Skip to main content

Regulation in the Whole Plant

  • Chapter
Transport in Plants II

Part of the book series: Encyclopedia of Plant Physiology ((919,volume 2 / B))

Abstract

Most vascular plants absorb the bulk of their inorganic nutrients from the soil solution through the roots. From the site of absorption, ions are distributed initially to various parts of the plant, mainly in the xylem, and secondary redistribution occurs in the phloem. In this Chapter an attempt is made to explain how long-distance transport is regulated within the plant in the light of the knowledge of ion transport at the sub-cellular, cellular, tissue and organ levels as presented in earlier Chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albaum, H.G., Donnely, J., Korkes, S.: The growth and metabolism of oat seedlings after seed exposure to oxygen. Amer. J. Bot. 29, 388–395 (1942).

    Article  CAS  Google Scholar 

  • Arnon, D.I., Hoagland, D.R.: Composition of the tomato plant as influenced by nutrient supply in relation to fruiting. Bot. Gaz. 104, 576–590 (1943).

    Article  CAS  Google Scholar 

  • Arnon, D.I., Stout, P.R., Sipos, F.: Radioactive phosphorus as an indicator of phosphorus absorption of tomato plants at various stages of development. Amer. J. Bot. 27, 791–798 (1940).

    Article  CAS  Google Scholar 

  • Asher, C.J., Loneragan, J.F.: Responses of plants to phosphate concentration in solution culture. 1. Growth and phosphorus content. Soil Sci. 103, 225–233 (1967).

    Article  CAS  Google Scholar 

  • Asher, C.J., Ozanne, P.G.: Growth and potassium content of plants in solution cultures maintained at constant potassium concentrations. Soil Sci. 103, 155–161 (1967).

    Article  CAS  Google Scholar 

  • Baset, Q.A.: Mobilization and transport of food reserves in etiolated oat seedlings. D. Phil. thesis, University of Sussex (1972)

    Google Scholar 

  • Baset, Q.A., Sutcliffe, J.F.: Regulation of the export of potassium, nitrogen, phosphorus, magnesium and dry matter from the endosperm of etiolated oat seedlings (Avena sativa cv Victory) Ann. Bot. (London), N.S. 39, 31–41 (1975).

    CAS  Google Scholar 

  • Beckett, J.T., Anderson, W.P.: Ferric-EDTA absorption by maize roots. In: Ion transport in plants, 630 p. (W.P. Anderson, ed.), p. 595–607. London-New York: Academic Press 1973.

    Google Scholar 

  • Bell, C.W., Biddulph, O.: Translocation of calcium. Exchange versus mass flow. Plant Physiol. 38, 610–614 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Biddulph, O.: The translocation of minerals in plants. In: Mineral nutrition of plants (E. Truog, ed.), p. 261–275, Madison, Wisconsin: University of Wisconsin Press, 1951.

    Google Scholar 

  • Biddulph, O., Biddulph, S.F., Cory, R., Koontz, H.: Circulation patterns for P32, S35, and Ca45 in the bean plant. Plant Physiol. 33, 293–300 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Biddulph, O., Nakayama, F.S., Cory, R.: Transpiration stream and ascension of calcium. Plant Physiol. 36, 429–436 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Bledsoe, R.W., Comar, C.L., Harris, H.C.: Absorption of radioactive calcium by the peanut fruit. Science 109, 229–330 (1949).

    Article  Google Scholar 

  • Bode, H.R.: Ãœber den Einfluß des Heteroauxins auf die Kationenzusammensetzung der Blattasche der Tomate. Planta 53, 212–218 (1959).

    Google Scholar 

  • Bowling, D.J.F., Weatherley, P.E.: The relationship between transpiration and potassium uptake in Ricinus communis. J. Exptl. Bot. 16, 732–741 (1965).

    Article  Google Scholar 

  • Brouwer, R.: The regulating influence of transpiration and suction tension on the water and salt uptake by roots of intact Vicia faba plants. Acta Botan. Neerl. 3, 264–312 (1954).

    Google Scholar 

  • Brouwer, R.: Investigations into the occurrence of active and passive components in the ion uptake by Vicia faba. Acta Botan. Neerl. 5, 287–314 (1956).

    Google Scholar 

  • Brown, R.: Studies on germination and seedling growth. III. Early growth in relation to certain aspects of nitrogen metabolism in the seedling of barley. Ann. Bot. (London), N.S. 10, 73–96 (1946).

    CAS  Google Scholar 

  • Broyer, T.C., Hoagland, D.R.: Metabolic activities of roots and their bearing on the relation of upward movement of salts and water in plants. Amer. J. Bot. 30, 261–273 (1943).

    Article  CAS  Google Scholar 

  • Buckner, G.D.: Translocation of mineral constituents of seeds and tubers of certain plants during growth. J. Agr. Res. 5, 409–453 (1915).

    Google Scholar 

  • Buckner, G.D.: Comparative utilisation of the mineral constituents in the cotyledons of bean seedlings grown in soil and in distilled water. J. Agr. Res. 20, 875–880 (1921).

    CAS  Google Scholar 

  • Collander, R.: Selective absorption of cations by higher plants. Plant Physiol. 16, 691–720 (1941)

    Article  PubMed  CAS  Google Scholar 

  • Cooil, B.J.: Accumulation and radial transport of ions from potassium salts by cucumber roots. Plant Physiol. 53, 158–163 (1974a).

    Article  PubMed  CAS  Google Scholar 

  • Cooil, B.J.: Characteristics of radial solution flow in roots of cucumber (Cucumis sativus L.). Ann. Bot. (London), N.S. 38, 1053–1065 (1974b).

    CAS  Google Scholar 

  • Cosgrove, D.J.: Chemistry and biochemistry of inositol polyphosphates. Rev. Pure Appl. Chem. 16, 209 (1966).

    CAS  Google Scholar 

  • Crossett, R.N., Loughman, B.C.: The absorption and translocation of phosphorus by seedlings of Hordeum vulgare L. New Phytologist 65, 459–468 (1966).

    Article  CAS  Google Scholar 

  • Curtis, O.F.: The effect of ringing a stem on the upward transfer of nitrogen and ash constituents. Amer. J. Bot. 10, 361–382 (1923).

    Article  CAS  Google Scholar 

  • Curtis, O.F.: Studies on the tissues concerned in the transfer of solutes in plants. The effect on upward transfer of solutes of cutting the xylem and compared with that of cutting the phloem. Ann. Bot. (London), 39, 573–585 (1925)

    CAS  Google Scholar 

  • Davies, C.R., Wareing, P.F.: Auxin induced transport of radio phosphorus in stems. Planta 65, 135–156(1965).

    Article  Google Scholar 

  • Ferguson, I.B.: Calcium mobility in plants. Ph.D. Thesis, University of Auckland, New Zealand (1972).

    Google Scholar 

  • Garcia-Luis, A., Guardiola, J.L.: Effects of gibberellic acid on the transport of nitrogen from the cotyledons of young pea seedlings. Ann. Bot. (London), N.S. 39, 325–330 (1975).

    CAS  Google Scholar 

  • Gargø, O.P., Kapoor, V.: Retardation of leaf senescence by ascorbic acid. J. Exptl. Bot. 23, 699–703 (1972).

    Article  Google Scholar 

  • Greenway, H.: Plant responses to saline substances. VII. Growth and ion uptake throughout plant development in two varieties of Hordeum vulgare. Australian J. Biol. Sci. 18, 163–181 (1965).

    Google Scholar 

  • Greenway, H., Gunn, A.: Phosphorus retranslocation in Hordeum vulgare during early tillering. Planta 71, 43–67(1966).

    Article  CAS  Google Scholar 

  • Greenway, H., Gunn, A., Pitman, M.G., Thomas, D.A.: Plant responses to saline substrates. VI. Chloride, sodium, and potassium uptake and distribution within the plant during ontogenesis of Hordeum vulgare. Australian J. Biol. Sci. 18, 525–540 (1965).

    CAS  Google Scholar 

  • Greenway, H., Pitman, M.G.: Potassium retranslocation in seedlings of Hordeum vulgare. Australian J. Biol. Sci. 18, 235–247 (1965).

    CAS  Google Scholar 

  • Guardiola, J.L.: Growth and accumulation of mineral elements in the axis of young pea (Pisum sativum, L.) seedlings. Acta Botan. Need. 22, 55–68 (1973).

    CAS  Google Scholar 

  • Guardiola, J.L., Sutcliffe, J.F.: Control of protein hydrolysis in the cotyledons of germinating pea (Pisum sativum, L.) seeds. Ann. Bot. (London), N.S. 35, 791–807 (1971a).

    CAS  Google Scholar 

  • Guardiola, J.L., Sutcliffe, J.F.: Mobilisation of phosphorus in the cotyledons of young seedlings of the garden pea (Pisum sativum, L.). Ann. Bot. 35, 809–823 (1971b).

    CAS  Google Scholar 

  • Guardiola, J.L., Sutcliffe, J.F.: Transport of materials from the cotyledons during germination of seeds of the garden pea (Pisum sativum, L.). J. Exptl. Bot. 23, 322–337 (1972).

    Article  CAS  Google Scholar 

  • Gunning, B.E.S., Pate, J.S.: Transfer cells. Plant cells with wall ingrowths, specialised in relation to short distance transport of solutes—their occurrence, structure and development. Protoplasma 68, 107–133 (1968).

    Article  Google Scholar 

  • Gunning, B.E.S., Pate, J.S.: Transfer cells. In: Dynamic aspects of plant ultrastructure, Chap. 13 (A.W. Robards, ed.). London-New York: McGraw-Hill 1974.

    Google Scholar 

  • Handreck, K.A., Jones, L.H.P.: Uptake of monosilicic acid by Trifolium incarnatum (L). Australian J. Biol. Sci. 20, 483–485 (1967).

    CAS  Google Scholar 

  • Honert, T.H. van den: The phosphate absorption by sugar cane. Verslag 13e. Bijeenk omst van de Vereeniging van Proefstations-Personell Buitenzorg, Java (1933).

    Google Scholar 

  • Honert, T.H. van den, Hooymans, J.J.M., Volkers, W.S.: Experiments on the relation between water absorption and mineral uptake by plant roots. Acta Botan. Need. 4, 139–155 (1955).

    Google Scholar 

  • Hopkinson, J.M.: Studies on the expansion of the leaf surface. IV. The carbon and phosphorus economy of a leaf. J. Exptl. Bot. 15, 125–137 (1964).

    Article  CAS  Google Scholar 

  • Hopkinson, J.M.: Studies on the expansion of the leaf surface. VI. Senescence and the usefulness of old leaves. J. Exptl. Bot. 17, 762–770 (1966).

    Article  Google Scholar 

  • Hylmö, B.: Transpiration and ion absorption. Physiol. Plantarum 6, 333–405 (1953).

    Article  Google Scholar 

  • Hylmö, B.: Passive components in the ion absorption of the plant. I. The zonal ion and water absorption in Brouwer’s experiments. Physiol. Plantarum 8, 433–441 (1955).

    Article  Google Scholar 

  • Hylmö, B.: Passive components in the ion absorption of the plant. II. The zonal water flow, ion passage and pore size in roots of Vicia faba. Physiol. Plantarum 11, 382–400 (1958).

    Article  Google Scholar 

  • Jacoby, B.: Effect of roots on calcium ascent in bean stems. Ann. Bot. (London), N.S. 31, 725–730 (1967).

    CAS  Google Scholar 

  • Jones, L.H.P., Handreck, K.A.: Studies of silica in the oat plant. III. Uptake of silica from soils by the plant. Plant Soil 23, 79–96 (1965).

    Article  CAS  Google Scholar 

  • Katsuta, M.: The breakdown of reserve protein in pine seeds during germination. J. Japan. Forestry Soc. 43, 241–244 (1961).

    Google Scholar 

  • Kissel, D.E., Ragland, J.C.: Redistribution of nutrient elements in corn (Zea mays L.) I. N, P, K, Ca and Mg redistribution in the absence of nutrient accumulation after silking. Soil Sci. Soc. Am. Proc. 31, 227–230 (1967).

    Article  CAS  Google Scholar 

  • Klepper, B., Kaufmann, M.R.: Removal of salts from xylem sap by leaves and stems of guttating plants. Plant Physiol. 41, 1743–1747 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Lazaroff, N., Pitman, M.G.: Calcium and magnesium uptake by barley seedlings. Australian J. Biol. Sci. 19, 991–1005 (1966).

    CAS  Google Scholar 

  • Le Clerk, J.A., Breazeale, J.F.: Translocation of plant food and elaboration of organic material in wheat seedlings. U.S. Dept. Agr. Bull. Chem. 138, (1911).

    Google Scholar 

  • Linck, A.J.: Studies on the distribution of phosphorus-32 in Pisum sativum in relation to fruit development. Ph.D. Dissertation. Ohio State University, Columbus, Ohio (1955).

    Google Scholar 

  • Loughman, B.C.: The uptake of phosphate and its transport within the plant, p. 309–322. In: Ecological aspects of the mineral nutrition of plants. (I.H. Rorison, ed.). Oxford-Edinburgh: Blackwells 1969.

    Google Scholar 

  • Loughman, B.C., Russell, R.S.: The absorption and utilisation of phosphate by young barley plants. J. Exptl. Bot. 8, 280–293 (1957).

    Article  CAS  Google Scholar 

  • Mason, T.G., Maskell, E.J.: Further studies on transport in the cotton plant. I. Preliminary observations on the transport of phosphorus, potassium and calcium. Ann. Bot. (London), 45, 125–174 (1931).

    CAS  Google Scholar 

  • Mason, T.G., Maskell, E.J., Phillis, E.: Further studies on transport in the cotton plant. III. Concerning the independence of solute movement in the phloem. Ann. Bot. (London), 50, 23–58 (1936).

    CAS  Google Scholar 

  • Mer, C.L., Dixon, P.F., Diamond, B.C., Drake, CF.: The dominant influence of nitrogen on growth correlation in etiolated oat seedlings. Ann. Bot. (London), N.S. 27, 693–721 (1969).

    Google Scholar 

  • Mitchell, J.W., Martin, W.E.: Effects of indolyl-acetic-acid on growth and chemical composition of etiolated bean plants. Botan. Gaz. 90, 171–183 (1937).

    Article  Google Scholar 

  • Mothes, K.: Aktiver Transport als regulatives Prinzip für gerichtete Stoffverteilung in höheren Pflanzen. In: Biochemie des aktiven Transports. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Muenscher, W.C: Effect of transpiration on the absorption of salts by plants. Amer. J. Bot. 9, 311–330(1922).

    Article  Google Scholar 

  • Neales, T.F., Anderson, M.J., Wardlaw, I.F.: The role of the leaves in the accumulation of nitrogen by wheat during ear development. Australian J. Agr. Res. 14, 725–736 (1963).

    Article  CAS  Google Scholar 

  • Okamoto, H.: Transport of cations from cotyledons to seedling of the embryonic plants of Vigna sesquipedalis. Plant Cell Physiol. (Tokyo) 3, 83–94 (1962).

    CAS  Google Scholar 

  • Pitman, M.G.: Sodium and potassium uptake by seedlings of Hordeum vulgare. Australian J. Biol. Sci. 18, 10–24(1965).

    CAS  Google Scholar 

  • Pitman, M.G.: Uptake of potassium and sodium by seedlings of Sinapis alba. Australian J. Biol. Sci. 19, 257–269 (1966).

    CAS  Google Scholar 

  • Pitman, M.G.: Uptake and transport of ions in barley seedlings. II. Evidence for two active stages in transport to the shoot. Australian J. Biol. Sci. 25, 243–257 (1972).

    CAS  Google Scholar 

  • Pitman, M.G., Lüttge, U., Läuchli, A., Ball, E.: Ion uptake to slices of barley leaves and regulation of K content in cells of the leaves. Z. Pflanzenphysiol. 72, 75–88 (1974).

    CAS  Google Scholar 

  • Riga, A.J., Bukovac, M.J.: Distribution du 32P, du 45Ca et du 65Zn chez le haricot (Phaseolus vulgaris L.) après absorption radiculaire. Redistribution de ces éléments au cours de la germination de la graine et du dévelopment de la jeune plantule. Bull. Inst. Agron. Stn. Rech. Gembloux 29, 165–196 (1961).

    CAS  Google Scholar 

  • Russell, R.S., Shorrocks, V.M.: The relationship between transpiration and the absorption of inorganic ions by intact plants. J. Exptl. Bot. 10, 301–316 (1959).

    Article  Google Scholar 

  • Sachs, J. von: Lectures on the physiology of plants. English Ed. Translated by H. Marshall Ward, Oxford: Clarendon Press 1887.

    Google Scholar 

  • Saeed, A.F.H.: The distribution of mineral elements in Xanthium pennsylvanicum. D. Phil. Thesis, University of Sussex (1975).

    Google Scholar 

  • Schmidt, O.: Die Mineralstoffaufnahme der höheren Pflanze als Funktion einer Wechselbeziehung zwischen inneren und äußeren Faktoren. Z. Bot. 30, 289–334 (1936).

    CAS  Google Scholar 

  • Seth, A.K., Wareing, P.F.: Hormone-directed transport of metabolites and its possible role in plant senescence. J. Exptl. Bot. 18, 65–77 (1967).

    Article  CAS  Google Scholar 

  • Skelton, R.C., Shear, G.M.: Calcium translocation in the peanut (Arachis hypogea L.) Agron. J. 63, 409–412 (1971).

    Article  CAS  Google Scholar 

  • Steward, F.C., Millar, F.K.: Salt accumulation in plants: A reconsideration of the role of growth and metabolism. Soc. Exptl. Biol. Symp. 8, 367–406 (1954).

    CAS  Google Scholar 

  • Steward, F.C., Sutcliffe, J.F.: Plants in relation to inorganic salts. In: Plant physiology—a treatise (F.C. Steward, ed.), Chap. 4, p. 253–478. New York-London: Academic Press 1959.

    Google Scholar 

  • Stout, P.R., Hoagland, D.R.: Upward and lateral movement of salt in certain plants as indicated by radioactive isotopes of potassium, sodium and phosphorus absorbed by roots. Amer. J. Bot. 26, 320–324 (1939).

    Article  CAS  Google Scholar 

  • Sudia, T.W., Green, D.G.: The translocation of 65Zn and 134Cs between seed generations in soy bean (Glycine max (L) Mer). Plant Soil. 37, 695–697 (1972).

    Article  CAS  Google Scholar 

  • Sutcliffe, J.F.: Mineral salts absorption in plants. Oxford: Pergamon Press 1962.

    Google Scholar 

  • Sutcliffe, J.F.: The role of protein synthesis in ion transport. In: Ion transport in plants, p. 399–406 (W.P. Anderson, ed.). London-New York: Academic Press 1973.

    Google Scholar 

  • Sutcliffe, J.F.: Regulation of ion transport in the whole plant. Perspectives in Experimental Biology (N. Sunderland, ed.), Vol. 2, Botany 542 p. I. Oxford: Pergamon Press 1976.

    Google Scholar 

  • Sutcliffe, J.F., Baset, Q.A.: Control of hydrolysis of reserve materials in the endosperm of germinating oat (Avena saliva L.) grains. Plant Sci. Letters 1, 15–20 (1973).

    Article  CAS  Google Scholar 

  • Swanson, C.A.: Translocation of organic solutes. In: Plant physiology—a treatise (F.C. Steward, ed.), chap. 5, p. 481–551. New York-London: Academic Press 1959.

    Google Scholar 

  • Thrower, S.L.: The pattern of translocation during leaf ageing. Soc. Exptl. Biol. Symp. 21, 483–506 (1967).

    CAS  Google Scholar 

  • Varner, J.E.: Gibberellic-acid controlled synthesis of a-amylase in barley endosperm. Plant Physiol. 39, 413–415 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Vochting, A.: Ãœber die Zinkaufnahme von Zea mays L. und Aspergillus niger v. Tieg. in Einzelkultur und in Mischkultur. Ber. Schweiz. Bot. Ges. 63, 103–161 (1953).

    Google Scholar 

  • Wallace, A.: Solute uptake by intact plants. A. Wallace, Los Angeles, California (1963).

    Google Scholar 

  • Williams, R.F.: The effects of phosphorus supply on the rates of intake of phosphorus and nitrogen and upon certain aspects of phosphorus metabolism in graminaceous plants. Australian J. Sci. Res. (B) 1, 333–361 (1948).

    Google Scholar 

  • Williams, R.F.: Redistribution of mineral elements during development. Ann. Rev. Plant Physiol. 6, 25–42 (1955).

    Article  CAS  Google Scholar 

  • Yagi, M.I.A.: Relationship between the distribution of mineral elements and growth of bean plants. D. Phil. Thesis, University of Sussex (1972).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Sutcliffe, J.F. (1976). Regulation in the Whole Plant. In: Lüttge, U., Pitman, M.G. (eds) Transport in Plants II. Encyclopedia of Plant Physiology, vol 2 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66230-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66230-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66232-4

  • Online ISBN: 978-3-642-66230-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics