δ 7-cholesten-3-one to cholesterol. J. biol. Chem. 235, 3417–3420 (1960).

    PubMed  CAS  Google Scholar 

  • Quarfordt, S.H., Greenfield, M.F.: Estimation of cholesterol and bile acid turnover in man by kinetic analysis. J. clin. Invest. 52, 1937–1945 (1973).

    PubMed  CAS  Google Scholar 

  • Quintao, E., Grundy, S.M., Ahrens, E.H., Jr.: An evaluation of four methods for measuring cholesterol absorption by the intestine in man. J. Lipid Res. 12, 221–232 (1971a).

    PubMed  CAS  Google Scholar 

  • Quintao, E., Grundy, S.M., Ahrens, E.H., Jr.: Effects of dietary cholesterol on the regulation of total body cholesterol in man. J. Lipid Res. 12, 233–247 (1971b).

    PubMed  CAS  Google Scholar 

  • Rabinowitz, J.L., Herman, R.H., Weinstein, D., Staple, E.: Isolation of 3α, 7α-dihydroxycoprostane derived from cholesterol in human bile. Arch. Biochem. 114, 233–234 (1966).

    Google Scholar 

  • Redgrave, T.G.: Formation of cholesteryl ester rich particulate lipid during metabolism of chylomicrons. J. clin. Invest. 49, 465–471 (1970).

    PubMed  CAS  Google Scholar 

  • Renson, J., Van Cantfort, J., Robaye, B., Gielen, J.: Mesures de la demi vie de la cholestérol 7α-hydroxylase. Arch. Int. Physiol. 17, 972–973 (1969).

    Google Scholar 

  • Rilling, H.C., Bloch, K.: On the mechanism of squalene biogenesis from mevalonic acid. J. biol. Chem. 234, 1424–1432 (1959).

    PubMed  CAS  Google Scholar 

  • Ritland, S., Blomhoff, J.P., Gjone, E.: Lecithin: cholesterol acyltransferase and lipoprotein-X in liver disease. Clin. Chim. Acta 49, 251–259 (1973).

    PubMed  CAS  Google Scholar 

  • Rittenberg, D., Schoenheimer, R.: Deuterium as indication in study of intermediary metabolism; further studies on biological uptake of deuterium into organic substances, with special reference to fat and cholesterol formation. J. biol. Chem. 121, 235–253 (1937).

    CAS  Google Scholar 

  • Robinson, R.: Structure of cholesterol. J. Soc. Chem. Ind. 53, 1062–1063 (1934).

    Google Scholar 

  • Rosenfeld, R.S., Fukushima, D.K., Hellman, L., Gallagher, T.F.: The transformation of cholesterol to coprostanol. J. biol. Chem. 211, 301–311 (1954).

    PubMed  CAS  Google Scholar 

  • Rosenfeld, R.S., Gallagher, T.F.: Further studies of the biotransformation of cholesterol to coprostanol. Steroids 4, 515–520 (1964).

    CAS  Google Scholar 

  • Rosenfeld, R.S., Hellman, L.: The relation of plasma and biliary cholesterol to bile acid synthesis in man. J. clin. Invest. 38, 1334–1338 (1959).

    PubMed  CAS  Google Scholar 

  • Rosenheim, O., Webster, T.A.: A dietary factor concerned in coprosterol formation. Biochem. J. 35, 920–927 (1941).

    PubMed  CAS  Google Scholar 

  • Rosenheim, O., Webster, T.A.: The mechanism of coprosterol formation in vivo. 1. Cholesterone as an intermediate. Biochem. J. 37, 513–514 (1943).

    PubMed  CAS  Google Scholar 

  • Rosenman, R.H., Friedman, M., Byers, S.O.: The effect of various hormones upon the hepatic synthesis of cholesterol in rats. Endocrinology 51, 142–147 (1952).

    PubMed  CAS  Google Scholar 

  • Rudney, H.: The biosynthesis of β-hydroxy-β-methylglutaric acid. J. biol. Chem. 227, 363–377 (1957).

    PubMed  CAS  Google Scholar 

  • Rudney, H.: In: Ciba Foundation Symposion on the Biosynthesis of Terpenes and Sterols (G.E.W. Wolstenholme, M. O’Connor, Eds.). London: Churchill 1959.

    Google Scholar 

  • Saba, N., Hechter, O., Stone, D.: Conversion of cholesterol to pregnenolene in bovine adrenal hemogenates. J. Amer. Chem. Soc. 76, 3862–3864 (1954).

    CAS  Google Scholar 

  • Sakakida, H., Shediac, C.C., Siperstein, M.D.: Effect of endogenous and exogenous cholesterol on the feedback control of cholesterol synthesis. J. clin. Invest. 42, 1521–1528 (1963).

    PubMed  CAS  Google Scholar 

  • Salen, G., Ahrens, E.H., Grundy, S.M.: Metabolism of β-sitosterol in man. J. clin. Invest. 49, 952–967 (1970).

    PubMed  CAS  Google Scholar 

  • Samuels, A.B., Palmer, R.H.: Conversion of chenode-oxycholic acid to cholic acid in humans with obstructive jaundice. Gastroenterology 64, 168 (1973).

    Google Scholar 

  • Samuel, P., Holtzman, C.M., Meilman, E., Perl, W.: Effect of neomycin on exchangeable pools of cholesterol in the steady state. J. clin. Invest. 48, 982–991 (1969).

    Google Scholar 

  • Samuel, P., Lieberman, S.: Improved estimation of body masses and turnover of cholesterol by computerized input-output analysis. J. Lipid Res. 14, 189–196 (1973).

    PubMed  CAS  Google Scholar 

  • Samuel, P., Perl, W.: Long-term decay of serum cholesterol radioactivity: body cholesterol metabolism in normals and in patients with hyperlipoproteinemia and atherosclerosis. J. clin. Invest. 49, 346–357 (1970).

    PubMed  CAS  Google Scholar 

  • Samuel, P., Perl, W., Holtzman, C.M., Rochman, N.D., Lieberman, S.: Long-term kinetics of serum and xanthoma cholesterol radioactivity in patients with hypercholesterolemia. J. clin. Invest. 51, 266–278 (1972).

    PubMed  CAS  Google Scholar 

  • Sauer, F.: Fatty acid, cholesterol, and acetoacetate biosynthesis in liver homogenates from normal and starved guinea pigs. Canad. J. Biochem. 38, 635–641 (1960).

    PubMed  CAS  Google Scholar 

  • Scaife, J.F., Migicowsky, B.B.: Effect of alloxan insulin and thyroxine on cholesterol and fatty acid synthesis in rat liver homogenates. Can. J. Biochem. 35, 15–23 (1957).

    PubMed  CAS  Google Scholar 

  • Scallen, T.J., Srikantaiah, M.V., Seetharam, B., Hansbury, E., Gavey, K.L.: Sterol carrier protein hypothesis. Fed. Proc. 33, 1733–1746 (1974).

    PubMed  CAS  Google Scholar 

  • Schettler, G., Wagner, H.: Turnover of labelled lipids and sterols in human investigation. Progr. Biochem. Pharmacol. 5, 72–89 (1969).

    CAS  Google Scholar 

  • Schneider, D.L., Gallo, D.G., Sarret, H.P.: Effect of cholestyramine on cholesterol metabolism in young adult swine. Proc. Soc. exp. Biol. (N.Y.) 121, 1244–1248 (1966).

    CAS  Google Scholar 

  • Schoenfield, L.J., Bonorris, G.G., Ganz, P.: Induced alterations in the rate limiting enzymes of hepatic cholesterol and bile acid synthesis in the hamster. J. Lab. clin. Med. 82, 858–868 (1973).

    PubMed  CAS  Google Scholar 

  • Schoenheimer, R., Breusch, F.: Synthesis and destruction of cholesterol in the organism. J. biol. Chem. 103, 439–448 (1933).

    CAS  Google Scholar 

  • Scholan, N.A., Boyd, G.S.: The cholesterol 7α-hydroxylase enzyme system. Hoppe-Seylers Z. physiol. Chem. 349, 1628–1630 (1968).

    PubMed  CAS  Google Scholar 

  • Schroepfer, G.J., Frantz, J.D.: Conversion of Δ 7 -cholestenol-4–14C and 7-dehydro-cholesterol-4-C14 to cholesterol. J. biol. Chem. 236, 3137–3140 (1961).

    PubMed  CAS  Google Scholar 

  • Schwenk, E., Werthessen, N.T.: Studies on the biosynthesis of cholesterol, III. Purification of 14C-Cholesterol from perfusions of livers and other organs. Arch. Biochem. 40, 334–341 (1952).

    PubMed  CAS  Google Scholar 

  • Schwenk, E., Werthessen, N.T.: Studies on the biosynthesis of cholesterol, IV. Higher counting substances accompanying 14C-Cholesterol in the intact rat. Arch. Biochem. 42, 91–93 (1953).

    PubMed  CAS  Google Scholar 

  • Sebesin, S.M., Isselbacher, K.J.: Protein synthesis inhibition: Mechanism for the production of impaired fat absorption. Science 147, 1149–1150 (1965).

    Google Scholar 

  • Shapiro, D.J., Rodwell, V.W.: Diurnal variation and cholesterol regulation of hepatic HMG-CoA reductase activity. Biochem. Biophys. Res. Comm. 37, 867–872 (1969).

    PubMed  CAS  Google Scholar 

  • Shapiro, D.J., Rodwell, V.W.: Regulation of hepatic HMG-CoA reductase and cholesterol synthesis. J. biol. Chem. 246, 3210–3216 (1971).

    PubMed  CAS  Google Scholar 

  • Shefer, S., Hauser, S., Bekersky, J., Mosbach, E.H.: Feedback regulation of bile acid biosynthesis in the rat. J. Lipid Res. 10, 646–655 (1969).

    PubMed  CAS  Google Scholar 

  • Shefer, S., Hauser, S., Bekersky, I., Mosbach, E.H.: Biochemical site of regulation of bile acid biosynthesis in the rat. J. Lipid Res. 11, 404–411 (1970).

    PubMed  CAS  Google Scholar 

  • Shefer, S., Hauser, S., Lapar, V., Mosbach, E.H.: HMG-CoA reductase of intestinal mucosa and liver of the rat. J. Lipid Res. 13, 402–412 (1972).

    PubMed  CAS  Google Scholar 

  • Shefer, S., Hauser, S., Lapar, V., Mosbach, E.H.: Regulatory effects of dietary sterols and bile acids on rat intestinal HMG-CoA reductase. J. Lipid Res. 14, 400–405 (1973a).

    PubMed  CAS  Google Scholar 

  • Shefer, S., Hauser, S., Lapar, V., Mosbach, E.H.: Regulatory effects of sterols and bile acids on hepatic HMG-CoA reductase and cholesterol 7α-hydroxylase in the rat. J. Lipid Res. 14, 573–580 (1973b).

    PubMed  CAS  Google Scholar 

  • Shefer, S., Hauser, S., Mosbach, E.H.: 7α-Hydroxylation of cholestanol by rat liver microsomes. J. Lipid Res. 9, 328–333 (1968).

    PubMed  CAS  Google Scholar 

  • Simmonds, W.J., Hofmann, A.F., Theodor, E.: Absorption of cholesterol from micellar solution: Intestinal perfusion studies in man. J. clin. Invest. 46, 874–890 (1967).

    PubMed  CAS  Google Scholar 

  • Siperstein, M.D.: The homeostatic control of cholesterol synthesis in liver. Amer. J. clin. Nutr. 8, 645–650 (1960).

    CAS  Google Scholar 

  • Siperstein, M.D.: Developmental and Metabolic Control Mechanism and Neoplasia, p. 427–451. Baltimore: Williams & Wilkins 1965.

    Google Scholar 

  • Siperstein, M.D.: Regulation of cholesterol biosynthesis in normal and malignant tissues. In: Current Topics in Cell Regulation (B.L. Horecker, E.R. Stadtman, Eds.), vol. 2, p. 65–100. New York: Academic Press 1970.

    Google Scholar 

  • Siperstein, M.D., Chaikoff, J.L.: 14C-Cholesterol, III. Excretion of carbons 4 and 26 in feces, urine, and bile. J. biol. Chem. 198, 93–104 (1952).

    PubMed  CAS  Google Scholar 

  • Siperstein, M., Fagan, V.M.: Feedback control of mevalonate synthesis of dietary cholesterol. J. biol. Chem. 241, 602–609 (1966).

    PubMed  CAS  Google Scholar 

  • Siperstein, M.D., Guest, M.J.: Studies on the feedback control of cholesterol synthesis. J. clin. Invest. 39, 642–652 (1960).

    PubMed  CAS  Google Scholar 

  • Siperstein, M.D., Jayko, M.E., Chaikoff, I.L., Dauben, W.G.: Nature of the metabolic products of 14C-cholesterol excreted in bile and feces. Proc. Soc. exp. Biol. (N.Y.) 81, 720–724 (1952).

    CAS  Google Scholar 

  • Siperstein, M.D., Murray, A.W.: Cholesterol metabolism in man. J. clin. Invest. 34, 1449–1453 (1955).

    PubMed  CAS  Google Scholar 

  • Sjövall, J., Eneroth, P., Ryhage, R.: Mass spectra of bile acids. In: The Bile Acids (P.P. Nair, D. Kritchevsky, Eds.), vol. 1. New York-London: Plenum Press 1971.

    Google Scholar 

  • Skeggs, H.R., Wright, L.D., Cresson, E.L., Macrae, G.D.E., Hoffmann, C.H., Wolf, D.E., Folkers, K.: Discovery of a new acetate replacing factor. J. Bacteriol. 72, 519–524 (1956).

    PubMed  CAS  Google Scholar 

  • Snog-Kjaer, A., Prange, I., Dam, H.: Conversion of cholesterol into coprosterol by bacteria invitro. J. gen. Microbiol. 14, 256–260 (1956).

    PubMed  CAS  Google Scholar 

  • Sodhi, H.S., Wood, P.D.S., Schlierf, G., Kinsell, L.W.: Plasma, bile and fecal sterols in relation to diet. Metabolism 16, 334–343 (1967a).

    PubMed  CAS  Google Scholar 

  • Sodhi, H.S., Berger, E.A., Gould, R.G.: Evidence for two pools of cholesterol in small intestines. Fed. Proc. 26, 471 (1967b).

    Google Scholar 

  • Sodhi, H.S., Kudchodkar, B.J.: Correlating metabolism of plasma and tissue cholesterol with that of plasma-lipoproteins. Lancet 1973 I, 513–519.

    Google Scholar 

  • Sonderhoff, R., Thomas, H.: Die enzymatische Dehydrierung der Trideutero-Essigsäure. Liebigs Ann. Chem. 530, 195–213 (1937).

    CAS  Google Scholar 

  • Sperry, W.M.: Lipid excretion: A study of the relationship of the bile to the fecal lipids with special reference to certain problems of sterol metabolism. J. biol. Chem. 71, 351–378 (1927).

    CAS  Google Scholar 

  • Spritz, N., Ahrens, E.H., Grundy, S.M.: Sterol balance in man as plasma cholesterol concentrations are altered by exchanges of dietary fats. J. clin. Invest. 44, 1482–1493 (1965).

    PubMed  CAS  Google Scholar 

  • Srere, P.A., Chaikoff, I.L., Treitman, S.S., Burstein, L.S.: The extrahepatic synthesis of cholesterol. J. biol. Chem. 182, 629–634 (1952).

    Google Scholar 

  • Staple, E.: Enzymatic degradation of the cholesterol side chain in the biosynthesis of bile acids. In: Methods in Enzymology (R.B. Clayton, Ed.) vol. 15. New York: Academic Press 1959.

    Google Scholar 

  • Staple, E., Gurin, S.: The incorporation of radioactive acetate into biliary cholesterol and cholic acid. Biochim. biophys. Acta (Amst.) 15, 372–376 (1954).

    CAS  Google Scholar 

  • Stern, J.R., Drummano, G.J., Loon, M.J., Del Campillo, A.: Enzymes of ketone body metabolism, I. Purification of an acetoacetate synthezising enzyme from ox liver. J. biol. Chem. 235, 313–317 (1960).

    PubMed  CAS  Google Scholar 

  • Stokes, W.M., Fish, W.A.: Sterol metabolism, II. The occurence of desmosterol in rat liver. J. biol. Chem. 235, 2604–2607 (1961).

    Google Scholar 

  • Subbia, L.M.R.R., Kuksis, A.: Fate of intra venously administered β-sitosterol-22–23-H3 in the rat. Proc. Canad. Fed. Biol. Soc. 11, 140 (1968).

    Google Scholar 

  • Sugiyama, T., Clinkenbeard, K., Moss, J., Lane, M.D.: Multiple cytositic forms of hepatic β-hydroxy-β-methylglutaryl CoA synthase: Possible regulatory role in cholesterol synthesis. Biochem. Biophys. Res. Comm. 18, 255–261 (1972).

    Google Scholar 

  • Suld, H.M., Staple, E., Gurin, S.: Mechanism of formation of bile acids from cholesterol. Oxidation of 5β-cholestan-3α,7α,12α-triol and formation of propionic acid from the side chain by rat liver mitochondria. J. biol. Chem. 237, 338–344 (1962).

    PubMed  CAS  Google Scholar 

  • Swell, L., Byron, J.E., Treadwell, C.R.: Cholesterol esterases, IV. Cholesterol esterase of rat intestinal mucosa. J. biol. Chem. 186, 543–548 (1950).

    PubMed  CAS  Google Scholar 

  • Swell, L., Field, H., Jr., Treadwell, C.R.: Role of bile salts in activity of cholesterol esterase. Proc. Soc. exp. Biol. (N.Y.) 84, 417–420 (1953).

    CAS  Google Scholar 

  • Swell, L., Trout, E.C., Jr., Hopper, J.R., Field, H., Jr., Treadwell, C.R.: The mechanism of cholesterol absorption. Ann. N.Y. Acad. Sci. 72, 813–825 (1959).

    PubMed  CAS  Google Scholar 

  • Sylven, C., Borgström, B.: Intestinal absorption and lymphatic transport of cholesterol in the rat. Influence of the fatty acid chain length of the carrier triglycerides. J. Lipid Res. 10, 351–355 (1969).

    PubMed  CAS  Google Scholar 

  • Sylven, C., Nordström, C.: The site of absorption of cholesterol and sitosterol in the rat small intestine. Scand. J. Gastroenterol. 5, 57 (1970).

    PubMed  CAS  Google Scholar 

  • Tavormina, P.A., Gibbs, M.H., Huff, J.W.: The utilization of β-hydroxy-β-methyl-δ-valerolactone in cholesterol biosynthesis. J. Amer. chem. Soc. 78, 4498–4499 (1956).

    CAS  Google Scholar 

  • Taylor, C.B., Cox, G.E., Nelson, L.G., Davis, C.B., Hass, G.M.: In vitro studies on human hepatic cholesterol synthesis. Circulation 12, 489 (1955).

    Google Scholar 

  • Taylor, C.B., Mikkelson, B., Anderson, A., Forman, D.T.: Human serum cholesterol synthesis measured with the deuterium label. Arch. Path. 81, 213–231 (1966).

    CAS  Google Scholar 

  • Taylor, C.B., Patton, D., Yogi, N., Cox, G.E.: Diet as source of serum cholesterol in man. Proc. Soc. exp. Biol. (N.Y.) 103, 768–772 (1960).

    CAS  Google Scholar 

  • Tchen, T.T., Bloch, K.: In vitro conversion of squalene to lanosterol and cholesterol. J. Amer. chem. Soc. 77, 6085–6086 (1955).

    CAS  Google Scholar 

  • Tchen, T.T., Bloch, K.: On the mechanism of enzymatic cyclization of squalene. J. biol. Chem. 226, 931–939 (1957).

    PubMed  CAS  Google Scholar 

  • Tennent, D.M., Siegel, H., Zanetti, M.E., Kuron, G.W., Ott, W.H., Wolf, F.J.: Plasma cholesterol lowering of bile acid binding polymers in experimental animals. J. Lipid Res. 1, 469–473 (1960).

    PubMed  CAS  Google Scholar 

  • Thomas, P.J., Hsia, S.L., Matschiner, J.T., Doisy, E.A., Elliott, W.H., Thayer, S.A.: Metabolism of lithocholic acid-24–14C in the rat. J. biol. Chem. 239, 102–105 (1964).

    PubMed  CAS  Google Scholar 

  • Tomkins, G.M., Chaikoff, J.L.: Cholesterol synthesis by liver, I. Influence of fasting and of diet. J. biol. Chem. 196, 569–573 (1952).

    PubMed  CAS  Google Scholar 

  • Tomkins, G.M., Chaikoff, J.L., Bennett, L.L.: Cholesterol synthesis by liver, II. Effect of hypophysectomy. J. biol. Chem. 199, 543–545 (1952).

    PubMed  CAS  Google Scholar 

  • Tomkins, G.M., Sheppard, H., Chaikoff, J.L.: Cholesterol synthesis by liver, III. Its regulation by ingested cholesterol. J. biol. Chem. 201, 137–141 (1953a).

    PubMed  CAS  Google Scholar 

  • Tomkins, G.M., Sheppard, H., Chaikoff, J.L.: Cholesterol synthesis by liver, IV. Suppression by steroid administration. J. biol. Chem. 203, 781–786 (1953b).

    PubMed  CAS  Google Scholar 

  • Treadwell, C.R., Vahouny, G.V.: Cholesterol absorption. Handbook of Physiology. Section 6. Alimentary canal. Vol. 3. Intestinal absorption. C.F. Code (Ed.). American physiological Society, 1968, p. 1407–1438.

    Google Scholar 

  • Vahouny, G.V., Gregorian, H.M., Treadwell, C.R.: Comparative effects of bile acids on intestinal absorption of cholesterol. Proc. Soc. exp. Biol. (N.Y.) 101, 538–540 (1959).

    CAS  Google Scholar 

  • Vahouny, G.V., Treadwell, C.R.: Absolute requirement for free sterol for absorption by rat intestinal mucosa. Proc. Soc. exp. Biol. (N.Y.) 116, 496–498 (1964).

    CAS  Google Scholar 

  • Vahouny, G.V., Weersing, S., Treadwell, C.R.: Taurocholate protection of cholesterol esterase against proteolytic inactivation. Biochim. Biophys. Res. Comm. 15, 224–229 (1964).

    CAS  Google Scholar 

  • Vahouny, G.V., Weersing, S., Treadwell, C.R.: Function of specific bile acids in cholesterol esterase activity in vitro. Biochim. biophys. Acta (Amst.) 98, 607–616 (1965).

    CAS  Google Scholar 

  • Voser, W., Mijovic, M.W., Heusser, H., Jeger, O., Ruziska, L.: Über Steroide und Sexualhormone, 186. Über die Konstitution des Lanosterins und seine Zugehörigkeit zu den Steroiden. Helv. chim. Acta 35, 2414–2430 (1952).

    CAS  Google Scholar 

  • Wachtel, N., Emerman, S., Javitt, N.: Metabolism of cholest-5-ene,3β,26-diol in the rat and hamster. J. biol. Chem. 243, 5207–5212 (1968).

    PubMed  CAS  Google Scholar 

  • Weis, H.J., Dietschy, J.M.: Failure of bile acids to control hepatic cholesterol genesis. Evidence for endogenous cholesterol feedback. J. clin. Invest. 48, 2398–2408 (1969).

    PubMed  CAS  Google Scholar 

  • Wells, K.W., Neiderhiser, D.H.: Isolation and synthesis of a new sterol from rat feces. J. Amer. chem. Soc. 79, 6569–6570 (1957).

    CAS  Google Scholar 

  • White, L.W.: Stimulation of 3-hydroxy-3-methylglu-taryl CoA reductase by insulin. Circulation 46, Suppl. 253 (1972).

    Google Scholar 

  • White, L.W., Rudney, H.: Regulation of 3-hydroxy-3-methylglutarate and mevalonate biosynthesis by rat liver homogenates. Effects of fasting, cholesterol feeding and Triton administration. Biochemistry 9, 2725–2731 (1970).

    PubMed  CAS  Google Scholar 

  • Whithehouse, M.W., Staple, E., Gurin, S.: Catabolism in vitro of cholesterol, I. Oxidation of the terminal methyl groups of cholesterol to carbon dioxide by rat liver preparations. J. biol. Chem. 234, 276–281 (1959).

    Google Scholar 

  • Williamson, D.H., Bates, M.W., Krebs, H.A.: Activity and intracellular distribution of enzymes of ketone body metabolism in rat liver. Biochem. J. 108, 353–361 (1968).

    PubMed  CAS  Google Scholar 

  • Willmer, J.S., Foster, T.S.: The influence of adrenalectomy and individual steroid hormones upon the metabolism of acetatel-14C by rat liver slices, II. Incorporation into cholesterol. Canad. J. Biochem. 38, 1393–1397 (1960).

    PubMed  CAS  Google Scholar 

  • Wilson, J.D.: The effect of dietary fatty acids on co-prostanol excretion by the rat. J. Lipid Res. 2, 350–356 (1961).

    CAS  Google Scholar 

  • Wilson, J.D.: Influence of dietary cholesterol in excretion of cholesterol-4–14C by the rat. Amer. J. Physiol. 202, 1073–1076 (1962).

    PubMed  CAS  Google Scholar 

  • Wilson, J.D.: Relation between dietary cholesterol and bile acid excretion in the rat. Amer. J. Physiol. 203, 1029–1032 (1962).

    PubMed  CAS  Google Scholar 

  • Wilson, J.D.: The quantification of cholesterol excretion and degradation in the isotopic steady state in the rat: The influence of dietary cholesterol. J. Lipid Res. 5, 409–417 (1964).

    PubMed  CAS  Google Scholar 

  • Wilson, J.D.: The measurement of the exchangeable pools of cholesterol in the baboon. J. clin. Invest. 49, 655–665 (1970).

    PubMed  CAS  Google Scholar 

  • Wilson, J.D., Lindsey, C.A., Jr.: Studies on the influence of dietary cholesterol on cholesterol metabolism in the isotopic steady state in man. J. clin. Invest. 44, 1805–1814 (1965).

    PubMed  CAS  Google Scholar 

  • Wilson, J.D., Reinke, R.T.: Transfer of locally synthesized cholesterol from intestinal lymph. J. Lipid Res. 9, 85–92 (1968).

    PubMed  CAS  Google Scholar 

  • Windaus, A.: Über die Entgiftung der Saponine durch Cholesterin. Chem. Ber. 42, 238–246 (1909).

    CAS  Google Scholar 

  • Windaus, A.: Über den Gehalt normaler und atheromatöser Aorten an Cholesterin und Cholesterinestern. Hoppe-Seylers Z. physiol. Chem. 67, 174–176 (1910).

    Google Scholar 

  • Wojciech, R., Janecek, H.M., Ivy, A.C.: Endogenous excretion and intestinal capacity for absorption of cholesterol in the dog. Amer. J. Physiol. 201, 190–193 (1961).

    PubMed  CAS  Google Scholar 

  • Wood, P.D.S., Hatoff, D.: Incubation of human fecal homogenates with 4–14C cholesterol. Lipids 5, 702–706 (1970).

    PubMed  CAS  Google Scholar 

  • Wood, P.D.S., Shioda, R., Kinsell, L.W.: Dietary regulation of cholesterol metabolism. Lancet 1966 II, 604–607.

    Google Scholar 

  • Woodward, R.B., Bloch, K.: The cyclization of squalene in cholesterol synthesis. J. Amer. chem. Soc. 75, 2023–2024 (1953).

    CAS  Google Scholar 

  • Wootton, J.D.P., Wiggins, H.S.: Studies in the bile acids, II. The non-ketonic acids of human bile. Biochem. J. 55, 292–294 (1953).

    PubMed  CAS  Google Scholar 

  • Wright, L.D., Cresson, E.L., Skeggs, H.R., Macrae, G.D.E., Hoffmann, L.H., Wolff, D.E., Folkers, K.: Isolation of a new acetate replacing factor. J. Amer. chem. Soc. 78, 5273–5275 (1956).

    CAS  Google Scholar 

  • Wuersch, J., Haung, R.L., Bloch, K.: The origin of the isooctyl side chain of cholesterol. J. biol. Chem. 195, 439–446 (1952).

    PubMed  CAS  Google Scholar 

  • Yamasaki, K.: Isolation of tetrahydroxynorsterocholanic acid from chicken bile and the bile acids from the bile of Citellus mongolicus ramosus, Hatarisu and of sheep. J. Biochemistry 38, 93–98 (1951).

    Google Scholar 

  • Zabin, J., Barker, W.F.: The conversion of cholesterol and acetate to cholic acid. J. biol. Chem. 205, 633–636 (1953).

    PubMed  CAS  Google Scholar 

  • Zilversmit, D.B.: The design and analysis of isotope experiments. Amer. J. Med. 29, 832 (1960).

    PubMed  CAS  Google Scholar 

  • Zilversmit, D.B.: Chylomicrons. In: Structural and functional Aspects of Lipoproteins in living Systems (E. Tria, A.M. Scanu, Eds.), p. 329–368. New York: Academic Press 1969.

    Google Scholar 

  • Zilversmit, D.B., Wentworth, R.A.: Determination of the optimal priming dose far achieving an isotopic steady state in a two-pool system: application to the study of cholesterol metabolism. J. Lipid. Res. 11, 551–557 (1970).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Weizel, A., Liersch, M. (1976). Cholesterin. In: Assmann, G., et al. Fettstoffwechsel. Handbuch der inneren Medizin, vol 7 / 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66302-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66302-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66303-1

  • Online ISBN: 978-3-642-66302-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics