Skip to main content

Negative Feedback Regulation of Transport in Cells. The Maintenance of Turgor, Volume and Nutrient Supply

  • Chapter
Transport in Plants II

Part of the book series: Encyclopedia of Plant Physiology ((919,volume 2 / A))

Abstract

Regulation concerns the flow of information. It can primarily be distinguished from the flow of energy. Changes in the rate of a process can take place in response to an inflow of either, but it seems likely that in biological systems the inflow of information would be specific and integrative, while the inflow of energy would simply impose a more general limitation under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, S., Behrens, U.: Ultrastructure of an unusual contractile vacuole in several Chryso-monad phytoflagellates. J. Cell Sci. 14, 1–9 (1974).

    PubMed  CAS  Google Scholar 

  • Acevedo, E.,Hsiao, T.C., Henderson, D.W.: Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol. 48, 631–636 (1971).

    PubMed  CAS  Google Scholar 

  • Aikman, D.P., Dainty, J.: Ionic relations of Valonia ventricosa. In: Some contemporary studies in marine science (H. Barnes, ed.), p. 37–44. London: Allen and Unwin 1966.

    Google Scholar 

  • Allen, R.D.: Mechanism of the seismonastic rection in Mimosa pudica. Plant Physiol. 44, 1101–1107 (1969).

    PubMed  CAS  Google Scholar 

  • Allen, R.D.,Jacobsen, L., Joaquin, J., Jaffe, L.J.: Ionic concentrations in developing Pelveiia eggs. Develop. Biol. 27, 538–545 (1972).

    PubMed  CAS  Google Scholar 

  • Arisz, W.H.: Uptake and transport of chlorine by parenchymatic tissue of leaves of Vallisneria spiralis. 1. The active uptake of chlorine. Proc. Koninkl. Ned. Akad. Wetenschap. 50, 1019–1032 (1947).

    Google Scholar 

  • Arnold, A.: Die Bedeutung der Chlorionen für die Pflanze, insbesondere deren physiologische Wirksamkeit. Botan. Studien H.2 (1955).

    Google Scholar 

  • Asher, C.J., Ozanne, P.G.: Growth and potassium content of plants in solution cultures maintained at constant potassium concentrations. Soil Sci. 103, 155–161 (1967).

    CAS  Google Scholar 

  • Atkinson, D.E.: The adenylate charge in metabolic regulation. In: Horizons of bioenergentics (A. San Pietro, H. Gest, eds.), p. 83–96. New York: Academic Press 1972.

    Google Scholar 

  • Austenfeld, F.A.: Untersuchungen zur Physiologie der Nitratspeicherung und Nitratassimilation von Chenopodium album L. Z. Pflanzenphysiol. 67, 271–281 (1972).

    CAS  Google Scholar 

  • Barber, D.A.: “Dual isotherms” for the absorption of ions by plant tissues. New Phytologist 71, 255–262(1972).

    CAS  Google Scholar 

  • Barber, J.: Measurement of the membrane potential and evidence for active transport of ions in Chlorella pyrenoidosa. Biochim. Biophys. Acta 150, 618–625 (1968).

    PubMed  CAS  Google Scholar 

  • Bayliss, L.E.: Living control systems. London: English Universities Press 1966.

    Google Scholar 

  • Ben-Amotz, A.: Osmoregulation mechanism in the halophilic alga Dunaliella parva. In: Membrane transport in plants (U. Zimmermann, J. Dainty, eds.), p. 95–100. Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Ben-Amotz, A., Avron, M.: The role of glycerol in the osmotic regulation of the halophylic alga Dunaliella parva. Plant Physiol. 51, 875–878 (1973).

    PubMed  CAS  Google Scholar 

  • Ben Zioni, A., Vaadia, Y., Lips, S.H.: Nitrate uptake by roots as regulated by nitrate reduction products of the shoots. Physiol. Plantarum 24, 288–290 (1971).

    Google Scholar 

  • Bernard, C.: Leçons sur les propriétés physiologiques et les alterations pathologiques des liquides de l’organisme. Paris: Bailliere 1859.

    Google Scholar 

  • Bernstein, L.: Osmotic adjustment of plants to saline media. II. Dynamic phase. Amer. J. Bot. 50, 360–370 (1963).

    CAS  Google Scholar 

  • Bernstein, L., Hayward, H.E.: Physiology of salt tolerance. Ann. Rev. Plant Physiol. 9, 25–46 (1958).

    CAS  Google Scholar 

  • Besnier, V.,Bazin, M., Marchelidon, J., Genevot, M.: Étude de la variation du pool intracellulaire des acides aminés libres d’une diatomée marine en fonction de la saltinité. Bull. Soc. Chim. Biol. 51, 1255–1262 (1969).

    PubMed  CAS  Google Scholar 

  • Biebl, R.: Zellphysiologisch-ökologische Untersuchungen an Enteromorpha clathrata (Roth) Greville. Ber. Deut. Botan. Ges. 69, 75–86 (1956).

    CAS  Google Scholar 

  • Biebl, R.: Seaweeds. In: Physiology and biochemistry of algae (R.A. Lewin ed.), p. 799–815. New York-London: Academic Press 1962.

    Google Scholar 

  • Binet, P.: Revues de biologie végétale marine. 1. La pression osmotique des algues marines. Bull. Soc. Botan. France 103, 376–400 (1956).

    Google Scholar 

  • Bisson, M.A., Gutknecht, J.: Osmotic regulation in the marine algae, Codium decorticatum. I. Regulation of turgor pressure by control of ionic composition. J. Membrane Biol, in press. (1975).

    Google Scholar 

  • Black, D.R., Weeks, D.C.: Ionic relations of Enteromorpha intestinalis. New Phytologist 71, 119–127 (1972).

    CAS  Google Scholar 

  • Blinks, L.R., Jacques, A.G.: The cell sap of Halicystis. J. Gen. Physiol. 13, 733–737 (1929).

    Google Scholar 

  • Blinks, L.R., Nielsen, J.P.: The cell sap of Hydrodictyon. J. Gen. Physiol. 23, 551–559 (1939).

    Google Scholar 

  • Boney, A.D.: Aspects of the biology of the seaweeds of economic importance. Advan. Marine Biol. 3, 105–253 (1965).

    Google Scholar 

  • Borowitzka, L.J., Brown, A.D.: The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Arch. Mikrobiol. 96, 37–52 (1974).

    PubMed  CAS  Google Scholar 

  • Bouck, G.B., Brown, D.L.: Microtubule biogenesis and cell shape in Ochromonas. I. The distribution of cytoplasmic and mitotic microtubules. J. Cell Biol. 56, 340–359 (1973).

    PubMed  CAS  Google Scholar 

  • Bradfield, G., Somerfield, P., Meyn, T., Holby, M., Babcock, D., Bradley, D.,Segel, I.H.: Regulation of sulphate transport in filamentous fungi. Plant Physiol. 46, 720–727 (1970).

    PubMed  CAS  Google Scholar 

  • Breteler, H.: A comparison between ammonium and nitrate nutrition of young sugar beet plants grown in nutrient solutions at constant acidity. 1. Production of dry matter, ionic balance and chemical composition. Neth. J. Agr. Sci. 21, 227–244 (1973).

    CAS  Google Scholar 

  • Briggs, G.E.: Effect of cane sugar on the uptake of chloride by discs from carrot root. New Phytologist 70, 403–107 (1971).

    CAS  Google Scholar 

  • Brown, A.D., Simpson, J.R.: Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J. Gen. Microbiol. 72, 589–591 (1972).

    PubMed  CAS  Google Scholar 

  • Burström, H.: Physics of cell elongation. In: Encyclopedia of plant physiology (W. Ruhland, ed.), vol. XVI, p. 285–310. Berlin-Heidelberg-New York: Springer 1961.

    Google Scholar 

  • Chu, T.M., Aspinall, D., Paleg, L.G.: Salinity and proline accumulation. Australian J. Plant Physiol, submitted for publication.

    Google Scholar 

  • Cleland, R.: A dual role of turgor pressure in auxin-induced cell elongation in Avena coleoptiles. Planta 77, 182–191(1967).

    CAS  Google Scholar 

  • Collander, R.: Permeabilitäts-studien an Chara ceratophylla. 1. Die normale Zusammensetzung des Zellsaftes. Acta Botan. Fenn. 6, 1–20 (1930).

    Google Scholar 

  • Collander, R.: Selective absorption of cations by higher plants. Plant Physiol. 16, 691–720 (1941).

    PubMed  CAS  Google Scholar 

  • Coster H.G.L., Zimmermann, U., Steudle, E.: Turgor pressure sensing in plant cell membranes. Planta (1976) in press.

    Google Scholar 

  • Cowan, I.R.: Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: observations and a model. Planta 106, 185–220 (1972).

    Google Scholar 

  • Craigie, J.S.: Some salinity-induced changes in growth, pigments and cyclohexanetetrol content of Monochrysis lutheri. J. Fisheries Res. Board Can. 26, 2959–2967 (1969).

    CAS  Google Scholar 

  • Cram, W.J.: The control of cytoplasmic and vacuolar ion contents in higher plant cells. Abhandl. Deut. Akad. Wiss. Berl. 117–126 (1968).

    Google Scholar 

  • Cram, W.J.: The initiation of developmental drifts in excised plant tissues. Australian J. Biol. Sci. 25, 855–859(1972).

    Google Scholar 

  • Cram, W.J.: Internal factors regulating nitrate and chloride influx in plant cells. J. Exptl. Bot. 24, 328–341 (1973a).

    CAS  Google Scholar 

  • Cram, W.J.: Chloride fluxes in cells of the isolated root cortex of Zea mays. Australian J. Biol. Sci. 26, 757–779 (1973 b).

    CAS  Google Scholar 

  • Cram, W.J.: The regulation of concentration and hydrostatic pressure in cells in relation to growth. Bull. Roy. Soc. New Zealand 12, 183–189 (1974a).

    Google Scholar 

  • Cram W.J.: Effects of Cl- on HCO3 and malate fluxes and CO2 fixation in carrot and barley root cells. J. Exptl. Bot. 25, 253–268 (1974b).

    CAS  Google Scholar 

  • Cram, W.J.: Relationships between Cl transport and electrical potential differences in carrot root cells. Australian J. Plant Physiol. 2, 301–310 (1975).

    CAS  Google Scholar 

  • Cram, W.J., Laties, G.G.: The use of short-term and quasi-steady influx in estimating plasmalemma and tonoplast influx in barley root cells at various external and internal chloride concentrations. Australian J. Biol. Sci. 24, 633–646 (1971).

    CAS  Google Scholar 

  • Cram, W.J., Laties, G.G.: The kinetics of bicarbonate and malate exchange in carrot and barley root cells. J. Exptl. Bot. 25, 11–27 (1974).

    CAS  Google Scholar 

  • Craven, G.H., Mott, R.L., Steward, F.C.: Solute accumulation in plant cells. IV. Effects of ammonium ions on growth and solute content. Ann. Bot. (London) 36, 897–914 (1972).

    CAS  Google Scholar 

  • Cseh, E., Böszörmenyi, Z., Meszes, G.: Characterisation of some parameters of ion transport and translocation. II. The effect of the excision, pretreatment with nutrition elements on bromide and potassium transport and translocation. Acta Botan. Acad. Sci. Hung. 16, 267–278 (1970).

    Google Scholar 

  • Dainty, J.: The structure and possible function of the vacuole. In: Plant cell organelles (J.B. Pridham, ed.), p. 40–46. London: Academic Press 1968.

    Google Scholar 

  • Davies, D.D.: The control of respiration of turnip disks by L-methionine. J. Exptl. Bot. 17, 320–331 (1966).

    CAS  Google Scholar 

  • Deane, E.M., O’Brien, R.W.: Sulphate uptake and metabolism in the Chrysomonad Monochrysis lutheri. Arch. Mikrobiol. 105, 295–301 (1975).

    CAS  Google Scholar 

  • Denny, P., Weeks, D.C.: Electrochemical potential gradients of ions in an aquatic angiosperm, Potamogeton schweinfurthii (Benn). New Phytologist 67, 875–882 (1968).

    CAS  Google Scholar 

  • Dukshoorn, W.: Partition of ionic constituents between organs. Proc. 6th Internat. Colloq. Plant Analysis and Fertilizer Problems. Tel-Aviv, p. 447–476 (1970).

    Google Scholar 

  • Eaton, F.M.: Toxicity and accumulation of chloride and sulfate salts in plants. J. Agr. Res. 64, 357–399 (1942).

    CAS  Google Scholar 

  • Eppley, R.W., Bovell, C.R.: Sulfuric acid in Desmarestia. Biol. Bull. 115, 101–106 (1958).

    CAS  Google Scholar 

  • Eppley, R.W., Cyrus, C.C.: Cation regulation and survival of the red alga, Porphyra perforata, in diluted and concentrated sea water. Biol. Bull. 118, 55–65 (1960).

    CAS  Google Scholar 

  • Ergle, D.R., Eaton, F.M.: Organic acids in the cotton plant. Plant Physiol. 24, 373–388 (1949).

    PubMed  CAS  Google Scholar 

  • Ettl, H.: Über pulsierende Vacuolen bei Chlorophyceen. Flora (Jena) 151, 88–98 (1961).

    Google Scholar 

  • Feige, G.B.: Untersuchungen zur Ökologie und Physiologie der marinen Blaualgenflechte Lichina pygmaea Ag. II. Die Reversibilität der Osmoregulation. Z. Pflanzenphysiol. 68, 415–421 (1973).

    Google Scholar 

  • Ferrari, G., Renosto, F.: Regulation of sulfate uptake by excised barley roots in the presence of selenate. Plant Physiol. 49, 114–116 (1972).

    PubMed  CAS  Google Scholar 

  • Findlay, G.P., Hope, A.B., Pitman, M.G., Smith, F.A., Walker, N.A.: Ionic relations of marine algae. III. Chaetomorpha: membrane electrical properties and chloride fluxes. Australian J. Biol. Sci. 24, 731–745 (1971).

    CAS  Google Scholar 

  • Findlay, G.P., Hope, A.B., Williams,E.J.: Ionic relations of marine algae. I. Griffithsia: membrane electrical properties. Australian J. Biol. Sci. 22, 1163–1178 (1969).

    CAS  Google Scholar 

  • Fogg, G.E.: The metabolism of algae. London: Methuen 1953.

    Google Scholar 

  • Fuhs, G.W., Demmerle, S.D., Carelli, E., Chen, M.: Characterization of phosphorus-limited plankton algae (with reflections on the limiting nutrient concept). Limnol. Oceanogr. Special Symposia 1, 113–133(1972).

    CAS  Google Scholar 

  • Gauch, H.G., Eaton, F.M.: Effect of saline substrate on hourly levels of carbohydrates and inorganic constituents of barley plants. Plant Physiol. 17, 347–365 (1942).

    PubMed  CAS  Google Scholar 

  • Gessner, F.: The osmotic regulations in Valonia ventricosa. A.J. Agardh. Intern. Rev. Ges. Hydrobiol. 54, 529–532 (1969).

    CAS  Google Scholar 

  • Greacen, E.L., Oh, J.S.: Physics of root growth. Nature New Biol. 235, 24–25 (1972).

    PubMed  CAS  Google Scholar 

  • Green, P.B., Erickson, R.O., Buggy,J.: Metabolic and physical control of cell elongation rate. In vivo studies in Nitella. Plant Physiol. 47, 423–430 (1971).

    PubMed  CAS  Google Scholar 

  • Greenway, H.: Growth stimulation by high chloride concentrations in halophytes. Israel J. Botany 17, 169–177 (1968).

    CAS  Google Scholar 

  • Greenway, H.: Salinity, plant growth, and metabolism. J. Australian Inst. Agr. Sci. 39, 24–34 (1973).

    CAS  Google Scholar 

  • Greenway, H., Klepper, B., Hughes, P.G.: Effects of low water potential on ion uptake and loss of excised roots. Planta 80, 129–141 (1968).

    CAS  Google Scholar 

  • Greenway, H., Thomas, D.A.: Plant responses to saline substrates. V. Chloride regulation in the individual organs of Hordeum vulgare during treatment with sodium chloride. Australian J. Biol. Sci. 18, 505–524 (1965).

    CAS  Google Scholar 

  • Grodins, F.S.: Control theory and biological systems. New York-London: Columbia University 1963.

    Google Scholar 

  • Guillard, R.R.L.: Salt and osmotic balance. In: Physiology and biochemistry of algae (R.A. Lewin, ed.), p. 529–540. New York: Academic 1962.

    Google Scholar 

  • Gutknecht, J.: Sodium, potassium, and chloride transport and membrane potentials in Valonia ventricosa. Biol. Bull. 130, 331–344 (1966).

    CAS  Google Scholar 

  • Gutknecht, J.: Ion fluxes and short-circuit current in internally perfused cells of Valonia ventricosa. J. Gen. Physiol. 50, 1821–1834 (1967).

    PubMed  CAS  Google Scholar 

  • Gutknecht, J.: Salt transport in Valonia: inhibition of potassium uptake by small hydrostatic pressures. Science 160, 68–70 (1968).

    PubMed  CAS  Google Scholar 

  • Gutknecht, J., Dainty, J.: Ionic relations of marine algae. Oceanogr. Marine Biol. Ann. Rev. 6, 163–200 (1968).

    CAS  Google Scholar 

  • Hart, J.W., Filner, P.: Regulation of sulfate uptake by amino acids in cultured tobacco cells. Plant Physiol. 44, 1253–1259 (1969).

    PubMed  CAS  Google Scholar 

  • Hassenstein, B.: Information and control in the living organism. London: Chapman and Hall 1971 (Revised from: Biologische Kybernetik. Heidelberg: Quelle and Meyer 1970).

    Google Scholar 

  • Hastings, D.F., Gutknecht, J.: Turgor pressure regulation — modulation of active potassium transport by hydrostatic pressure gradients. In: Membrane transport in plants. (U. Zimmermann and J. Dainty, eds.), p. 79–83. Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Hastings, D.F., Gutknecht, J.: Ionic relations and the regulation of turgor pressure in the marine alga, Valonia macrophysa. Submitted to J. gen. Physiol. (1975).

    Google Scholar 

  • Hatrick, A.A., Bowling, D.J.F.: A study of the relationship between root and shoot metabolism. J. Exptl. Bot. 24, 607–613 (1973).

    Google Scholar 

  • Hayward, H.E., Wadleigh, C.H.: Plant growth on saline and alkali soils. Advan. Agron. 1, 1–38 (1949).

    CAS  Google Scholar 

  • Heimer, Y.M., Filner,P.: Regulation of nitrate assimilation pathway in cultured tobacco cells. III. The nitrate uptake system. Biochim. Biophys. Acta 230, 362–372 (1971).

    PubMed  CAS  Google Scholar 

  • Hellebust, J.A.: Mannitol metabolism and osmoregulation in the green flagellate Platymonas suecica. Plant Physiol., Suppl. 51, 20 (1973).

    Google Scholar 

  • Hoagland, D.R., Broyer, T.C.: General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiol. 11, 471–507 (1936).

    PubMed  CAS  Google Scholar 

  • Hoagland, D.R., Davis,A.R.: The composition of the cell sap of the plant in relation to the absorption of ions. J. Gen. Physiol. 5, 629–646 (1923).

    PubMed  CAS  Google Scholar 

  • Hodges, T.K., Vaadia, Y.: Uptake and transport of radiochloride and tritiated water by various zones of onion roots of different chloride status. Plant Physiol. 39, 104–108 (1964).

    PubMed  CAS  Google Scholar 

  • Hsiao, T.C.: Plant responses to water stress. Ann. Rev. Plant Physiol. 24, 519–570 (1973).

    CAS  Google Scholar 

  • Humphries, E.C.: The absorption of ions by excised root systems. II. Observations on roots of barley grown in solutions deficient in phosphorous, nitrogen, or potassium. J. Exptl. Bot. 2, 344–379(1951).

    CAS  Google Scholar 

  • Humphries, E.G.: The relation between the rate of nutrient uptake by excised barley roots and their content of sucrose and reducing sugars. Ann. Bot. (London) N.S., 20, 411–417 (1956).

    CAS  Google Scholar 

  • Ivanko, S., Ingversen, J.: Investigation on the assimilation of nitrogen by maize roots and the transport of some major nitrogen compounds by xylem sap. 1. Nitrate and ammonia uptake and assimilation in the major nitrogen fractions of nitrogen-starved maize roots. Physiol. Plantarum 24, 59–65 (1971).

    CAS  Google Scholar 

  • Jackson, P.C., Edwards,D.G.: Cation effects on chloride fluxes and accumulation levels in barley roots. J. Gen. Physiol. 50, 224–241 (1966).

    Google Scholar 

  • Jackson, W.A., Flesher, D., Hageman, R.H.: Nitrate uptake by dark-grown corn seedlings. Some characteristics of apparent induction. Plant Physiol. 51, 120–127 (1973).

    PubMed  CAS  Google Scholar 

  • Jacques, A.G.: The kinetics of penetration. XV. The restriction of the cellulose wall. J. Gen. Physiol. 22, 147–163 (1938a).

    PubMed  CAS  Google Scholar 

  • Jacques, A.G.: The kinetics of penetration. XIX. Entrance of electrolytes and of water into impaled Halicystis. J. Gen. Physiol. 22, 757–733 (1938b).

    Google Scholar 

  • Jacques, A.G., Osterhout, W.J.V.: The accumulation of electrolytes. IV. Internal versus external concentrations of potassium. J. Gen. Physiol. 15, 537–550 (1931).

    Google Scholar 

  • Janes, B.E.: Adjustment mechanisms of plants subject to varied osmotic pressures of nutrient solution. Soil Sci. 101, 180–188 (1966).

    CAS  Google Scholar 

  • Jarvis, P.G., Jarvis,M.S.: Effects of several osmotic substrates on the growth of Lupinus albus seedlings. Physiol. Plantarum 16, 485–500 (1963).

    CAS  Google Scholar 

  • Jeanjean, R.: The relationship between the rate of phosphate absorption and protein synthesis during phosphate starvation in Chlorella pyrenoidosa. F.E.B.S. Letters 32, 149–151 (1973).

    CAS  Google Scholar 

  • Jennings, D.H.: Cations and filamentous fungi: invasion of the sea and hyphal functioning. In: Ion transport in plants (W.P. Anderson, ed.), p. 323–335. London-New York: Academic Press 1973.

    Google Scholar 

  • Jennings, D.H.: Transport and translocation in filamentous fungi. In: The filamentous fungi (I.E. Smith, D.E. Berry, eds.), vol. 2, p. 32–63. London: Arnold 1975.

    Google Scholar 

  • Jennings, D.H., Austin, S.: The stimulatory effect of the nonmetabolised sugar 3–0-methyl glucose on the conversion of mannitol and arabitol to polysaccharide and other insoluble compounds in the fungus Dendryphiella salina. J. Gen. Microbiol. 75, 287–294 (1973).

    CAS  Google Scholar 

  • Jeschke, W.D.: The effect of inhibitors on the K+ -dependent Na + efflux and the K-Na selectivity of barley roots. In: Membrane transport in plants. (U. Zimmermann, J. Dainty, eds.), p. 397–405. Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Johansen, C., Edwards, D.G., Loneragan, J.F.: Potassium fluxes during potassium absorption by intact barley plants of increasing potassium content. Plant Physiol. 45, 601–603 (1970).

    PubMed  CAS  Google Scholar 

  • Johnson, F.H., Eyring, H.: In: High pressure effects on cellular processes (A.M. Zimmermann, ed.). New York-London: Academic Press 1970.

    Google Scholar 

  • Kalmus, H. (ed.): Regulation and control in living systems. London-New York: Wiley 1966.

    Google Scholar 

  • Kamiya, N., Kuroda, K.: Artificial modification of the osmotic pressure of the plant cell. Protoplasma 46, 423–436 (1956).

    Google Scholar 

  • Kauss, H.: Isofloridosid und Osmoregulation bei Ochromonas malhamensis. Z. Pflanzenphysiol. 56, 453–465 (1967).

    CAS  Google Scholar 

  • Kauss, H.: α-Galaktosylglyzeride und Osmoregulation in Rotalgen. Z. Pflanzenphysiol. 58, 428–433 (1968).

    CAS  Google Scholar 

  • Kauss, H.: Osmoregulation mit α-Galaktosylglyzeriden bei Ochromonas und Rotalgen. Ber. Deut. Botan. Ges. 82, 115–125 (1969).

    CAS  Google Scholar 

  • Kauss, H.: Turnover of galactosylglycerol and osmotic balance in Ochromonas. Plant Physiol. 52, 613–615 (1973).

    PubMed  CAS  Google Scholar 

  • Kauss, H.: Osmoregulation in Ochromonas. In: Membrane transport in plants (U. Zimmermann, J. Dainty, eds.), p. 90–94. Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Kauss, H., Schobert, B.: First demonstration of UDP-GAL:sn-glycero-3-phosphoric acid 1-α-galactosyl-transferase and its possible role in osmoregulation. F.E.B.S. Letters. 19, 131–135 (1971).

    CAS  Google Scholar 

  • Kesseler, H.: Eine mikrokryoskopische Methode zur Bestimmung des Turgors von Meeresalgen. Kiel. Meeresforsch. 14, 23–41 (1958).

    Google Scholar 

  • Kesseler, H.: Mikrokryoskopische Untersuchungen zur Turgorregulation von Chaetomorpha linum. Kiel. Meeresforsch. 15, 51–73 (1959).

    CAS  Google Scholar 

  • Kesseler, H.: Die Bedeutung einiger anorganischer Komponenten des Seewassers für die Turgorregulation von Chaetomorpha linum (Cladophorales). Helgoländer Wiss. Meeresunter such. 10, 73–90 (1964).

    CAS  Google Scholar 

  • Kesseler, H.: Turgor, osmotisches Potential und ionale Zusammensetzung des Zellsaftes einiger Meeresalgen verschiedener Verbreitungsgebiete. In: Proc. 5th Mar. Biol. Symp. Botánica Gothoburgensia 3, 103–111 (1965).

    Google Scholar 

  • Kirkby, E.A., Mengel, K.: Ionic balance in different tissues of the tomato plant in relation to nitrate, urea, or ammonium nutrition. Plant Physiol. 42, 6–14 (1967).

    PubMed  CAS  Google Scholar 

  • Kirkham, M.B., Gardner, W.R., Gerloff, G.C.: Regulation of cell division and cell enlargement by turgor pressure. Plant Physiol. 49, 961–962 (1972).

    Google Scholar 

  • Kishimoto, U., Tazawa, M.: Ionic composition of the cytoplasm of Nitella flexilis. Plant Cell Physiol. (Tokyo) 6, 507–518 (1965).

    CAS  Google Scholar 

  • Kylin, A.: The influence of phosphate nutrition on growth and sulphur metabolism of Scenedesmus. Physiol. Plantarum 17, 38–402 (1964).

    Google Scholar 

  • Latshaw, W.L., Miller, E.C.: Elemental composition of the corn plant. J. Agr. Res. 27, 845–860 (1924).

    CAS  Google Scholar 

  • Lawlor, D.W.: Plant growth in polyethylene glycol solutions in relation to the osmotic potential of the root medium and the leaf water balance. J. Exptl. Bot. 20, 895–911 (1969).

    CAS  Google Scholar 

  • Leigh, R.A., Wyn Jones, R.G.: The effect of increased internal ion concentration upon the ion uptake isotherms of excised maize root segments. J. Exptl. Bot. 24, 787–795 (1973).

    CAS  Google Scholar 

  • Lew, V.L., Glynn, I.M., Ellory, J.C.: Net synthesis of ATP by reversal of the sodium pump. Nature 225, 865–866 (1970).

    PubMed  CAS  Google Scholar 

  • Lockhart, J. A.: Intracellular mechanism of growth inhibition by radiant energy. Plant Physiol. 35, 129–135(1960).

    PubMed  CAS  Google Scholar 

  • Loescher, W.H., Nevins, D.J.: Turgor-dependent changes in Avena coleoptile cell wall composition. Plant Physiol. 52, 248–251 (1973).

    PubMed  CAS  Google Scholar 

  • Lüttge, U., Ball,E.: Proton and malate fluxes in cells of Bryophyllum diagremontianum leaf slices in relation to potential osmotic pressure of the medium. Z. Pflanzenphysiol. 73, 326–338 (1974a).

    Google Scholar 

  • Lüttge, U., Ball, E.: Mineral ion fluxes in slices of acidified and de-acidified leaves of the CAM plant Bryophyllum diagremontianum. Z. Pflanzenphysiol. 73, 339–348 (1974b).

    Google Scholar 

  • Magistad, O.C.: Plant growth relations on saline and alkali soils. Bot. Rev. 11, 181–230 (1945).

    CAS  Google Scholar 

  • Marschner, H., Ossenberg-Neuhaus, H.: Bedeutung des Begleitanions bei den Wechselbeziehungen zwischen K + und Ca+ + im Bereich hoher Außenkonzentrationen. Z. Pflanzenernähr. Düng. Bodenk. 126, 217–228 (1970).

    CAS  Google Scholar 

  • McNeil, D.L.: The basis of osmotic pressure maintenance during expansion growth in Helianthus annuus hypocotyls. Australian J. Plant Physiol. 2, (1975).

    Google Scholar 

  • Meeuse, B.J.D.: Storage products. In: Physiology and biochemistry of algae (R.A. Lewin, ed.), p. 289–313. New York: Academic Press 1962.

    Google Scholar 

  • Meiri, A.: Potassium and chloride accumulation and transport by excised maize roots of different salt status. In: Ion transport in plants (W.P. Anderson, ed.), p. 519–530. London-New York: Academic Press 1973.

    Google Scholar 

  • Meiri, A., Mor, E., Polyakoff-Mayber, A.L.: Effect of time of exposure to salinity on growth, water status, and salt accumulation in bean plants. Ann. Bot. (London) N.S., 34, 383–391 (1970).

    CAS  Google Scholar 

  • Meyer, R.F.,Boyer, J.S.: Sensitivity of cell division and cell elongation to low water potentials in soybean hypocotyls. Planta 108, 77–87 (1972).

    CAS  Google Scholar 

  • Milsum, J.H.: Biological control systems analysis. New York: McGraw-Hill 1966.

    Google Scholar 

  • Mohsen, A. F.,Nasr, A.H., Metwalli, A.M.: Effect of different salinities on growth, reproduction, amino acid synthesis, fat and sugar content in Ulva fascia ta Delile. Botan. Marina 15, 177–181 (1972).

    Google Scholar 

  • Morowitz, H.J.: Entropy for biologists. New York-London: Academic Press 1970.

    Google Scholar 

  • Mothes, K.: Der Einfluß des Wasserzustandes auf Fermentprozesse und Stoffumsatz. In: Encyclopedia of plant physiology (W. Ruhland, ed.), vol. III, p. 656–664. Berlin-Heidelberg-New York: Springer 1956.

    Google Scholar 

  • Mott, R.L., Steward,F.C.: Solute accumulation in plant cells. 1. Reciprocal relations between electrolytes and non-electrolytes. Ann. Bot. (London) N.S., 36, 621–639 (1972a).

    CAS  Google Scholar 

  • Mott, R.L., Steward, F.C.: Solute accumulation in plant cells. V. An aspect of nutrition and development. Ann. Bot. (London) N.S., 36, 915–937 (1972b).

    CAS  Google Scholar 

  • Mowat, J.L.: Some relations between salt and sugar in Hordeum vulgare. Ph. D. Thesis, University of Sydney (1973).

    Google Scholar 

  • Nakagawa, S., Kataoka,H., Tazawa, M.: Osmotic and ionic regulation in Nitella. Plant Cell Physiol. (Tokyo) 15, 457–468 (1974).

    CAS  Google Scholar 

  • Neeb, O.: Hydrodictyon als Object einer vergleichenden Untersuchung physiologischer Größen. Flora (Jena) 139, 39–95 (1952).

    Google Scholar 

  • Neirinckx, L.J.A., Bange, G.G.J.: Irreversible equilibration of barley roots with Na+ ions at different external Na concentrations. Acta Botan. Neerl. 20, 481–488 (1971).

    Google Scholar 

  • Nobel, P.S.: Light-dependent potassium uptake by Pisum sativum leaf fragments. Plant Cell Physiol. (Tokyo) 10, 597–605 (1969).

    CAS  Google Scholar 

  • Önal, M.: Vergleichende ökologische Untersuchungen bei Halophyten und Glycophyten in der Nähe von Neapel. Rev. Fac. Sci. Univ. Istanbul, Ser. B 31, 209–248 (1966).

    Google Scholar 

  • Oertli, J.J.1: Extracellular salt accumulation, a possible mechanism of salt injury in plants. Agrochimica 22, 461–469 (1968).

    Google Scholar 

  • Oertli, J.J.: A whole-system approach to water physiology in plants. New Delhi 1971.

    Google Scholar 

  • O’Kelley, J.C.: Mineral nutrition of algae. Ann. Rev. Plant Physiol. 19, 89–112 (1968).

    Google Scholar 

  • Ordin, L.: Effect of water stress on cell wall metabolism of Avena coleoptile tissue. Plant Physiol. 35, 443–450 (1960).

    PubMed  CAS  Google Scholar 

  • Ordin, L., Applewhite, T.G., Bonner, J.: Auxin-induced water uptake by Avena coleoptile sections. Plant Physiol. 31, 44–53 (1956).

    PubMed  CAS  Google Scholar 

  • Osmond, C.B.: Oxalates and ionic equilibria in Australian saltbushes (Atriplex). Nature 198, 503–504 (1963).

    CAS  Google Scholar 

  • Osmond, C.B.: Acid metabolism in Atriplex. 1. Regulation of oxalate synthesis by the apparent excess cation absorption in leaf tissue. Australian J. Biol. Sci. 20, 575–578 (1968).

    Google Scholar 

  • Pfeffer, W.: The physiology of plants, vol. 1. Oxford: Clarendon 1900 (Transi, from: Pflanzenphysiologie, 2nd Ed., 1897, by A.J. Ewart).

    Google Scholar 

  • Pierce, E.C., Appleman, CO.: Role of ether soluble organic acids in the cation-anion balance in plants. Plant Physiol. 18, 224–238 (1943).

    PubMed  CAS  Google Scholar 

  • Pitman, M.G.: The determination of the salt relations of the cytoplasmic phase in cells of beetroot tissue. Australian J. Biol. Sci. 16, 647–668 (1963).

    CAS  Google Scholar 

  • Pitman, M.G.: Simulation of Cl- uptake by low-salt barley roots as a test of models of salt uptake. Plant Physiol. 44, 1417–1427 (1969).

    PubMed  CAS  Google Scholar 

  • Pitman, M.G.: Uptake and transport of ions in barley seedlings. III. Correlation between transport to the shoot and relative growth rate. Australian J. Biol. Sci. 25, 905–919 (1972).

    CAS  Google Scholar 

  • Pitman, M.G., Courtice, A.C., Lee, B.: Comparison of potassium and sodium uptake by barley roots at high and low salt status. Australian J. Biol. Sci. 21, 871–881 (1968).

    CAS  Google Scholar 

  • Pitman, M.G., Cram, W.J.: Regulation of inorganic ion transport in plants. In: Ion transport in plants (W.P. Anderson, ed.), p. 465–481. London-New York: Academic Press 1973.

    Google Scholar 

  • Pitman, M.G., Lüttge, U., Läuchli, A., Ball,E.: Ion uptake to slices of barley leaves, and regulation of K content in cells of the leaves. Z. Pflanzenphysiol. 72, 75–88 (1974).

    CAS  Google Scholar 

  • Pitman, M.G., Mowat,J.L., Nair, H.: Interactions of processes for accumulation of salt and sugar in barley plants. Australian J. Biol. Sci. 24, 619–631 (1971).

    CAS  Google Scholar 

  • Post, R.L., Albright,C.D., Dayani, K.: Resolution of pump and leak components of sodium and potassium ion transport in human erythrocytes. J. Gen. Physiol. 50, 1201–1220 (1967).

    PubMed  CAS  Google Scholar 

  • Raschke, K.: Die Stomata als Glieder eines schwingungsfähigen CO2-Regelsystems. Experimenteller Nachweis an Zea mays L. Z. Naturforsch. 20b, 1261–1270 (1965).

    Google Scholar 

  • Ray, P.M.: The action of auxin on cell enlargement in plants. Develop. Biol., Suppl. 3, 172–205 (1969).

    Google Scholar 

  • Rhee, G.Y.: A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 9, 495–506 (1973).

    CAS  Google Scholar 

  • Robinson, J.B., Smith, F.A.: Chloride influx in citrus leaf slices. Australian J. Biol. Sci. 23, 953–960 (1970).

    CAS  Google Scholar 

  • Rubinstein, B., Light, E.N.: Indoleacetic-acid-enhanced chloride uptake into coleoptile cells. Planta 110, 43–56 (1973).

    CAS  Google Scholar 

  • Saddler, H.D.W.: The ionic relations of Acetabularea mediterránea. J. Exptl. Bot. 21, 345–359 (1970).

    CAS  Google Scholar 

  • Satter, R.L., Galston,A.W.: Potassium influx: a common feature of Albizzia leaflet movement controlled by phytochrome or endogenous rhythm. Science 174, 518–530 (1971).

    PubMed  CAS  Google Scholar 

  • Schobert, B., Untner, E., Kauss, H.: Isofloridosid und die Osmoregulation bei Ochromonas malhamensis. Z. Pflanzenphysiol. 67, 385–398 (1972).

    CAS  Google Scholar 

  • Schröter, K., Sievers, A.: Wirkung der Turgorreduktion auf den Golgi-Apparat und die Bildung der Zellwand bei Wurzelhaaren. Protoplasma 72, 203–211 (1971).

    Google Scholar 

  • Scott, B.I.H.: Electric fields in plants. Ann. Rev. Plant Physiol. 18, 409–418 (1967).

    CAS  Google Scholar 

  • Slatyer, R.O.: Effects of several osmotic substrates on the water relationships of tomato. Australian J. Biol. Sci. 14, 519–540 (1961).

    CAS  Google Scholar 

  • Slatyer, R.O.: Climatic control of plant water relations. In: Environmental control of plant growth (L.T. Evans, ed.), p. 33–54. New York-London: Academic Press 1963.

    Google Scholar 

  • Slatyer, R.O.: Physiological significance of internal water relations to crop yield. In: Physiological aspects of crop yield (J.D. Eastin, ed.), p. 53–83. Madison: Amer. Soc. Agron., Crop Sci. Soc. Amer. 1969.

    Google Scholar 

  • Smith, F.A.: The internal control of nitrate uptake into excised barley roots with differing salt contents. New Phytologist 72, 769–782 (1973).

    CAS  Google Scholar 

  • Steiner, M.: Die Zusammensetzung des Zellsaftes bei höheren Pflanzen in ihrer ökologischen Bedeutung. Ergeb. Biol. 17, 151–254 (1939).

    CAS  Google Scholar 

  • Steiner, M., Eschrich, W.: Die osmotische Bedeutung der Mineralstoffe. In: Encyclopedia of plant physiology (W. Ruhland, ed.), vol. IV, p. 334–354. Berlin-Heidelberg-New York: Springer 1958.

    Google Scholar 

  • Steudle, E., Zimmermann,U.: Zellturgor und selektiver Ionentransport bei Chaetomorpha linum. Z. Naturforsch. 26b, 1276–1282 (1971).

    Google Scholar 

  • Stewart, G.R., Lee,J.A.: The role of proline accumulation in halophytes. Planta 120, 279–289 (1974).

    CAS  Google Scholar 

  • Stoner, L.C., Dunham, P.B.: Regulation of cellular osmolarity and volume in Tetrahymenia. J. Exptl. Biol. 53, 391–399 (1970).

    CAS  Google Scholar 

  • Sutcliffe, J.F.: The influence of internal ion concentration on potassium accumulation and salt respiration of red beet root tissue. J. Exptl. Bot. 3, 59–76 (1952).

    CAS  Google Scholar 

  • Sutcliffe, J.F.: The absorption of potassium ions by plasmolysed cells. J. Exptl. Bot. 5, 215–231 (1954a).

    CAS  Google Scholar 

  • Sutcliffe, J.F.: The exchangeability of potassium and bromide ions in cells of red beetroot tissue. J. Exptl. Bot. 5, 313–326 (1954b).

    CAS  Google Scholar 

  • Sutcliffe, J.F.: Cation absorption by non-growing plant cells. Symp. Soc. Exptl. Biol. 8, 325–342 (1954c).

    CAS  Google Scholar 

  • Tazawa, M.: Weitere Untersuchungen zur Osmoregulation der Nitella-Zdle. Protoplasma 53, 227–258 (1961).

    Google Scholar 

  • Tazawa, M.: Studies on Nitella having artificial cell sap. I. Replacement of the cell sap with artificial solutions. Plant Cell Physiol. (Tokyo) 5, 33–43 (1964).

    CAS  Google Scholar 

  • Tazawa, M., Nagai,R.: Die Mitwirkung von Ionen bei der Osmoregulation der Nitellazzlle. Plant Cell Physiol. (Tokyo) 1, 255–267 (1960).

    CAS  Google Scholar 

  • Tazawa, M., Nagai,R.: Studies on osmoregulation of Nitella internode with modified cell saps. Z. Pflanzenphysiol. 54, 333–344 (1966).

    CAS  Google Scholar 

  • Thoiron, A., Thoiron, B., Thellier, M.: Absorption du sulfate par la Riccia fluitans: effet des conditions antérieures de nutrition en sulfate. Compt. Rend. 270, 328–330 (1970).

    CAS  Google Scholar 

  • Toates, F.M.: Control theory in biology and experimental psychology. London: Hutchinson 1975.

    Google Scholar 

  • Tramer, P.: Zur Kenntnis der Saugkraft des Meerwassers und einiger Hydrophyten. Ber. Schweiz. Botan. Ges. 67, 411–419 (1957).

    Google Scholar 

  • Trip, P., Krotkov, G., Nelson, C.D.: Metabolism of mannitol in higher plants. Amer. J. Bot. 51, 828–835 (1964).

    CAS  Google Scholar 

  • Ursprung, A., Blum,G.: Eine Methode zur Messung des Wand- und Turgor-Druckes der Zelle, nebst Anwendungen. Jahrb. Wiss. Botanik 63, 1–110 (1924).

    Google Scholar 

  • Vaadia, Y., Raney,F.C., Hagan, R.M.: Plant water deficits and physiological processes. Ann. Rev. Plant Physiol. 12, 265–292 (1961).

    CAS  Google Scholar 

  • Vallée, M., Jeanjean, R.: Le système de transport de SO4 chez Chlorella pyrenoidosa et sa régulation. II. Recherches sur la régulation de l’entrée. Biochim. Biophys. Acta 150, 607–617 (1968).

    PubMed  Google Scholar 

  • Venrick, D.M., Smith,R.C.: The influence of initial salt status on absorption of rubidium by corn root segments of two stages of development. Bull. Torrey Botan. Club 94, 501–510 (1967).

    CAS  Google Scholar 

  • Villegas, L.: Changes in volume and turgor presure in Valonia cells. Biochim. Biophys. Acta 136, 590–593 (1967).

    PubMed  CAS  Google Scholar 

  • Waisel, Y.: Biology of halophytes. New York-London: Academic Press 1972.

    Google Scholar 

  • Walter, H.: Ecology of tropical and subtropic vegetation. Edinburgh: Oliver and Boyd 1971.

    Google Scholar 

  • Wegmann, K.: Osmotic regulation of photosynthetic glycerol production in Dunaliella. Biochim. Biophys. Acta 234, 317–323 (1971).

    PubMed  CAS  Google Scholar 

  • Wetherell, D.F.: Osmotic equilibrium and growth of Scenedesmus obliquus in saline media. Physiol. Plantarum 16, 82–91 (1963).

    CAS  Google Scholar 

  • Wilkins, M.B.: Circadian rhythms in plants. In: Physiology of plant growth and development (M.B. Wilkins, ed.), p. 647–671. London: McGraw-Hill 1969.

    Google Scholar 

  • Wright, M.J., Davison,K.L.: Nitrate accumulation in crops and nitrate poisoning in animals. Advan. Agron. 16, 197–247 (1964).

    CAS  Google Scholar 

  • Yamomoto, L.A., Segel,I.H.: The inorganic sulfate transport system of Penicillium chrysogenum. Arch. Biochem. Biophys. 114, 523–538 (1966).

    Google Scholar 

  • Young, G.M., Jefferies, R.L., Sims,A.P.: The regulation of potassium uptake in Lemna minor L. Abhandl. Deut. Akad. Wiss. Bed. 67–82 (1970).

    Google Scholar 

  • Young, G.M., Sims,A.P.: The potassium relations of Lemna minor L. I. Potassium uptake and plant growth. J. Exptl. Bot. 23, 958–969 (1970).

    Google Scholar 

  • Zimmermann, U., Steudle, E.: Effects of potassium concentration and osmotic presure of sea water on the cell-turgor pressure of Chaetomorpha linum. Marine Biol. 11, 132–137 (1971).

    Google Scholar 

  • Zimmermann, U., Steudle, E.: The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation in Valonia utricularis. J. Membrane Biol. 16, 331–352 (1974).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Cram, W.J. (1976). Negative Feedback Regulation of Transport in Cells. The Maintenance of Turgor, Volume and Nutrient Supply. In: Lüttge, U., Pitman, M.G. (eds) Transport in Plants II. Encyclopedia of Plant Physiology, vol 2 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66227-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66227-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66229-4

  • Online ISBN: 978-3-642-66227-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics