Water Relations of Plant Cells

  • J. Dainty
Part of the Encyclopedia of Plant Physiology book series (PLANT, volume 2 / A)


There are many good treatments of water relations of plants, plant cells and plant tissues such as those by Dainty (1963 a), Slatyer (1967), Briggs (1967), Weatherley (1970) and, most recently, the excellent general book by House (1974) covering both plant and animal cells and tissues. There are also many articles in the old Encyclopedia of Plant Physiology, and there is the collection of articles in the three volumes edited by Kozlowski (1968 a, b; 1972).


Hydraulic Conductivity Water Potential Osmotic Pressure Turgor Pressure High Plant Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrs, H.D.: Determination of water deficits in plant tissues. In: Water deficits and plant growth (T.T. Kozlowski, ed.), vol. I, p. 235–368. New York-London: Academic Press 1968.Google Scholar
  2. Ben-Amotz, A., Avron, M.: The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol. 51, 875–878 (1973).PubMedCrossRefGoogle Scholar
  3. Boyer, J.S.: Matric potentials of leaves. Plant Physiol. 42, 213–217 (1967).PubMedCrossRefGoogle Scholar
  4. Boyer, J.S.: Water transport in plants: Mechanism of apparent changes in resistance during absorption. Planta 117, 187–207 (1974).CrossRefGoogle Scholar
  5. Briggs, G.E.: Movement of water in plants. Oxford: Blackwell 1967.Google Scholar
  6. Cowan, I.R.: Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: Observations and a model. Planta 106, 185–219 (1972).CrossRefGoogle Scholar
  7. Dainty, J.: Water relations of plant cells. Advan. Bot. Research I, 279–326 (1963 a).Google Scholar
  8. Dainty, J.: The polar permeability of plant cell membranes to water. Protoplasma 57, 220–228 (1963b).CrossRefGoogle Scholar
  9. Dainty, J.: Plant cell-water relations: The elasticity of the cell wall. Proc. Roy. Soc. Edinburgh A 70, 89–93 (1972).Google Scholar
  10. Dainty, J., Ginzburg, B.Z.: Irreversible thermodynamics and frictional models of membrane processes, with particular reference to the cell membrane. J. Theoret. Biol. 5, 256–265 (1963).CrossRefGoogle Scholar
  11. Dainty, J., Ginzburg, B.Z.: The measurement of hydraulic conductivity (osmotic permeability to water) of internodal characean cells by means of transcellular osmosis. Biochim. Biophys. Acta 79, 102–111 (1964a).PubMedGoogle Scholar
  12. Dainty, J., Ginzburg, B.Z.: The reflection coefficient of plant cell membranes for certain solutes. Biochim. Biophys. Acta 79, 129–137 (1964b).PubMedGoogle Scholar
  13. Dainty, J., Hope, A.B.: The water permeability of cells of Chara australis R.Br.. Australian J. Biol. Sci. 12, 136–145 (1959).Google Scholar
  14. Dainty, J., Vinters, H., Tyree, M.T.: A study of transcellular osmosis and the kinetics of swelling and shrinking in cells of Chara corallina. In: Membrane transport in plants (U. Zimmermann, J. Dainty, eds.), p. 59–63. Berlin-Heidelberg-New York: Springer 1974.Google Scholar
  15. Gardner, W.R., Ehlig, C.F.: Physical aspects of the internal water relations of plant leaves. Plant Physiol. 40, 705–710 (1965).PubMedCrossRefGoogle Scholar
  16. Glinka, Z., Reinhold, L.: Rapid changes in permeability of cell membranes to water brought about by carbon dioxide and oxygen. Plant Physiol. 37, 481–486 (1962).PubMedCrossRefGoogle Scholar
  17. Glinka, Z., Reinhold, L.: Reversible changes in the hydraulic permeability of plant cell membranes. Plant Physiol. 39, 1043–1050 (1964).PubMedCrossRefGoogle Scholar
  18. Glinka, Z., Reinhold, L.: Abscisic acid raises the permeability of plant cells to water. Plant Physiol. 48, 103–105 (1971).PubMedCrossRefGoogle Scholar
  19. Glinka, Z., Reinhold, L.: Induced changes in permeability of plant cell membranes to water. Plant Physiol. 49, 602–606 (1972).PubMedCrossRefGoogle Scholar
  20. Gutknecht, J.: Permeability of Valonia to water and solutes: apparent absence of aqueous membrane pores. Biochim. Biophys. Acta 163, 20–29 (1968).PubMedCrossRefGoogle Scholar
  21. Hammel, H.T.: Freezing of xylem sap without cavitation. Plant Physiol. 42, 55–66 (1967).PubMedCrossRefGoogle Scholar
  22. House, C.R.: Water transport in cells and tissues. London: Edward Arnold 1974.Google Scholar
  23. House, C.R., Jarvis, P.: Effect of temperature on the radial exchange of labelled water in maize roots. J. Exptl. Bot. 19, 31–40 (1968).CrossRefGoogle Scholar
  24. Jarvis, P., House, C.R.: The radial exchange of labelled water in maize roots. J. Exptl. Bot. 18, 695–706 (1967).CrossRefGoogle Scholar
  25. Jarvis, P., House, C.R.: The radial exchange of labelled water in isolated steles of maize roots. J. Exptl. Bot. 20, 507–515 (1969).CrossRefGoogle Scholar
  26. Kamiya, N., Kuroda, K.: Artificial modification of the osmotic pressure of the plant cell. Protoplasma 46, 423–436 (1956).CrossRefGoogle Scholar
  27. Kamiya, N., Tazawa, M.: Studies of water permeability of a single plant cell by means of transcellular osmosis. Protoplasma 46, 394–422 (1956).CrossRefGoogle Scholar
  28. Kamiya, N., Tazawa, M., Takata, T.: The relation of turgor pressure to cell volume in Nitella with special reference to mechanical properties of the cell wall. Protoplasma 57, 501–521 (1963).CrossRefGoogle Scholar
  29. Kauss, H.: Turnover of galactosylglycerol and osmotic balance in Ochromonas. Plant Physiol. 52, 613–615 (1973).PubMedCrossRefGoogle Scholar
  30. Kedem, O., Katchalsky, A.: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27, 229–246 (1958).PubMedCrossRefGoogle Scholar
  31. Kedem, O., Katchalsky, A.: A physical interpretation of the phenomenological coefficients of membrane permeability. J. Gen. Physiol. 45, 143–179 (1961).PubMedCrossRefGoogle Scholar
  32. Kelly, R.B., Kohn, P.G., Dainty, J.: Water relations of Nitella translucens. Trans. Bot. Soc. Edinburgh 39, 373–391 (1963).CrossRefGoogle Scholar
  33. Kiyosawa, K., Tazawa, M.: Rectification characteristics of Nitella membranes in respect to water permeability. Protoplasma 78, 203–214 (1973).CrossRefGoogle Scholar
  34. Klepper, B., Molz, F.J., Peterson, C.M.: Temperature effects on radial propagation of water potential in cotton stem bark. Plant Physiol. 52, 565–568 (1973).PubMedCrossRefGoogle Scholar
  35. Kohn, P.G., Dainty, J.: The measurement of permeability to water in disks of storage tissue. J. Exptl. Bot. 17, 809–821 (1966).CrossRefGoogle Scholar
  36. Kozlowski, T.T., ed.: Water deficits and plant growth. 3 vols. New York-London: Academic Press 1968 a, b, 1972.Google Scholar
  37. Molz, F.J., Ikenberry, E.: Water transport through plant cells and cell walls: Theoretical development. Soil Sci. Soc. Amer. Proc. 38, 699–704 (1974).CrossRefGoogle Scholar
  38. Molz, F.J., Klepper, B.: Radial propagation of water potential in stems. Agron. J. 65, 469–473 (1972).CrossRefGoogle Scholar
  39. Noy-Meir, I., Ginzburg, B.Z.: An analysis of the water potential isotherm in plant tissue. I. The theory. Australian. J. Biol. Sci. 20, 695–721 (1967).Google Scholar
  40. Noy-Meir, I., Ginzburg, B.Z.: An analysis of the water potential isotherm in plant tissue. II. Comparative studies on leaves of different types. Australian J. Biol. Sci. 22, 35–52 (1969).Google Scholar
  41. Oertli, J.J.: Terminology of plant-water energy relations. Z. Pflanzenphysiol. 61, 264–265 (1969).Google Scholar
  42. Philip, J.R.: The osmotic cell, solute diffusibility, and the plant water economy. Plant Physiol. 33, 264–271 (1958a).PubMedCrossRefGoogle Scholar
  43. Philip, J.R.: Propagation of turgor and other properties through cell aggregations. Plant Physiol. 33, 271–274 (1958b).PubMedCrossRefGoogle Scholar
  44. Philip, J.R.: Osmosis and diffusion in tissue: Half-times and internal gradients. Plant Physiol. 33, 275–278 (1958c).PubMedCrossRefGoogle Scholar
  45. Rakhi, M.: An apparatus for investigation of components of the water potential of leaves. Fiziol. Rastenii 20, 215–221 (1973).Google Scholar
  46. Richards, G.P.: Some aspects of the water relations of Sitka spruce. Ph.D. Thesis, University of Aberdeen, Scotland (1973).Google Scholar
  47. Scholander, P.F., Hammel, H.T., Hemmingsen, E.A., Bradstreet, E.D.: Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proc. Natl. Acad. Sci. U.S. 52, 119–125 (1964).CrossRefGoogle Scholar
  48. Slatyer, R.O.: Plant-water relationships. New York-London: Academic Press 1967.Google Scholar
  49. Spanner, D.C.: The components of the water potential in plants and soils. J. Exptl. Bot. 24, 816–819 (1973).CrossRefGoogle Scholar
  50. Stadelmann, E.: Vergleich und Umrechnung von Permeabilitätskonstanten für Wasser. Protoplasma 57, 660–678 (1963).CrossRefGoogle Scholar
  51. Steudle, E., Zimmermann, U.: Hydraulische Leitfähigkeit von Valonia utricularis. Z. Naturforsch. 26b, 1302–1311 (1971).Google Scholar
  52. Steudle, E., Zimmermann, U.: Determination of the hydraulic conductivity and of reflection coefficients in Nitella flexilis by means of direct cell-turgor pressure measurements. Biochim. Biophys. Acta 332, 399–412 (1974).CrossRefGoogle Scholar
  53. Stuart, D.M.: Reduction of water permeability in potato tuber slices by cyanide, ammonia, 2,4-dinitrophenol, and oligomycin and its reversal by adenosine 5′-triphosphate and cytidine 5′-triphosphate. Plant Physiol. 51, 485–488 (1973).PubMedCrossRefGoogle Scholar
  54. Tazawa, M., Kamiya, N.: Water permeability of a Characean internodal cell with special reference to its polarity. Australian J. Biol. Sci. 19, 399–419 (1966).Google Scholar
  55. Tazawa, M., Kiyosawa, K.: Analysis of transcellular water movement in Nitella: A new procedure to determine the inward and outward water permeabilities of membranes. Protoplasma 78, 349–364 (1973).CrossRefGoogle Scholar
  56. Tyree, M.T.: The Symplast Concept: A general theory of symplastic transport according to the thermodynamics of irreversible processes. J. Theoret. Biol. 26, 181–214 (1970).CrossRefGoogle Scholar
  57. Tyree, M.T., Dainty, J., Benis, M.: The water relations of hemlock (Tsuga canadensis). I. Some equilibrium water relations as measured by the pressure-bomb technique. Canad. J. Botany 51, 1471–1480 (1973).CrossRefGoogle Scholar
  58. Tyree, M.T., Hammel, H.T.: The measurement of turgor pressure and the water relations of plants by the pressure-bomb technique. J. Exptl. Bot. 24, 267–282 (1972).CrossRefGoogle Scholar
  59. Villegas, L.: Changes in volume and turgor pressure in Valonia cells. Biochim. Biophys. Acta 136, 590–593 (1967).PubMedGoogle Scholar
  60. Weatherley, P.E.: Some aspects of water relations. Advan. Bot. Research 3, 171–206 (1970).CrossRefGoogle Scholar
  61. Wilson, J.W.: The components of leaf water potential. I. Osmotic and matric potentials. Australian J. Biol. Sci. 20, 329–347 (1967a).Google Scholar
  62. Wilson, J.W.: The components of leaf water potential. II. Pressure potential and water potential. Australian J. Biol. Sci. 20, 349–357 (1967b).Google Scholar
  63. Wilson, J.W.: The components of leaf water potential. III. Effects of tissue characteristics and relative water content on water potential. Australian J. Biol. Sci. 20, 359–367 (1967c).Google Scholar
  64. Woolley, J.T.: Radial exchange of labelled water in intact maize roots. Plant Physiol. 40, 711–717 (1965).PubMedCrossRefGoogle Scholar
  65. Zimmermann, U., Räde, H., Steudle, E.: Kontinuierliche Druckmessung in Pflanzenzellen. Naturwiss. 56, 634 (1969).CrossRefGoogle Scholar
  66. Zimmermann, U., Steudle, E.: Bestimmung von Reflexionkoeffizienten an der Membran der Alge Valonia utricularis. Z. Naturforsch. 25b, 500–504 (1970).Google Scholar
  67. Zimmermann, U., Steudle, E.: Effects of potassium concentration and osmotic pressure of sea water on the cell-turgor pressure of Chaetomorpha linum. Marine Biol. 11, 132–149 (1971).Google Scholar
  68. Zimmermann, U., Steudle, E.: The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation in Valonia utricularis. J. Membrane Biol. 16, 331–352 (1974a).CrossRefGoogle Scholar
  69. Zimmermann, U., Steudle, E.: Hydraulic conductivity and volumetric elastic modulus in giant algal cells: Pressure and volume-dependence. In: Membrane transport in plants (U. Zimmermann, J. Dainty, eds.), p. 64–71. Berlin-Heidelberg-New York: Springer 1974b.Google Scholar
  70. Zimmermann, U., Steudle, E.: The hydraulic conductivity and volumetric elastic modulus of cells and isolated cell walls of Nitella and Chara spp.: Pressure and volume effects. Australian J. Plant Physiol. 2, 1–13 (1975).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • J. Dainty

There are no affiliations available

Personalised recommendations