• S. Sailer
Part of the Handbuch der inneren Medizin book series (INNEREN, volume 7 / 4)


Die Hypertriglyceridämie, also die Erhöhung der Konzentration der Triglyceride (TG) im Blut, zählt heute zu den häufigsten Erkrankungen des Stoffwechsels. Die engen Beziehungen zwischen Hypertriglyceridämie und Gefäßerkrankungen lassen in der Hypertriglyceridämie einen pathogenetischen Faktor für die Entstehung der Atherosklerose vermuten. Es ist deshalb nicht verwunderlich, wenn in den letzten Jahren größte Anstrengungen unternommen wurden, um den Stoffwechsel der Triglyceride genauer kennenzulernen, um so die Hypertriglyceridämie besser therapeutisch beeinflussen zu können.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, M.E., Jarrett, R.J., Keen, H., Boyns, D.R., Crossley, J.N.: Oral glucose tolerance and related factors in a normal population sample. II. Interrelationship of glycerides, cholesterol, and other factors with the glucose and insulin response. Brit. med. J. 1969 I, 599–602.Google Scholar
  2. Ahrens, E.H., Jr., Hirsch, J., Insull, W., Jr., Tsaltas, T.T., Blomstrand, R., Peterson, M.L.: The influence of dietary fats on serum lipid levels in man. Lancet 1957 I, 943–953.Google Scholar
  3. Ahrens, E.H., Jr., Hirsch, J., Oette, K., Farquhar, J.W., Stein, Y.: Carbohydrate-induced and fat-induced lipemia. Trans. Ass. Amer. Phycns 74, 134–146 (1961).Google Scholar
  4. Akanuma, Y., Kuzuya, T., Hayashi, M., Ide, T., Kuzuya, N.: Positive correlation of serum lecithin: cholesterol acyltransferase activity with relative body weight. Europ. J. clin. Invest. 3, 136–141 (1973).PubMedGoogle Scholar
  5. Aladjem, F., Rubin, L.: Serum lipoprotein changes during fasting in rabbits. Amer. J. Physiol. 178, 267–268 (1954).Google Scholar
  6. Alaupovic, P., Lee, D.M., McConathy, W.J.: Studies on the composition and structure of plasma lipoproteins. Distribution of lipoprotein families in major density classes of normal human plasma lipoproteins. Biochim. biophys. Acta (Amst.) 260, 689–707 (1972).Google Scholar
  7. Albrink, M.J., Fitzgerald, J.R., Man, E.B.: Effect of glucagon on alimentary lipemia. Proc. Soc. exp. Biol. (N.Y.) 95, 778–780 (1957).Google Scholar
  8. Albrink, M.J., Meigs, J.W., Granoff, M.A.: Weight gain and serum triglycerides in normal men. New Engl. J. Med. 266, 484–489 (1962).PubMedGoogle Scholar
  9. Alfin-Slater, R.B., Aftergood, L.: Essential fatty acids reinvestigated. Physiol Rev. 48, 758–784 (1968).PubMedGoogle Scholar
  10. Amatuzio, D.S., Grande, F.: Essential hyperlipemia: the effect of glucagon. Minn. Med. 46, 1088–1091 (1963).PubMedGoogle Scholar
  11. Amatuzio, D.S., Grande, F., Wada, S.: Effect of glucagon on the serum lipids in essential hyperlipemia and in hypercholesterolemia. Metabolism 11, 1240–1249 (1962).PubMedGoogle Scholar
  12. Anfinsen, C.B., Boyle, E., Brown, R.K.: The role of heparin in lipoprotein metabolism. Science 115, 583–586 (1952).PubMedGoogle Scholar
  13. Angervall, G.P., Björntorp, P., Hood, B.: Studies on the clearing phenomenon in essential hyperlipemia. Acta med. scand. 172, 5–14 (1962).PubMedGoogle Scholar
  14. Archer, J.A., Gorden, P., Gauin, J.R., Lesniak, M.A., Roth, J.: Insulin receptors in human circulating lymphocytes: Application to the study of insulin resistance in man. J. clin. Endocr. 36, 627–633 (1973).PubMedGoogle Scholar
  15. Armstrong, D.T., Steele, R., Altszuler, N., Dunn, A., Bishop, Y.S., DeBodo, R.C.: Regulation of plasma free fatty acid turnover. Amer. J. Physiol. (Lond.) 201, 9–15 (1961).Google Scholar
  16. Arons, D.L., Schreibman, P.H., Arky, R.A.: Post-heparin lipolytic and monoglyceridase activities in fasted man. Proc. Soc. exp. Biol. (N.Y.) 137, 780–782 (1971).Google Scholar
  17. Bagdade, J.D., Bierman, E.L., Porte, D., Jr.: The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and non-diabetic subjects. J. clin. Invest. 46, 1549–1557 (1967 b).PubMedGoogle Scholar
  18. Bagdade, J.D., Bierman, E.L., Porte, D., Jr.: The influence of obesity on the relationship between insulin and triglyceride levels in endogenous hypertriglyceridemia. Diabetes 20, 664–673 (1971).PubMedGoogle Scholar
  19. Bagdade, J.D., Porte, D., Jr., Bierman, E.L.: Diabetic lipemia. A form of acquired fat-induced lipemia. New Engl. J. Med. 276, 472–433 (1967a).Google Scholar
  20. Bagdade, J.D., Porte, D., Jr., Bierman, E.L.: Acute insulin withdrawal and the regulation of plasma triglyceride removal in diabetic subjects. Diabetes 17, 127–132 (1968).PubMedGoogle Scholar
  21. Baraona, E., Lieber, C.S.: Effects of chronic ethanol feeding on serum lipoprotein metabolism in the rat. J. clin. Invest. 49, 769–778 (1970).PubMedGoogle Scholar
  22. Baraona, E., Pirola, R.C., Lieber, C.S.: Pathogenesis of postprandial hyperlipemia in rats fed ethanol-containing diets. J. clin. Invest. 52, 296–303 (1973).PubMedGoogle Scholar
  23. Bar-On, H., Stein, Y.: Effect of glucose and fructose on lipid metabolism in the rat. J. Nutr. 94, 95–105 (1968).PubMedGoogle Scholar
  24. Barter, P.J., Carroll, K.F., Nestel, P.J.: Diurnal fluctuations in triglyceride, free fatty acids, and insulin during sucrose consumption and insulin infusion in man. J. clin. Invest. 50, 583–591 (1971).PubMedGoogle Scholar
  25. Barter, P.J., Nestel, P.J.: Plasma free fatty acid transport during prolonged glucose consumption and its relationship to plasma triglyceride fatty acids in man. J. Lipid Res. 13, 483–490 (1972).PubMedGoogle Scholar
  26. Barter, P.J., Nestel, P.J., Carroll, K.F.: Precursors of plasma triglyceride fatty acids in humans. Effects of glucose consumption, Clofibrate administration and alcoholic fatty liver. Metabolism 21, 117–124 (1972).PubMedGoogle Scholar
  27. Basso, L.V., Havel, R.J.: Hepatic metabolism of free fatty acids in normal and diabetic dogs. J. clin. Invest. 49, 537–547 (1970).PubMedGoogle Scholar
  28. Baxter, J.H.: Origin and characteristics of endogenous lipid in thoracic duct lymph in the rat. J. Lipid Res. 7, 158–166 (1966).PubMedGoogle Scholar
  29. Belfrage, P.: Metabolism of chyle triglycerides in the liver. I. Studies on the mechanisms for liver uptake of intravenously injected glycerol- and fatty acid-labeled chyle in the carbohydrate-fed rat. Biochim. biophys. Acta (Amst.) 125, 474–484 (1966).Google Scholar
  30. Bergman, E.N., Havel, R.J., Wolfe, B.M., Böhmer, T.: Quantitative studies of the metabolism of chylomicron triglycerides and cholesterol by liver and extrahepatic tissues of sheep and dogs. J. clin. Invest. 50, 1831–1839 (1971).PubMedGoogle Scholar
  31. Bier, D.M., Havel, R.J.: Activation of lipoprotein lipase by lipoprotein fractions of human serum. J. Lipid Res. 11, 565–570 (1971).Google Scholar
  32. Bierman, E.L.: Particulate lipid components in plasma. In: Renold, A.E., Cahill, G.F., Jr.: Handbook of Physiology, Section 5: Adipose Tissue, p. 509–518. Baltimore: Waverly Press 1965.Google Scholar
  33. Bierman, E.L., Bagdade, J.D., Porte, D., Jr.: A concept of the pathogenesis of diabetic lipemia. Trans. Ass. Amer. Phycns 79, 348–360 (1966).Google Scholar
  34. Bierman, E.L., Gordis, E., Hamlin, J.T.: Heterogeneity of fat particles in plasma during alimentary lipemia. J. clin. Invest. 41, 2254–2260 (1962).PubMedGoogle Scholar
  35. Bierman, E.L., Hamlin, J.T., III: A preparation of C14-labeled triglyceride in plasma as a tracer for plasma particulate fat. Proc. Soc. exp. Biol. (N.Y.) 109, 747–750 (1962).Google Scholar
  36. Bierman, E.L., Porte, D., Jr., O’Hara, D.D., Schwartz, M., Wood, F.C., Jr.: Characterization of fat particles in plasma of hyperlipemic subjects maintained on fat-free high-carbohydrate diets. J. clin. Invest. 44, 261–270 (1965).PubMedGoogle Scholar
  37. Bierman, E.L., Schwartz, I.L., Dole, V.P.: Action of insulin on release of fatty acids from tissue stores. Amer. J. Physiol. 191, 359–362 (1957).PubMedGoogle Scholar
  38. Bierman, E.L., Strandness, D.E., Jr.: The mechanism of formation of secondary fat particles from lymph chylomicrons (abstract), J. clin. Invest. 44, 1028 (1965).Google Scholar
  39. Bilheimer, D.W., Eisenberg, S., Levy, R.I.: Abnormal metabolism of very low density lipoproteins (VLDL) in type III hyperlipoproteinemia (type III). Circulation 44 (suppl. 2), II-56 (Abstr.) (1971).Google Scholar
  40. Bilheimer, D.W., Eisenberg, S., Levy, R.I.: The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim. biophys. Acta (Amst.) 260, 212–221 (1972).Google Scholar
  41. Blanchette-Mackie, E.J., Scow, R.O.: Sites of lipoprotein lipase activity in adipose tissue perfused with chylomicrons. Electron microscope cytochemical study. J. Cell Biol. 51, 1–11 (1971).PubMedGoogle Scholar
  42. Blomstrand, R., Dahlbäck, O.: The fatty acid composition of human thoracic duct lymph lipids. J. clin. Invest. 39, 1185–1191 (1960).PubMedGoogle Scholar
  43. Boberg, J.: Mechanisms of hypertriglyceridemia in man. Thesis. Uppsala: Acta Universitatis Upsaliensis 1971.Google Scholar
  44. Boberg, J.: Heparin-released blood plasma lipoprotein lipase activity in patients with hyperlipoproteinemia. Acta med. scand. 191, 97–102 (1972).PubMedGoogle Scholar
  45. Boberg, J., Carlson, L.A., Freyschuss, U.: Determination of splanchnic secretion rate and splanchnic turnover of plasma free fatty acids in man. Europ. J. clin. Invest. 2, 123–132 (1972a).PubMedGoogle Scholar
  46. Boberg, J., Carlson, L.A., Freyschuss, U., Lassers, B.W., Wahlqvist, M.L.: Splanchnic secretion rates of plasma triglycerides and total and splanchnic turnover of plasma free fatty acids in men with normo- and hypertriglyceridaemia. Europ. J. clin. Invest. 2, 454–466 (1972 b).PubMedGoogle Scholar
  47. Boberg, J., Carlson, L.A., Hallberg, D.: Application of a new intravenous fat tolerance test in the study of hypertriglyceridaemia in man. J. Atheroscler. Res. 9, 159–169 (1969).PubMedGoogle Scholar
  48. Bolzano, K., Sailer, S., Sandhofer, F., Braunsteiner, H.: Über das Verhalten der endogenen Li-poproteidlipase-Aktivität im Plasma während einer intravenösen Fettinfusion bei Normalpersonen und Patienten mit Hypertriglyceridämie. Klin. Wschr. 45, 1104–1106 (1967).PubMedGoogle Scholar
  49. Bolzano, K., Sailer, S., Sandhofer, F., Braunsteiner, H.: Familial hyperchylomicronaemia with plasma inhibited lipoprotein lipase. Fourth Annual Meeting of the European Society for Clinical Investigation, Scheveningen April 1970, p. 23–25.Google Scholar
  50. Bolzano, K., Sailer, S., Sandhofer, F., Braunsteiner, H.: Die Beeinflussung der endogenen und der Postheparin-Lipoproteidlipase-Aktivität im Plasma durch intravenöse Glukosebelastung bei Normalpersonen, Patienten mit primärer endogener Hypertriglyceridämie und Personen mit diabetischer Stoffwechsellage. Klin. Wschr. 49, 472–476 (1971).PubMedGoogle Scholar
  51. Borensztajn, J., Robinson, D.S.: The effect of fasting on the utilization of chylomicron triglyceride fatty acids in relation to clearing factor lipase (lipoprotein lipase) releasable by heparin in the perfused rat heart. J. Lipid Res. 11, 111–117 (1970).PubMedGoogle Scholar
  52. Brady, M., Higgins, J.A.: The properties of the lipoprotein lipases of rat heart, lung and adipose tissue. Biochim. biophys. Acta (Amst.) 137, 140–146 (1967).Google Scholar
  53. Bragdon, J.H.: On the composition of chyle chylomicrons. J. Lab. clin. Med. 52, 564–570 (1958).PubMedGoogle Scholar
  54. Bragdon, J.H., Havel, R.J., Boyle, E.: Human serum lipoproteins. I. Chemical composition of four fractions. J. Lab. clin. Med. 48, 36–42 (1956).PubMedGoogle Scholar
  55. Braunsteiner, H., Berger, H., Sailer, S., Sandhofer, F.: Untersuchungen bei einem Fall von fettinduzierter (exogener) Hypertriglyceridämie. Schweiz, med. Wschr. 98, 458–461 (1968a).Google Scholar
  56. Braunsteiner, H., Herbst, M., Sailer, S., Sandhofer, F.: Diabetes mellitus bei primärer Hypertriglyceridämie mit Kontraindikation zur Insulinbehandlung. Wien. klin. Wschr. 80, 415–417 (1968b).PubMedGoogle Scholar
  57. Breen, K., Schenker, S., Heimberg, M.: The effect of tetracycline on the hepatic secretion of triglyceride. Biochim. biophys. Acta (Amst.) 270, 74–80 (1972).Google Scholar
  58. Brown, D.F.: Triglyceride metabolism in the alloxan-diabetic rat. Diabetes 16, 90–95 (1967).PubMedGoogle Scholar
  59. Brown, W.V., Levy, R.I., Fredrickson, D.S.: Studies of the proteins in human plasma very low density lipoproteins. J. biol. Chem. 244, 5687–5694 (1969).PubMedGoogle Scholar
  60. Brown, W.V., Levy, R.I., Fredrickson, D.S.: Further characterization of apolipoproteins from the human plasma very low density lipoproteins. J. biol. Chem. 245, 6588–6594 (1970).PubMedGoogle Scholar
  61. Brunzell, J.D., Hazzard, W.R., Porte, D., Jr., Bierman, E.L.: Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J. clin. Invest. 52, 1578–1585 (1973).PubMedGoogle Scholar
  62. Carlson, L. A.: Studies on the incorporation of injected palmitic acid-1-C14 into liver and plasma lipids in man. Acta Soc. Med. upsalien. 65, 85–90 (1960).Google Scholar
  63. Carlson, L.A., Ekelund, L.-G.: Splanchnic production and uptake of endogenous triglycerides in the fasting state in men. J. clin. Invest. 42, 714–720 (1963).PubMedGoogle Scholar
  64. Carlson, L.A., Ekelund, L.-G., Fröberg, S.O.: Concentration of triglyceride, phospholipids and glycogen in skeletal muscle and of free fatty acids and beta-hydroxy-butyric acid in blood in man in response to exercise. Europ. J. clin. Invest. 1, 248–254 (1971).PubMedGoogle Scholar
  65. Carlson, L.A., Ekelund, L.-G., Orö, L.: Studies on blood lipids during exercise. IV. Arterial concentration of free fatty acids and glycerol during and after long time exercise in normal men. J. Lab. clin. Med. 61, 724–729 (1963).PubMedGoogle Scholar
  66. Carlson, L.A., Pernow, B.: Studies on blood lipids during exercise. I. Arterial and venous plasma concentrations of unesterified fatty acids. J. Lab. clin. Med. 53, 833–841 (1959).PubMedGoogle Scholar
  67. Carlson, L.A., Pernow, B.: Studies on blood lipids during exercise. II. The arterial plasma-free fatty acid concentration during and after exercise and its regulation. J. Lab. clin. Med. 58, 673–681 (1961).PubMedGoogle Scholar
  68. Clark, B., Hübscher, G.: Glycerokinase in mucosa of the small intestine of the rat. Nature 195, 599–600 (1962).Google Scholar
  69. Clark, B., Hübscher, G.: Biosynthesis of glycerides in the mucosa of the small intestine. Nature 185, 35–37 (1960).PubMedGoogle Scholar
  70. Clark, B.S., Brause, B., Holt, P.R.: Lipolysis and absorption of fat in the rat stomach. Gastroenterology 56, 214–222 (1969).PubMedGoogle Scholar
  71. Datta, D.V., Wiggins, H.S.: New effects of sodium chloride and protamine on human postheparin plasma “lipoprotein” lipase activity. Proc. Soc. exp. Biol. (N.Y.) 115, 788–792 (1964).Google Scholar
  72. Dawson, A.M., Isselbacher, K.J.: The esterification of palmitate-1-C14 by homogenates of intestinal mucosa. J. clin. Invest. 39, 150–160 (1960).PubMedGoogle Scholar
  73. Dawson, A.M., Isselbacher, K.J., Bell, V.M.: Studies on lipid metabolism in the small intestine with observations on the role of bile salts. J. clin. Invest. 39, 730–740 (1960).PubMedGoogle Scholar
  74. DenBesten, L., Reyna, R.H., Connor, W.E., Stegink, L.D.: The different effects on the serum lipids and fecal steroids of high carbohydrate diets given orally or intravenously. J. clin. Invest. 52, 1384–1393 (1973).PubMedGoogle Scholar
  75. DeOya, M., Prigge, W.F., Swenson, D.E., Grande, F.: Role of glucagon on fatty liver production in birds. Amer. J. Physiol. 221, 25–30 (1971).Google Scholar
  76. DiLuzio, N.R.: Effect of acute ethanol intoxication on liver and plasma lipid fractions of the rat. Amer. J. Physiol. 194, 453–456 (1958).Google Scholar
  77. Dole, V.P.: A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J. clin. Invest. 35, 150–154 (1956).PubMedGoogle Scholar
  78. Eagle, G.R., Robinson, D.S.: The ability of actinomycin D to increase clearin-factor lipase activity of rat adipose tissue. Biochem. J. 93, 10 C-11 C (1964).Google Scholar
  79. Eaton, R.P.: Synthesis of plasma triglycerides in endogenous hypertriglyceridemia. J. Lipid Res. 12, 491–497 (1971).PubMedGoogle Scholar
  80. Eaton, R.P.: Hypolipemic action of glucagon in experimental endogenous lipemia in the rat. J. Lipid Res. 14, 312–318 (1973).PubMedGoogle Scholar
  81. Eaton, R.P., Berman, M., Steinberg, D.: Kinetic studies of plasma free fatty acid and triglyceride metabolism in man. J. clin. Invest. 48, 1560–1579 (1969).PubMedGoogle Scholar
  82. Eaton, R.P., Nye, W.H.R.: The relationship between insulin secretion and triglyceride concentration in endogenous lipemia. J. Lab. clin. Med. 81, 682–695 (1973).PubMedGoogle Scholar
  83. Eisenberg, S., Bilheimer, D., Lindgren, F., Levy, R.I.: On the apoprotein composition of human plasma very low density lipoprotein subfractions. Biochim. biophys. Acta (Amst.) 260, 329–333 (1972).Google Scholar
  84. Fallon, H.J., Kemp, E.L.: Effects of diet on hepatic triglyceride synthesis. J. clin. Invest. 47, 712–719 (1968).PubMedGoogle Scholar
  85. Farquhar, J.W., Gross, R.C., Wagner, R.W., Reaven, G.M.: Validation of an incompletely coupled two-compartment nonrecycling catenary model for turnover of liver and plasma triglyceride in man. J. Lipid Res. 6, 119–134 (1965).PubMedGoogle Scholar
  86. Farquhar, J.W., Frank, A., Gross, R.C., Reaven, G.M.: Glucose, insulin and triglyceride responses to high and low carbohydrate diets in man. J. clin. Invest. 45, 1648–1656 (1966).PubMedGoogle Scholar
  87. Feigl, J.: Neue Untersuchungen zur Chemie des Blutes bei akuter Alkoholintoxikation und bei chronischem Alkoholismus mit besonderer Berücksichtigung der Fette und Lipide. Biochem. Z. 92, 282–317 (1918).Google Scholar
  88. Fine, M.B., Williams, R.H.: Effect of fosting, epinephrine and glucose and insulin on hepatic uptake of nonesterified fatty acids. Amer. J. Physiol. 199, 403–406 (1960).PubMedGoogle Scholar
  89. Ford, S., Jr., Bozian, R.C., Knowles, H.C., Jr.: Interactions of obesity, and glucose and insulin levels in hypertriglyceridemia. Amer. J. clin. Nutr. 21, 904–910 (1968).PubMedGoogle Scholar
  90. Fredrickson, D.S., Lees, R.S.: Familial Hyperlipoproteinemia. In: The Metabolic Basis of Inhereted Disease (Stanbury, Wyngaarden, Fredrickson, Eds.), Chapter 22, p. 429–485. New York: McGraw Hill 1965.Google Scholar
  91. Fredrickson, D.S., Levy, R.I., Lees, R.S.: Fat transport in lipoproteins—An integrated approach to mechanisms and disorders. New Engl. J. Med. 276, 32–44 (1967).Google Scholar
  92. Fredrickson, D.S., Levy, R.I., Lees, R.S.: Fat transport in lipoproteins—An integrated approach to mechanisms and disorders. New Engl. J. Med. 276, 94–103 (1967).PubMedGoogle Scholar
  93. Fredrickson, D.S., Levy, R.I., Lees, R.S.: Fat transport in lipoproteins—An integrated approach to mechanisms and disorders. New Engl. J. Med. 276, 148–156 (1967).PubMedGoogle Scholar
  94. Fredrickson, D.S., Levy, R.I., Lees, R.S.: Fat transport in lipoproteins—An integrated approach to mechanisms and disorders. New Engl. J. Med. 276, 215–226 (1967).PubMedGoogle Scholar
  95. Fredrickson, D.S., Levy, R.I., Lees, R.S.: Fat transport in lipoproteins—An integrated approach to mechanisms and disorders. New Engl. J. Med. 276, 273–281 (1967).PubMedGoogle Scholar
  96. Fredrickson, D.S., Ono, K., Davis, L.L.: Lipolytic activity of post-heparin plasma in hyperglyceridemia. J. Lipid Res. 4, 24–33 (1963).PubMedGoogle Scholar
  97. Friedberg, S.J., Klein, R.F., Trout, D.L., Bogdanoff, M.D., Estes, E.H., Jr.: The incorporation of plasma free fatty acids into plasma triglycerides in man. J. clin. Invest. 40, 1848–1855 (1961).Google Scholar
  98. Gage, S.H., Fish, P.A.: Fat digestion, absorption, and assimilation in man and animals as determined by the dark-field microscope, and a fat-soluble dye. Amer. J. Anat. 34, 1–85 (1924).Google Scholar
  99. Ganesan, D., Bradford, R.H., Alaupovic, P., McConathy, W.J.: Differential activation of lipoprotein lipase from human post-heparin plasma, milk and adipose tissue by polypeptides of human serum apolipoprotein C. FEBS Lett. 15, 205–208 (1971).PubMedGoogle Scholar
  100. Garfinkel, A., Baker, N., Schotz, M.C.: Relationship of lipoprotein lipase activity to triglyceride uptake in adipose tissue. J. Lipid Res. 8, 274–180 (1967).PubMedGoogle Scholar
  101. Gelb, A.M., Davidson, M.I., Kessler, J.I.: Effect of fasting on esterification of fatty acids by small intestine in vitro. Amer. J. Physiol. 207, 1207–1210 (1964).PubMedGoogle Scholar
  102. Glickman, R.M., Kirsch, K.: Lymph chylomicron formation during the inhibition of protein synthesis. Studies of chylomicron apoproteins. J. clin. Invest. 52, 2910–2920 (1973).PubMedGoogle Scholar
  103. Glickman, R.M., Kirsch, K., Isselbacher, K.J.: Fat absorption during inhibition of protein synthesis: Studies of lymph chylomicrons. J. clin. Invest. 51, 356–363 (1972).PubMedGoogle Scholar
  104. Glomset, J.A.: The plasma lecithin: cholesterol acyl-transferase reaction. J. Lipid Res. 9, 155–167 (1968).PubMedGoogle Scholar
  105. Glueck, C.J., Levy, R.I., Fredrickson, D.S.: Immunoreactive insulin, glucose tolerance, and carbohydrate inducibility in types II, III, IV and V hyperlipoproteinemia. Diabetes 18, 739–748 (1969).PubMedGoogle Scholar
  106. Gofman, J.W., DeLalla, O., Glazier, N.K., Lindgren, F.T., Nichols, A.V., Strisower, E.H., Ramplin, A.R.: The serum lipoprotein transport system in health, metabolic disorders, atherosclerosis and coronary artery disease. Plasma 2, 413–428 (1954).Google Scholar
  107. Goldrick, R.B., Ashley, B.C.E., Lloyd, J.L.: Effects of prolonged incubation and cell concentration on lipogenesis from glucose in isolated human omental fat cells. J. Lipid Res. 10, 253–259 (1969).PubMedGoogle Scholar
  108. Gordis, E.: Demonstration of two kinds of fat particles in alimentary lipemia with polyvinyl-pyrrolidone gradient columns. Proc. Soc. exp. biol. (N.Y.) 110, 657–661 (1962).Google Scholar
  109. Gordis, E.: Preservation of dietary triglycerides in the secondary particles of alimentary lipemia. J. clin. Invest. 44, 1451–1457 (1965).PubMedGoogle Scholar
  110. Gordon, S.G., Kern, F., Jr.: The effect of taurocholate on jejunal glyceride synthesis. Gastroenterology 58, 953 (1970).Google Scholar
  111. Gotto, A.M., Brown, W.V., Levy, R.I., Birnbaumer, M.E., Fredrickson, D.S.: Evidence for the identity of the major apoprotein in low density and very low density lipoproteins in normal subjects and patients with familial hyperlipoproteinemia. J. clin. Invest. 51, 1486–1494 (1972).PubMedGoogle Scholar
  112. Gotto, A.M., Levy, R.I., John, K., Fredrickson, D.S.: On the protein defect in abetalipoproteinemia. New Engl. J. Med. 284, 813–818 (1971).PubMedGoogle Scholar
  113. Greten, H., Levy, R.I., Fredrickson, D.S.: A further characterization of lipoprotein lipase. Biochim. biophys. Acta (Amst.) 164, 185–194 (1968).Google Scholar
  114. Greten, H., Levy, R.I., Fredrickson, D.S.: Evidence for separate monoglyceride hydrolase and triglyceride lipase in post-heparin human plasma. J. Lipid Res. 10, 326–330 (1969).PubMedGoogle Scholar
  115. Greten, H., Walter, B., Brown, W.V.: Purification of a human post-heparin plasma triglyceride lipase. FEBS Lett. 2, 306–310 (1972).Google Scholar
  116. Gross, R.C., Farquhar, J.W., Shen, S.W., Reaven, G.M.: Triglyceride production and removal in two fractions of plasma very low density lipoprotein (VLDL). Clin. Res. 18, 140 (1970).Google Scholar
  117. Gustafson, A.: Studies on human serum very-low-density-lipoproteins. Acta med. scand., Suppl. 446, 1–44 (1966).Google Scholar
  118. Gustafson, A., Alaupovic, P., Furman, R.H.: Studies of the composition and structure of serum lipoproteins: isolation, purification, and characterization of VLDL of human serum. Biochemistry 4, 596–606 (1965).PubMedGoogle Scholar
  119. Gustafson, A., Alaupovic, P., Furman, R.H.: Studies of the composition and structure of serum lipoproteins: separation and characterization of phospholipid-protein residues obtained by partial delipidation of very low density lipoproteins of human serum. Biochemistry 5, 632–641 (1966).PubMedGoogle Scholar
  120. Haessler, H.A., Isselbacher, K.J.: Glycerokinase and its relation to intestinal glycerol metabolism. Fed. Proc. 22, 357 (1963).Google Scholar
  121. Hahn, P.F.: Abolishment of alimentary lipemia following injection of heparin. Science 98, 19–20 (1943).PubMedGoogle Scholar
  122. Hallberg, D.: Studies on the elimination of exogenous lipids from the blood stream. Determination and separation of the plasma triglycerides after single injection of a fat emulsion in man. Acta physiol. scand. 62, 407–421 (1964).PubMedGoogle Scholar
  123. Hallberg, D.: Insulin and glucagon in the regulation of removal rate of exogenous lipids from the blood in dogs. Acta chir. scand. 136, 291–297 (1970).PubMedGoogle Scholar
  124. Hamosh, M., Scow, R.O.: Lipoprotein lipase activity in guinea pig and rat milk. Biochim. biophys. Acta (Amst.) 231, 283–289 (1971).Google Scholar
  125. Hamosh, M., Scow, R.O.: Lingual lipase and its role in the digestion of dietary lipid. J. clin Invest. 52, 88–95 (1973).PubMedGoogle Scholar
  126. Harlan, W.R., Jr., Winsett, P.S., Wasserman, A.J.: Tissue lipoprotein lipase in normal individuals and in individuals with exogenous hypertriglyceridemia and the relationship of this enzyme to assimilation of fat. J. clin. Invest. 46, 239–247 (1967).PubMedGoogle Scholar
  127. Hatch, F.T., Abell, L.L., Kendall, F.E.: Effects of restriction of dietary fat and cholesterol upon serum lipids and lipoproteins in patients with hypertension. Amer. J. Med. 19, 48–60 (1955).PubMedGoogle Scholar
  128. Havel, R.J.: Early effects of fasting and of carbohydrate ingestion on lipids and lipoproteins of serum in man. J. clin. Invest. 36, 855–859 (1957a).PubMedGoogle Scholar
  129. Havel, R.J.: Early effects of fat ingestion on lipids and lipoproteins of serum in man. J. clin. Invest. 36, 848–854 (1957b).PubMedGoogle Scholar
  130. Havel, R.J.: Conversion of plasma free fatty acids into triglycerides of plasma lipoprotein fractions in man. Metabolism 10, 1031–1034 (1961).PubMedGoogle Scholar
  131. Havel, R.J.: Triglyceride and very low density lipoprotein turnover. In: Proc. 1968 Deuel Conf. on Lipids on the Turnover of Lipids and Lipoproteins, Carmel (Calif.), Feb. 21–24, 1968, p. 117–121. Cowgill, G., Estrich, D.L., Wood, P.D. (Eds.): Superintendent of Documents. Washington: U.S. Government Printing Office.Google Scholar
  132. Havel, R.J.: Caloric homeostasis and disorders of fuel transport. New Engl. J. Med. 287, 1186–1192 (1972).PubMedGoogle Scholar
  133. Havel, R.J., Balasse, E.O., Williams, H.E., Kane, J.P., Segel, N.: Splanchnic metabolism in von Gierke’s disease (Glycogenosis type I). Trans. Ass. Amer. Physcns 82, 305–323 (1969).Google Scholar
  134. Havel, R.J., Ekelund, L.-G., Holmgren, A.: Kinetic analysis of the oxidation of palmitate-l-14C in man during prolonged heavy muscular exercise. J. Lipid Res. 8, 366–373 (1967).PubMedGoogle Scholar
  135. Havel, R.J., Felts, J.M., Bezman, A.: Demonstration of lipoprotein lipase in human adipose tissue. Clin. Res. 9, 72 (1961).Google Scholar
  136. Havel, R.J., Goldfien, A.: The role of liver and extra-hepatic tissues in the transport and metabolism of fatty acids and triglycerides in the dog. J. Lipid Res. 2, 389–395 (1961).Google Scholar
  137. Havel, R.J., Gordon, R.S., Jr.: Idiopathic hyperlipemia: Metabolic studies in an affected family. J. clin. Invest. 39, 1777–1790 (1960).PubMedGoogle Scholar
  138. Havel, R.J., Kane, J.P., Balasse, E.O., Segel, N., Basso, L.V.: Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertri-glyceridemic humans. J. clin. Invest. 49, 2017–2035 (1970a).PubMedGoogle Scholar
  139. Havel, R.J., Kane, J.P., Kashyap, M.L.: Interchange of apolipoproteins between chylomicrons and high density lipoproteins during alimentary lipemia in man. J. clin. Invest. 52, 32–38 (1973).PubMedGoogle Scholar
  140. Havel, R.J., Naimark, A., Borchgrevink, C.F.: Turnover rate and oxidation of free fatty acids of blood plasma in men during exercise: studies during continous infusion of palmitate-1-C14. J. clin. Invest. 42, 1054–1063 (1963).PubMedGoogle Scholar
  141. Havel, R.J., Shore, V.G., Shore, B., Bier, D.M.: Role of specific glycopeptides of human serum lipoproteins in the activation of lipoprotein lipase. Circulat. Res. 27, 595–600 (1970b).PubMedGoogle Scholar
  142. Hazzard, W.R., Lindgren, F.T., Bierman, E.L.: Very low density lipoprotein subfractions in a subject with broad-β-disease (type III hyperlipoproteinemia) and a subject with endogenous lipemia (type IV). Chemical composition and electrophoretic mobility. Bio-chim. biophys. Acta (Amst.) 202, 517–525 (1970).Google Scholar
  143. Heimberg, M., Weinstein, I., Kohout, M.: The effects of glucagon, dibutyryl cyclic adenosine 3′,5′-mono-phosphate, and concentration of free fatty acid on hepatic lipid metabolism. J. biol. Chem. 244, 5131–5139 (1969).PubMedGoogle Scholar
  144. Helander, H.F., Olivecrona, T.: Lipolysis and lipid absorption in the stomach of the suckling rat. Gastroenterology 59, 22–35 (1970).PubMedGoogle Scholar
  145. Hofman, A.F.: Exchange of iodine-131-labeled chylomicron protein in vitro. Amer. J. Physiol. 199, 433–436 (1960).Google Scholar
  146. Hofman, A.F.: Borgström, B.: Physicochemical state of lipids in intestinal content during their digestion and absorption. Fed. Proc. 21, 43–50 (1962).Google Scholar
  147. Hofman, A.F., Small, D.M.: Detergent properties of bile salts: correlation with physiological function. Ann. Rev. Med. 18, 333–376 (1967).Google Scholar
  148. Hollenberg, C.H.: Effect of nutrition on activity and release of lipase from rat adipose tissue. Amer. J. Physiol. 197, 667–670 (1959).PubMedGoogle Scholar
  149. Hollenberg, C.H.: The effect of fasting on the lipoprotein lipase activity of rat heart and diaphragm. J. clin. Invest. 39, 1282–1287 (1960).PubMedGoogle Scholar
  150. Holt, P.R.: Utilization of glycerol-C14 for intestinal glyceride esterification: Studies in a patient with chyluria. J. clin. Invest. 43, 349–356 (1964).PubMedGoogle Scholar
  151. Hübscher, G.: Glyceride metabolism. In: Lipid Metabolism (Wakil, S.J., Ed.), p. 280–370. New York: Academic Press 1970.Google Scholar
  152. Hülsmann, W.C., Eijkenboom, W.H.M., Koster, J.F., Fernandes, J.: Glucose-6-Phosphatase deficiency and hyperlipaemia. Clin. chim. Acta 30, 775–778 (1970).PubMedGoogle Scholar
  153. Issekutz, B., Jr., Bortz, W.M., Miller, H.I., Paul, P.: Turnover rate of plasma FFA in humans and in dogs. Metabolism 16, 1001–1009 (1967).PubMedGoogle Scholar
  154. Issekutz, B., Jr., Miller, H.I., Paul, P., Rodahl, K.: Source of fat oxidation in exercising dogs. Amer. J. Physiol. 207, 583–589 (1964).PubMedGoogle Scholar
  155. Issekutz, B., Jr., Paul, P.: Intramuscular energy sources in exercising normal and pancreatectomized dogs. Amer. J. Physiol. 215, 197–204 (1968).PubMedGoogle Scholar
  156. Johnston, J.M., Rao, G.A. Lowe, P.A., Schwarz, B.E.: The nature of the stimulatory role of the supernatant fraction on triglyceride synthesis by the α-glycerophosphate pathway. Lipids 2, 14–20 (1967).PubMedGoogle Scholar
  157. Joly, J.-G., Feinman, L., Ishii, H., Lieber, C.S.: Effect of chronic ethanol feeding on hepatic microsomal glycerophosphate acyltransferase activity. J. Lipid Res. 14, 337–343 (1973).PubMedGoogle Scholar
  158. Jones, D.P., Arky, R.A.: Effects of insulin on triglyceride and free fatty acid metabolism in man. Metabolism 14, 1287–1293 (1965).PubMedGoogle Scholar
  159. Jones, D.P., Losowsky, M.S., Davidson, C.S., Lieber, C.S.: Effects of ethanol on plasma lipids in men. J. Lab. clin. Med. 62, 675–682 (1963).PubMedGoogle Scholar
  160. Kalkhoff, R.K., Hornbrook, K.R., Burch, H.B., Kipnis, D.M.: Studies of the metabolic effects of acute insulin deficiency. II. Changes in hepatic glycolytic and Krebs-cycle intermediates and pyridine nucleotides. Diabetes 15, 451–456 (1966).PubMedGoogle Scholar
  161. Kallio, I.V.I., Saarimaa, H.A.: Changes in blood lipids, postprandial lipemia and intravenous tolbutamide test response after insulin shock treatment. Amer. J. med. Sci. 254, 619–622 (1967).PubMedGoogle Scholar
  162. Kay, R.E., Entenmann, C.: The synthesis of “chylomicron-like “bodies and maintenance of normal blood sugar values by the isolated, perfused rat liver. J. biol. Chem. 236, 1006–1012 (1961).PubMedGoogle Scholar
  163. Kayden, H.J., Karmen, A., Dumont, A.: Alterations in the fatty acid composition of human lymph and serum lipoproteins by single feedings. J. clin. Invest. 42, 1373–1381 (1963).PubMedGoogle Scholar
  164. Kessler, J.I.: Effect of insulin on release of plasma lipolytic activity and clearing of emulsified fat intravenously administered to pancreatectomized and alloxanized dogs. J. Lab. clin. Med. 60, 747–755 (1962).PubMedGoogle Scholar
  165. Kessler, J.I.: Effect of diabetes and insulin on the activity of myocardial and adipose tissue lipoprotein lipase of rats. J. clin. Invest. 42, 362–367 (1963).PubMedGoogle Scholar
  166. Kessler, J.I., Stein, J., Dannacker, D., Narcessian, P.: Biosynthesis of low density lipoprotein by cell-free preparations of rat intestinal mucosa. J. biol. Chem. 245, 5281–5288 (1970).PubMedGoogle Scholar
  167. Kohout, M., Kohoutova, B., Heimberg, M.: The regulation of hepatic triglyceride metabolism by free fatty acids. J. biol. Chem. 246, 5067–5074 (1971).PubMedGoogle Scholar
  168. Korn, E.D.: Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart. J. biol. Chem. 215, 1–14 (1955a).PubMedGoogle Scholar
  169. Korn, E.D.: Clearing factor, a heparin-activated lipoprotein lipase. II. Substrate specificity and activation of coconut oil. J. biol. Chem. 215, 15–26 (1955b).PubMedGoogle Scholar
  170. Korn, E.D., Quigley, Jr.: Studies on lipoprotein lipase of rat heart and adipose tissue. Biochim. biophys. Acta (Amst.) 18, 143–145 (1955).Google Scholar
  171. Korner, A.: Aloxan diabetes and in vitro protein biosynthesis in rat liver microsomes and mitochondria. J. Endocr. 20, 256–265 (1960).PubMedGoogle Scholar
  172. Kostner, G., Holasek, A.: Characterization and quantitation of the apolipoproteins from human chyle chylomicrons. Biochemistry 11, 1217–1223 (1972).PubMedGoogle Scholar
  173. Krauss, R.M., Windmueller, H.G., Levy, R.I., Fredrickson, D.S.: Selective measurement of two different triglyceride lipase activities in rat postheparin plasma. J. Lipid Res. 14, 286–295 (1973).PubMedGoogle Scholar
  174. Kunelis, C.T., Peters, J.L., Edmondson, H.A.: Fatty liver of pregnancy and its relationship to tetracycline therapy. Amer. J. Med. 38, 359–377 (1965).PubMedGoogle Scholar
  175. Kuo, P.T., Feng, L.Y.: Studies of serum insulin in atherosclerotic patients with endogenous hypertriglyceridemia (types III and IV hyperlipoproteinemia). Metabolism 19, 372–380 (1970).PubMedGoogle Scholar
  176. LaRosa, J.C., Levy, R.I., Brown, W.V., Fredrickson, D.S.: Changes in high density lipoprotein protein composition after heparin-induced lipolysis. Amer. J. Physiol. 220, 785–791 (1971).PubMedGoogle Scholar
  177. LaRosa, J.C., Levy, R.I., Herbert, P., Lux, S.E., Fredrickson, D.S.: A specific apoprotein activator for lipoprotein lipase. Biochem. biophys. Res. Commun. 41, 57–62 (1970).PubMedGoogle Scholar
  178. LaRosa, J.C., Levy, R.I., Windmueller, H.G., Fredrickson, D.S.: Comparison of the triglyceride lipase of liver, adipose tissue, and postheparin plasma. J. Lipid Res. 13, 356–363 (1972).PubMedGoogle Scholar
  179. Letarte, J., Fraser, T.R.: Stimulation by insulin of the incorporation of U-14C-Glukose into lipids released by the liver. Diabetologia 5, 358–359 (1969).PubMedGoogle Scholar
  180. Levy, R.I., Fredrickson, D.S., Shulman, R., Bilheimer, D.W., Breslow, J.L., Stone, N.J., Lux, S.E., Sloan, H.R., Krauss, R.M., Herbert, P.N.: Dietary and drug treatment of primary hyperlipoproteinemia. Ann. intern. Med. 77, 267–294 (1972).Google Scholar
  181. Lewis, B., Mancini, M., Ishiwata, J.I., Mattock, M.: Dietary influences on plasma triglyceride metabolism. Abstr. Europ. Soc. clin. Invest. 1, 380 (1971).Google Scholar
  182. Lewis, M., Schenker, S., Combes, B.: Studies on the pathogenesis of tetracycline-induced fatty liver. Am. J. dig. Dis. 12, 429–438 (1967).PubMedGoogle Scholar
  183. Lieber, C.S., DeCarli, L.M.: Quantitative relationship between amount of dietary fat and severity of alcoholic fatty liver. Amer. J. clin. Nutr. 23, 474–478 (1970).PubMedGoogle Scholar
  184. Lieber, C.S., Lefevre, A., Spritz, N., Feinman, L., DeCarli, L.M.: Difference in hepatic metabolism of long- and medium-chain fatty acids: the role of fatty acid chain length in the production of alcoholic fatty liver. J. clin. Invest. 46, 1451–1460 (1967).PubMedGoogle Scholar
  185. Lieber, C.S., Schmid, R.: The effect of ethanol on fatty acid metabolism; stimulation of hepatic fatty acid synthesis in vitro. J. clin. Invest. 40, 394–399 (1961).PubMedGoogle Scholar
  186. Lieber, C.S., Spritz, N.: Effect of prolonged ethanol intake in man: role of dietary, adipose and endogenously synthesized fatty acids in the pathogenesis of the alcoholic fatty liver. J. clin. Invest. 45, 1400–1411 (1966).PubMedGoogle Scholar
  187. Lieber, C.S., Spritz, N., DeCarli, L.M.: Role of dietary, adipose, and endogenously synthesized fatty acids in the pathogenesis of the alcoholic fatty liver. J. clin. Invest. 45, 51–62 (1966).PubMedGoogle Scholar
  188. Lisch, H.-J., Bolzano, K., Herbst, M., Sailer, S., Sandhofer, F., Braunsteiner, H.: Effect of body weight changes on plasma lipids in patients with primary hyperlipoproteinemia. Atherosclerosis 19, 477–484 (1974b).PubMedGoogle Scholar
  189. Lisch, H.-J., Sailer, S., Sandhofer, F., Tschikof, R., Braunsteiner, H.: The action of insulin and glucose on lipolysis in isolated human fat cells. Horm. Metabolic Res. 6, 25–30 (1974a).Google Scholar
  190. Lombardi, B., Ugazio, G.: Serum lipoproteins in rats with carbon tetrachlorid-induced fatty liver. J. Lipid Res. 6, 498–505 (1965).PubMedGoogle Scholar
  191. Lossow, W.J., Lindgren, F.T., Jensen, L.C.: Net uptake of rat serum protein by Sf >400 lymph chylomicrons in vitro. Biochim. biophys. Acta (Amst.) 144, 670–677 (1967).Google Scholar
  192. Lossow, W.J., Lindgren, F.T., Murchio, J.C., Stevens, G.R., Jensen, L.C.: Particle size and protein content of six fractions of the Sf >20 plasma lipoprotein isolated by density gradient centrifugation. J. Lipid Res. 10, 68–76 (1969).PubMedGoogle Scholar
  193. MacDonald, I.: Ingested glucose and fructose in serum lipids in healthy men and after myocardial infarction. Amer. J. clin. Nutr. 21, 1366–1373 (1968).PubMedGoogle Scholar
  194. Mahley, R.W., Hamilton, R.L., LeQuire, V.S.: Characterization of lipoprotein particles isolated from the Golgi apparatus of rat liver. J. Lipid Res. 10, 433–439 (1969).PubMedGoogle Scholar
  195. Marshall, F.N.: Lipoprotein lipase activity in normal human adipose tissue and its absence in human lipomas. Experientia (Basel) 21, 130–133 (1965).Google Scholar
  196. Masoro, E.J., Rowell, L.B., McDonald, R.M.: Intracellular muscle lipids as energy sources during muscular exercise and fasting. Fed. Proc. 25, 1421–1424 (1966 a).PubMedGoogle Scholar
  197. Masoro, E.J., Rowell, L.B., McDonald, R.M., Steiert, B.: Skeletal muscle lipids. II. Nonutization of intracellular lipid esters as an energy source for contractile activity. J. biol. Chem. 241, 2626–2634 (1966 b).PubMedGoogle Scholar
  198. Mattson, F.H., Beck, L.W.: The digestion in vitro of triglycerides by pancreatic lipase. J. biol. Chem. 214, 115–125 (1955).PubMedGoogle Scholar
  199. Mattson, F.H., Volpenhein, R.A.: The digestion and absorption of triglycerides. J. biol. Chem. 239, 2772–2777 (1964).PubMedGoogle Scholar
  200. McBride, O.W., Korn, E.D.: The lipoprotein lipase of mammary gland and the correlation of its activity to location. J. Lipid Res. 4, 17–20 (1963).PubMedGoogle Scholar
  201. McElroy, W.T., Jr., Siefert, W.L., Spitzer, J.J.: Relationship of hepatic uptake of free fatty acids to plasma concentration. Proc. Soc. exp. Biol. (N.Y.) 104, 20–23 (1960).Google Scholar
  202. Mendenhall, C.L.: Origin of hepatic triglyceride fatty acids: quantitative estimation of the relative contributions of linoleic acid by diet and adipose tissue in normal and ethanol fed rats. J. Lipid Res. 13, 177–183 (1972).PubMedGoogle Scholar
  203. Meng, H.C., Goldfarb, J.L.: Heparin-induced lipemia clearing factor in rats. Role of the pancreas in its production. Diabetes 8, 211–217 (1959).PubMedGoogle Scholar
  204. Miller, H.I., Bortz, W.M., Durham, B.C.: The rate of appearance of FFA in plasma triglyceride of normal and obese subjects. Metabolism 17, 515–521 (1968).PubMedGoogle Scholar
  205. Minari, O., Zilversmit, D.B.: Behaviour of dog lymph chylomicron lipid constituents during incubation with serum. J. Lipid Res. 4, 424–436 (1963).PubMedGoogle Scholar
  206. Morris, M.D., Zilversmit, D.B., Hintz, H.F.: Hyperlipoproteinemia in fasting ponnis. J. Lipid Res. 13, 383–389 (1972).PubMedGoogle Scholar
  207. Nestel, P.J.: Relationship between plasma triglycerides and removal of chylomicrons. J. clin. Invest. 43, 943–949 (1964).PubMedGoogle Scholar
  208. Nestel, P.J.: Metabolism of linoleate and palmitate in patients with hypertriglyceridemia and heart disease. Metabolism 14, 1–9 (1965).PubMedGoogle Scholar
  209. Nestel, P.J.: Carbohydrate-induced hypertriglyceridemia and glucose utilization in ischemic heart disease. Metabolism 15, 787–795 (1966).PubMedGoogle Scholar
  210. Nestel, P.J.: Relationship between FFA flux and TGFA influx in plasma before and during the infusion of insulin. Metabolism 16, 1123–1132 (1967).PubMedGoogle Scholar
  211. Nestel, P.J.: Triglyceride turnover in man. Progr. biochem. Pharmacol. 8, 125–160 (1973).Google Scholar
  212. Nestel, P.J., Barter, P.: Metabolism of palmitic and linoleic acids in man: differences in turnover and conversion to glycerides. Clin. Sci. 40, 345–350 (1971).PubMedGoogle Scholar
  213. Nestel, P.J., Caroll, K.F., Havenstein, N.: Plasma triglyceride response to carbohydrates, fats and caloric intake. Metabolism 19, 1–18 (1970).PubMedGoogle Scholar
  214. Nestel, P.J., Denborough, M.A., O’Dea, J.: Disposal of human chylomicrons administered intravenously in ischemic heart disease and essential hyperlipemia. Circulat. Res. 10, 786–791 (1962).PubMedGoogle Scholar
  215. Nestel, P.J., Havel, R.J.: Lipoprotein lipase in human adipose tissue. Proc. Soc. exp. Biol. Med. (N.Y.) 109, 985–987 (1962).Google Scholar
  216. Nestel, P.J., Havel, R.J., Bezman, A.: Sites of initial removal of chylomicron triglyceride fatty acids from the blood. J. clin. Invest. 41, 1915–1921 (1962).PubMedGoogle Scholar
  217. Nestel, P.J., Hirsch, E.Z.: Triglyceride turnover after diets rich in carbohydrate or animal fat. Aust. Ann. Med. 14, 265–269 (1965a).PubMedGoogle Scholar
  218. Nestel, P.J., Hirsch, E.Z.: Mechanism of alcohol-induced hypertriglyceridemia. J. Lab. clin. Med. 66, 357–365 (1965b).PubMedGoogle Scholar
  219. Nestel, P.J., Whyte, H.M.: Plasma free fatty acid and triglyceride turnover in obesity. Metabolism 17, 1112–1128 (1968).Google Scholar
  220. Nichols, A.V., Smith, L.: Effect of very low-density lipoproteins on lipid transfer in incubated serum. J. Lipid Res. 206–210 (1965).Google Scholar
  221. Nikkilä, E. A.: Control of plasma and liver triglyceride kinetics by carbohydrate metabolism and insulin. Adv. Lipid Res. 7, 63–134 (1969).PubMedGoogle Scholar
  222. Nikkilä, E.A., Kekki, M.: Polymorphism of plasma triglyceride kinetics in normal human adult subjects. Acta med. scand. 190, 49–59 (1971).PubMedGoogle Scholar
  223. Nikkilä, E.A., Ojala, K.: Ethanol-induced alterations in the synthesis of hepatic and plasma lipids and hepatic glycogen from glycerol-C14. Life Sci. 2, 717–721 (1963).Google Scholar
  224. Ockner, R.K., Hughes, F.B., Isselbacher, K.J.: Very low density lipoproteins in intestinal lymph: origin, composition, and role in lipid transport in the fasting state. J. clin. Invest. 48, 2079–2088 (1969).PubMedGoogle Scholar
  225. Ontko, J.A.: Effects of ethanol on the metabolism of free fatty acids in isolated liver cells. J. Lipid Res. 14, 78–86 (1973).PubMedGoogle Scholar
  226. Otterby, D.E., Ramsey, H.A., Wise, G.H.: Source of lipolytic enzymes in the abomasum of the calf. J. Dairy Sci. 47, 997–1005 (1964).Google Scholar
  227. Paloyan, E., Harper, P.V., Jr.: Glucagon as a regulating factor of plasma lipids. Metabolism 10, 315–323 (1961).PubMedGoogle Scholar
  228. Patsch, J.R., Sailer, S., Braunsteiner, H.: Lipoprotein of the density 1.006–1.020 in the plasma of patients with type III hyperlipoproteinaemia in the postabsorptive state. Europ. J. clin. Invest., 5, 45–55 (1975).PubMedGoogle Scholar
  229. Patten, R.L., Hollenberg, C.H.: The mechanism of heparin stimulation of rat adipocyte lipoprotein lipase. J. Lipid Res. 10, 374–382 (1969).PubMedGoogle Scholar
  230. Paul, P., Issekutz, B., Jr.: Role of extramuscular energy sources in the metabolism of the exercising dog. J. appl. Physiol. 22, 615–622 (1967).PubMedGoogle Scholar
  231. Pav, J., Wenkeova, J.: Significance of adipose tissue lipoprotein lipase. Nature 185, 926–927 (1960).PubMedGoogle Scholar
  232. Penhos, J.C., Wu, C.H., Daunas, J., Reitman, M., Levine, R.: The effect of glucagon on the metabolism of lipids and on urea formation by the perfused rat liver. Diabetes 15, 740–748 (1966).PubMedGoogle Scholar
  233. Persson, B., Björntorp, P., Hood, B.: Lipoprotein lipase activity in human adipose tissue. I. Conditions for release and relationship to triglycerides in serum. Metabolism 15, 730–741 (1966).PubMedGoogle Scholar
  234. Persson, B., Hood, B., Angervall, G.: Effects of prolonged fast on lipoprotein lipase activity eluted from human adipose tissue. Acta med. scand. 188, 225–229 (1970).PubMedGoogle Scholar
  235. Pierce, F.T.: The interconversion of serum lipoproteins in vivo. Metabolism 3, 142–153 (1954).PubMedGoogle Scholar
  236. Polheim, D., David, J.S.K., Schultz, F.M., Wylie, M.B., Johnston, J.M.: Regulation of triglyceride biosynthesis in adipose and intestinal tissue. J. Lipid Res. 14, 415–421 (1973).PubMedGoogle Scholar
  237. Porte, D., Entenman, C.: Fatty acid metabolism in rat intestinal segments. U.S. Naval Radiol. Def. Lab. Tech. Rept. 526, 1–35 (1961).Google Scholar
  238. Pury, G.G. de, Collins, F.D.: Very low density lipoproteins and lipoprotein lipase in serum of rats deficient in essential fatty acids. J. Lipid Res. 13, 268–275 (1972).PubMedGoogle Scholar
  239. Quarfordt, S.H., Frank, A., Shames, D.M., Berman, M., Steinberg, D.: Very low density lipoprotein triglyceride transport in type IV hyperlipoproteinemia and the effects of carbohydrate-rich diets. J. clin. Invest. 49, 2281–2297 (1970).PubMedGoogle Scholar
  240. Quarfordt, S.H., Levy, R.I., Fredrickson, D.S.: On the lipoprotein abnormality in type III hyperlipoproteinemia. J. clin. Invest. 50, 754–761 (1971).PubMedGoogle Scholar
  241. Quarfordt, S.H., Levy, R.I., Fredrickson, D.S.: The kinetic properties of very low density lipoprotein triglyceride in type III hyperlipoproteinemia. Biochim. biophys. Acta (Amst.) 296, 572–576 (1973).Google Scholar
  242. Quarfordt, S.H., Nathans, A., Dowdee, M., Hilderman, H.L.: Heterogeneity of human very low density lipoproteins by gel filtration chromatography. J. Lipid Res. 13, 435–444 (1972).PubMedGoogle Scholar
  243. Reaven, E.P., Peterson, D.T., Reaven, G.M.: The effect of experimental diabetes mellitus and insulin replacement on hepatic ultrastructure and protein synthesis. J. clin. Invest. 52, 248–262 (1973).PubMedGoogle Scholar
  244. Reaven, G.M., Hill, D.B., Gross, R.C., Farquhar, J.W.: Kinetics of triglyceride turnover of very low density lipoproteins of human plasma. J. clin. Invest. 44, 1826–1833 (1965).PubMedGoogle Scholar
  245. Reaven, G.M., Lerner, R.L., Stern, M.P., Farquhar, J.W., Nakanishi, R.: Role of insulin in endogenous hypertriglyceridemia. J. clin. Invest. 46, 1756–1767 (1967).PubMedGoogle Scholar
  246. Reboucas, G., Isselbacher, K.J.: Studies on the pathogenesis of the ethanol-induced fatty liver. I. Synthesis and oxidation of fatty acids by the liver. J. clin. Invest. 40, 1355–1362 (1961).PubMedGoogle Scholar
  247. Redgrave, T.G.: Inhibition of protein synthesis and absorption of lipid into thoracic duct lymph of rats. Proc. Soc. exp. Biol. (N.Y.) 130, 776–780 (1969).Google Scholar
  248. Redgrave, T.G.: Formation of cholesteryl ester-rich particulate lipid during metabolism of chylomicrons. J. clin. Invest. 49, 465–471 (1970).PubMedGoogle Scholar
  249. Redgrave, T.G., Zilversmit, D.B.: Does puromycin block release of chylomicrons from intestine? Amer. J. Physiol. 217, 336–339 (1969).PubMedGoogle Scholar
  250. Robertson, R.P., Gavareski, D.J., Henderson, J.D., Porte, D., Jr., Bierman, E.L.: Accelerated triglyceride secretion. A metabolic consequence of obesity. J. clin. Invest. 52, 1620–1626 (1973).PubMedGoogle Scholar
  251. Robinson, D.S.: Changes in the lipolytic activity of the guinea mammary gland at parturition. J. Lipid Res. 4, 21–23 (1963).PubMedGoogle Scholar
  252. Robinson, D.S., French, J.E.: Heparin, the clearing factor lipase, and fat transport. Pharmacol. Rev. 12, 241–263 (1960).PubMedGoogle Scholar
  253. Robinson, D.S., Harris, P.M.: The production of lipolytic activity in the circulation of the hind limb in response to heparin. Quart. J. exp. Physiol. 44, 80–90 (1959).PubMedGoogle Scholar
  254. Rodbell, M.: Localization of lipoprotein lipase in fat cells of rat adipose tissue. J. biol. Chem. 239, 753–755 (1964).PubMedGoogle Scholar
  255. Rodbell, M., Fredrickson, D.S.: The nature of the proteins associated with dog and human chylomicrons. J. biol. Chem. 234, 562 (1959).PubMedGoogle Scholar
  256. Rubin, L., Aladjem, F.: Serum lipoprotein changes during fasting in man. Amer. J. Physiol. 178, 263–266 (1954).PubMedGoogle Scholar
  257. Rubin, E., Bacchin, P., Gang, H., Lieber, C.S.: Induction and inhibition of hepatic microsomal and mitochondrial enzymes by ethanol. Lab. Invest. 22, 569–580 (1970).PubMedGoogle Scholar
  258. Ruderman, N.B., Jones, A.L., Krauss, R.M., Shafrir, E.: A biochemical and morphologic study of very low density lipoproteins in carbohydrate-induced hypertriglyceridemia. J. clin. Invest. 50, 1355–1368 (1971).PubMedGoogle Scholar
  259. Ruderman, N.B., Richards, K.C., Valles de Bourges, V., Jones, A.L.: Regulation of production and release of lipoprotein by the perfused rat liver. J. Lipid Res. 9, 613–619 (1968).PubMedGoogle Scholar
  260. Ryan, W.G., Schwartz, T.B.: Dynamics of plasma triglyceride turnover in man. Metabolism 14, 1243–1254 (1965).PubMedGoogle Scholar
  261. Sabesin, S.M., Isselbacher, K.J.: Protein synthesis inhibition: mechanism for the production of impaired fat absorption. Science 147, 1149–1151 (1965).PubMedGoogle Scholar
  262. Sailer, S.: Indices of carbohydrate metabolism in patients with endogenous hypertriglyceridemia. International Diabetes Federation, 8th Congress, Brussels, July 15–20, 1973.Google Scholar
  263. Sailer, S., Bolzano, K.: The action of nicotinic acid on the esterification rate of plasma free fatty acids to plasma triglycerides. In: Metabolic effects of nicotinic acid and its derivates (Gey, Carlson, Eds.). Bern: Huber 1971.Google Scholar
  264. Sailer, S., Bolzano, K., Sandhofer, F., Spath, P., Braunsteiner, H.: Triglyceridspiegel und Insulinkonzentration im Plasma nach oraler Glukosegabe bei Patienten mit primärer kohlenhydratinduzierten Hypertriglyceridämie. Schweiz, med. Wschr. 98, 1512–1518 (1968).Google Scholar
  265. Sailer, S., Patsch, J., Braunsteiner, H.: Beeinflussung der Plasmakonzentration einzelner Lipoproteid-Dichteklassen durch Hunger und kohlenhydratreiche Diät. Acta med. austr. 1, 55–60 (1974).Google Scholar
  266. Sailer, S., Sandhofer, F., Bolzano, K., Braunsteiner, H.: Über den Einfluß der Glucose auf den Umsatz der freien Fettsäuren des Plasmas, die Einbaurate der freien Fettsäuren in Plasmatriglyceride und die Wirkung von Noradrenalin auf diese Stoffwechselgrößen beim Menschen. Klin. Wschr. 45, 918–924 (1967a).Google Scholar
  267. Sailer, S., Sandhofer, F., Bolzano, K., Braunsteiner, H.: Incorporation of plasma glucose carbon into plasma triglycerides in normals and patients with hypertriglyceridemia (type IV). In: Proceedings of the Second International Symposium on Atherosclerosis, p. 277–281. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  268. Sailer, S., Sandhofer, F., Bolzano, K., Dienstl, F., Braunsteiner, H.: Über die Wirkung eines β-Blokkers (Propranolol) auf den Umsatz der freien Fettsäuren und den Einbau von freien Fettsäuren in Plasmatriglyceride beim Menschen. Klin. Wschr. 45, 670–674 (1967c).PubMedGoogle Scholar
  269. Sailer, S., Sandhofer, F., Braunsteiner, H.: Untersuchungen über die Lipoproteidlipase. V. Die Lipoproteidlipase im Herzmuskel von Ratten, Kaninchen und Menschen. Wien. klin. Wschr. 74, 9–11 (1962).PubMedGoogle Scholar
  270. Sailer, S., Sandhofer, F., Braunsteiner, H.: Steuerung der endogenen Lipoproteid-Lipase-Aktivität im Plasma bei Normalpersonen und Patienten mit essentieller Hyperlipämie. Dtsch. med. Wschr. 90, 865–868 (1965).PubMedGoogle Scholar
  271. Sailer, S., Sandhofer, F., Braunsteiner, H.: Umsatzraten für freie Fettsäuren und Triglyceride im Plasma bei essentieller Hyperlipämie. Klin. Wschr. 44, 1032–1036 (1966a).PubMedGoogle Scholar
  272. Sailer, S., Sandhofer, F., Braunsteiner, H.: Overweight and triglyceride level in normal persons and patients with diabetes mellitus. Metabolism 15, 135–137 (1966b).PubMedGoogle Scholar
  273. Sailer, S., Sandhofer, F., Braunsteiner, H.: Beziehungen zwischen Blutzuckerspiegel, Umsatzrate der freien Fettsäuren und Fettsäureeinbau in Plasmatriglyceride bei Diabetikern. Klin. Wschr. 45, 86–91 (1967b).PubMedGoogle Scholar
  274. Sailer, S., Sandhofer, F., Braunsteiner, H.: Diabetes mellitus und Hyperlipämie. In Pfeiffer u.a. (Hrsg.): Diabetes mellitus, Bd. II, p. 775–806. München: J.F. Lehmann 1971.Google Scholar
  275. Salaman, M.R., quoted by Robinson, D.S.: Clearing factor lipase and fat transport. In: Advances in Lipid Research (Paoletti, R., Kritchevsky, D., Eds.), Vol. 1, p. 145. New York: Academic Press 1973.Google Scholar
  276. Salt, H.B., Wolff, O.H., Lloyd, J.K., Fosbrooke, A.S., Cameron, A.H., Hubble, D.V.: On having no beta-lipoprotein: syndrome comprizing a-beta-lipoproteinemia, acanthocytosis, and steatorrhoea. Lancet 1960 II, 325–329.Google Scholar
  277. Sandhofer, F., Bolzano, K., Sailer, S., Braunsteiner, H.: Quantitative Untersuchungen über den Einbau von Plasmaglucose-Kohlenstoff in Plasmatriglyceride und die Veresterungsrate von freien Fettsäuren des Plasmas zu Plasmatriglyceriden während oraler Zufuhr von Glukose bei primärer kohlenhydratinduzierter Hypertriglyceridämie. Klin. Wschr. 47, 1086–1094 (1969).PubMedGoogle Scholar
  278. Sandhofer, F., Sailer, S., Braunsteiner, H.: Fettsäure- und Triglyceridumsatz bei Schilddrüsenüberfunktion. Klin. Wschr. 44, 1389–1393 (1966a).PubMedGoogle Scholar
  279. Sandhofer, F., Sailer, S., Dienstl, F., Braunsteiner, H.: Über den Einfluß von Katecholaminen auf die Umsatzrate der freien Fettsäuren und die Bildung von Plasmatriglyceriden. Klin. Wschr. 45, 486–492 (1967).PubMedGoogle Scholar
  280. Sandhofer, F., Sailer, S., Herbst, M., Braunsteiner, H.: Untersuchungen über die Post-Heparin-Lipo-proteidlipase-Aktivität bei sechs Fällen von essentieller Hyperlipämie. Dtsch. med. Wschr. 90, 755–759 (1965).PubMedGoogle Scholar
  281. Sarda, L., Desnuelle, P.: Action de la lipase pancréatique sur les esters en émulsion. Biochim. biophys. Acta (Amst.) 30, 513–521 (1958).Google Scholar
  282. Sata, T., Havel, R.J., Jones, A.L.: Characterization of subfractions of triglyceride-rich lipoproteins separated by gel chromatography from blood plasma of normolipemic and hyperlipemic humans. J. Lipid Res. 13, 757–768 (1972).PubMedGoogle Scholar
  283. Scanu, A.: Binding of human serum high density lipoprotein apoprotein with aqueous dispersions of phospholipids. J. biol. Chem. 242, 711–719 (1967).PubMedGoogle Scholar
  284. Scanu, A., Toth, J., Edelstein, C., Koga, S., Stiller, E.: Fractionation of human serum high density lipoprotein in urea solutions: evidence for polypeptide heterogeneity. Biochemistry 8, 3309–3316 (1969).PubMedGoogle Scholar
  285. Schersten, T., Nilsson, S., Jönsson, J.: Hepatic lipogenesis in two cases with insulin-producing tumor of the pancreas. Acta med. scand. 190, 353–357 (1971).PubMedGoogle Scholar
  286. Schlierf, G., Dorow, E.: Diurnal patterns of triglycerides, free fatty acids, blood sugar, and insulin during carbohydrate-induction in man and their modification by nocturnal suppression of lipolysis. J. clin. Invest. 52, 732–740 (1973).PubMedGoogle Scholar
  287. Schlierf, G., Kinsell, L.W.: Effect of insulin in hypertriglyceridemia. Proc. Soc. exp. Biol. (N.Y.) 120, 272–274 (1965).Google Scholar
  288. Schlierf, G., Reinheimer, W., Stossberg, V.: Diurnal patterns of plasma triglycerides and free fatty acids in normal subjects and in patients with endogenous (type IV) hyperlipoproteinemia. Nutr. Metabol. 13, 80–91 (1971).Google Scholar
  289. Schlierf, G., Stossberg, V.: Diurnal patterns of plasma triglyceride, free fatty acid, blood sugar and insulin levels on high-fat and high-carbohydrate diets in normals and in patients with primary endogenous hyperglyceridemia. In: Atherosclerosis (Jones, R.J., Ed.), p. 459. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  290. Schnatz, J.D., Williams, R.H.: Adipose tissue lipolytic activity during insulin lack. Clin. Res. 10, 118 (1962).Google Scholar
  291. Schnatz, J.D., Williams, R.H.: The effect of acute insulin deficiency in the rat on adipose tissue lipolytic activity and plasma lipids. Diabetes 12, 174–178 (1963).PubMedGoogle Scholar
  292. Schonfeld, G.: Changes in the composition of very low density lipoproteins during carbohydrate induction in man. J. Lab. clin. Med. 75, 206–211 (1970).PubMedGoogle Scholar
  293. Schotz, M.C., Arnesjö, B., Olivecrona, T.: The role of the liver in the uptake of plasma and chyle triglycerides in the rat. Biochim. biophys. Acta (Amst.) 125, 485–495 (1966).Google Scholar
  294. Schreibman, P.H., Arons, D.L., Saudek, C.D., Arky, R. A.: Abnormal lipoprotein lipase in familial exogenous hypertriglyceridemia. J. clin. Invest. 52, 2075–2082 (1973).PubMedGoogle Scholar
  295. Schultz, F.M., Johnston, J.M.: The synthesis of higher glycerides via the monoglyceride pathway in hamster adipose tissue. J. Lipid Res. 12, 132–138 (1971).PubMedGoogle Scholar
  296. Schultz, F.M., Wylie, M.B., Johnston, J.M.: The relationship between the monoglyceride and glycerol-3-phosphate pathways in adipose tissue. Biochem. biophys. Res. Commun. 45, 246–250 (1971).PubMedGoogle Scholar
  297. Schultz, J.C., Adamson, J.S., Workman, W.W., Norman, T.D.: Fatal liver disease after intravenous administration of tetracycline in high dosage. New Engl. J. Med. 269, 999–1004 (1963).PubMedGoogle Scholar
  298. Schumaker, V.N., Adams, G.: Circulating lipoproteins. Ann. Rev. Biochem. 38, 113–136 (1969).PubMedGoogle Scholar
  299. Scow, R.O., Hamosh, M., Blanchette-Mackie, E.J., Evans, A. J.: Uptake of blood triglyceride by various tissues. Lipids 7, 497–505 (1972).PubMedGoogle Scholar
  300. Senior, J.R.: Intestinal absorption of fats (Review). J. Lipid Res. 5, 495–521 (1964).PubMedGoogle Scholar
  301. Seto, J.T., Lepper, M.H.: Effect of Chlortetracycline, Oxytetracycline and tetracycline administered intravenously on hepatic fat content: quantitative method of study including failure of some vitamins and other drugs to mitigate effect. Antibiot. and Chemother. 4, 666–672 (1954).Google Scholar
  302. Shames, D., Frank, A., Steinberg, D., Berman, M.: Transport of plasma free fatty acids and triglycerides in man: a theoretical analysis. J. clin. Invest. 49, 2298–2314 (1970).PubMedGoogle Scholar
  303. Shigeta, Y., Kim, M., Hoshi, M., Abe, H.: Effect of glucose and fat loading on lipoprotein lipase activity in plasma and tissues of diabetes. Endocr. jap. 16, 541–546 (1969).Google Scholar
  304. Shore, B., Shore, V.: Isolation and characterization of polypeptides of human serum lipoprotein. Biochemistry 8, 4510–4516 (1969).PubMedGoogle Scholar
  305. Shrago, E., Glennon, J.A., Gordon, E.S.: Comparative aspects of lipogenesis in mammalian tissues. Metabolism 20, 54–62 (1971).PubMedGoogle Scholar
  306. Sims, E.A.H., Goldman, R.F., Gluck, C.M., Horton, E.S., Kelleher, P.C., Rowe, D.W.: Experimental obesity in man. Trans. Ass. Amer. Phycns 81, 153–170 (1968).Google Scholar
  307. Sinclair, A.J., Collins, F.D.: Fatty livers in rats deficient in essential fatty acids. Biochim. biophys. Acta (Amst.) 152, 498–510 (1968).Google Scholar
  308. Soling, H.D., Kneer, P., Drägert, W., Creutzfeldt, W.: Die Wirkung von Insulin auf den Stoffwechsel der isolierten perfundierten Leber normaler und alloxandiabetischer Ratten. II. Stoffwechselveränderungen unter dem Einfluß intraportaler Insulininfusionen. Diabetologia 2, 32–44 (1966b).PubMedGoogle Scholar
  309. Söling, H.D., Koschel, R., Drägert, W., Kneer, P., Creutzfeldt, W.: Die Wirkung von Insulin auf den Stoffwechsel der isolierten perfundierten Leber normaler und alloxandiabetischer Ratten. I. Der Stoffwechsel isolierter perfundierter Lebern von normalen und alloxandiabetischen Ratten unter verschiedenen experimentellen Bedingungen. Diabetologia 2, 20–31 (1966a).PubMedGoogle Scholar
  310. Spitzer, J.J., McElroy, W.T., Jr.: Some hormonal influences on the hepatic uptake of free fatty acids in diabetic dogs. Diabetes 11, 222–226 (1962).PubMedGoogle Scholar
  311. Spitzer, J.J., McElroy, W.T., Jr.: Some hormonal effects on uptake of free fatty acids by the liver. Amer. J. Physiol. 199, 876–878 (1960).Google Scholar
  312. Stein, O., Stein, Y.: Lipid synthesis, intracellular transport, storage, and secretion. I. Electron microscopic radioautographic study of liver after injection of tritiated palmitate or glycerol in fasted and ethanol-treated rats. J. Cell Biol. 33, 319–339 (1967).PubMedGoogle Scholar
  313. Stern, C.A., Iacono, J.M., Mueller, J.F.: Lipoprotein lipase in human adipose tissue. Proc. Soc. exp. Biol. (N.Y.) 110, 366–368 (1962).Google Scholar
  314. Therriault, D.G., Beller, G.A., Smoake, J.A., Hartley, L.H.: Intramuscular energy sources in dogs during physical work. J. Lipid Res. 14, 54–68 (1973).PubMedGoogle Scholar
  315. Tidwell, H.C., Johnston, J.M.: An in vitro study of glyceride absorption. Arch. Biochem. 89, 79–82 (1960).PubMedGoogle Scholar
  316. Topping, D.L., Mayes, P.A.: The immediate effects of insulin and fructose on the metabolism of the perfused liver. Changes in lipoprotein secretion, fatty acid oxidation and esterification, lipogenesis and carbohydrate metabolism. Biochem. J. 126, 295–311 (1972).Google Scholar
  317. Tragl, K.H., Reaven, G.M.: Effect of experimental diabetes mellitus on protein synthesis by liver ribosomes. Diabetes 20, 27–32 (1971).PubMedGoogle Scholar
  318. Tragl, K.H., Reaven, G.M.: Effect of insulin deficiency on hepatic ribosomal aggregation. Diabetes 21, 84–88 (1972).PubMedGoogle Scholar
  319. Van Harken, D.R., Dixon, C.W., Heimberg, M.: Hepatic lipid metabolism in experimental diabetes. V The effect of concentration of oleate on metabolism of triglycerides and on ketogenesis. J. biol. Chem. 244, 2278–2285 (1969).PubMedGoogle Scholar
  320. Wasserman, F., McDonald, T.F.: Electron microscopic study of adipose tissue with special reference to the transport of lipids between blood and fat cells. Z. Zellforsch. 59, 326–357 (1963).Google Scholar
  321. Waterhouse, C., Kemperman, J.H., Stormont, J.M.: Alterations in triglyceride metabolism as produced by dietary change. J. Lab. clin. Med. 63, 605–620 (1964).PubMedGoogle Scholar
  322. Webb, W., Nestel, P.J., Foxman, C., Lynch, A.: Hepatic lipogenesis, adipose lipoprotein lipase and triglyceride removal in normotriglyceridemic hexosefed rats. Nutr. Rep. int. 1, 189–195 (1970).Google Scholar
  323. Whalley, P.J., Adams, R.H., Combes, B.: Tetracycline toxicity in pregnancy. Liver and pancreatic dysfunction. J. Amer. med. Ass. 189, 357–362 (1964).Google Scholar
  324. Wilgram, G.F., Kennedy, E.P.: Intracellular distribution of some enzymes catalyzing reactions in the biosynthesis of complex lipids. J. biol. Chem. 238, 2615–2619 (1963).PubMedGoogle Scholar
  325. Windmueller, H.G., Levy, R.I.: Production of β-lipoprotein by intestine in the rat. J. biol. Chem. 243, 4878–4884 (1968).PubMedGoogle Scholar
  326. Windmueller, H.G., Spaeth, A.E.: De novo synthesis of fatty acid in perfused rat liver as a determinant of plasma lipoprotein production. Arch. Biochem. 122, 362–369 (1967).PubMedGoogle Scholar
  327. Wittman, J.S., Lee, K.-L., Miller, O.N.: Dietary and hormonal influences on rat liver polysome profiles; fat, glucose and insulin. Biochim. biophys. Acta (Amst.) 174, 536–543 (1969).Google Scholar
  328. Wolfe, B.M., Havel, R.J., Marliss, E.B., Kane, J.P., Seymour, J.: Effects of ethanol on splanchnic metabolism in healthy men. J. clin. Invest. 49, 104a (1970).Google Scholar
  329. Woodside, W.F., Heimberg, M.: Hepatic metabolism of free fatty acids in experimental diabetes. Israel J. med. Sci. 8, 309–316 (1972).PubMedGoogle Scholar
  330. Zakim, D., Herman, R.H., Gordon, W.C., Jr.: The conversion of glucose and fructose to fatty acids in the human liver. Biochem. Med. 2, 427–435 (1968).Google Scholar
  331. Zelman, S.: The liver in obesity. Arch. intern. Med. 90, 141–156 (1952).Google Scholar
  332. Zilversmit, D.B.: The composition and structure of lymph chylomicrons in dog, rat, and man. J. clin. Invest. 44, 1610–1622 (1965).PubMedGoogle Scholar
  333. Zilversmit, D.B.: The surface coat of chylomicrons: lipid chemistry. J. Lipid Res. 9, 180–186 (1968).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • S. Sailer

There are no affiliations available

Personalised recommendations