Skip to main content

Towards a Molecular Model of Nerve Excitability

  • Conference paper

Abstract

Bioelectricity and excitability, universal properties of all higher organisms, are already encountered in algae and lower animals. It is, however, most convenient to study bioelectrical phenomena in specialized neuronal tissue evolved for the absorption, processing and transmission of environmental information and for the coordination and regulation of higher organismic function. Such specialized nerve tissue, particulary suited for electrophysiological studies, are the giant axons of certain squids. The coupling of biochemical events and electrical parameters in excitable membranes are readily demonstrable at most neuromuscular junctions or with the isolated electroplax of the electric eel Electrophorus electricus.

Financial support of the Alfred P. Sloan Foundation and the Stiftung Volkswagenwerk is gratefully acknowledged.

Dedicated to the memory Aharon Katzir-Katcialsry (1913–1972).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agin, D.: Excitability phenomena in membranes. In: Rosen, R. (Ed.): Foundations of mathematical biology, pp. 253–277. New York: Academic Press 1972.

    Google Scholar 

  2. Nachmansohn, D.: Metabolism and function of the nerve cell. In: Harvey Lectures 1953/1954, pp. 57–99. New York: Academic Press 1955.

    Google Scholar 

  3. Nachmansohn, D.: Proteins in bioelectricity. Acetylcholineesterase and -receptor. In: Loewenstein, W. R. (Ed.): Handbook of sensory physiology, Vol. 1, pp. 18–102. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  4. Neumann, E., Nachmansohn, D., Katchalsky, A.: An attempt at an integral interpretation of nerve excitability. Proc. nat. Acad. Sci. (Wash.) 70, 727–731 (1973).

    Article  CAS  Google Scholar 

  5. Hodgkin, A. L.: The conduction of the nervous impulse, Springfield, Ill.: C. C. Thomas 1964.

    Google Scholar 

  6. Tasaki, I.: Nerve excitation. Springfield, Ill.: C. C. Thomas 1968.

    Google Scholar 

  7. Katchalsky, A.: Membrane thermodynamics. In: Quarton, G C, Melnechuk, T., Schmitt, F. O. (Eds.): The neurosciences, pp. 326–343. New York: The Rockefeller University Press 1967.

    Google Scholar 

  8. Prigogine, I.: Thermodynamics of irreversible processes, 3rd ed. Springfield, Ill.: Thomas Publ. 1968.

    Google Scholar 

  9. Tasaki, I., Singer, I.: Membrane macromolecules and nerve excitability: a physico-chemical interpretation of excitation in squid giant axons. Ann N. Y. Acad. Sci. 137, 793–806 (1966).

    Article  Google Scholar 

  10. Cole, K. S.: In: Tobias, C. A. (Ed.): Membranes, ions, and impulses. Berkeley, Calif.: University of California Press 1968.

    Google Scholar 

  11. Hodgkin, A. L., Keynes, R. D.: The potassium permeability of a giant nerve fibre. J. Physiol. (Lond.) 128, 61–88 (1955).

    CAS  Google Scholar 

  12. Tasaki, I., Takenada, T.: Ion fluxes and excitability in squid giant axon. In: Hoffman, J.F. (Ed.): The cellular functions of membrane transport. Englewood Cliffs, N. J.: Prentice-Hall Inc. 1964.

    Google Scholar 

  13. Agin, D.: Electroneutrality and electrondiffusion in the squid axon. Proc. nat. Acad. Sci. (Wash.) 57, 1232–1238 (1967).

    Article  CAS  Google Scholar 

  14. Segal, J. R.: Surface charge of giant axons of squid and lobster. Biophys. J. 8. 470–489 (1968).

    Article  CAS  PubMed  Google Scholar 

  15. Zelman, A., Sffia, H. H.: The constant field approximation: numerical evaluation for monovalent ions migrating across a homogeneous membrane. J. theor. Biol. 37, 373–383 (1972).

    Article  CAS  PubMed  Google Scholar 

  16. Traurle, H., Eirl, H.: Electrostatic effects on lipid phase transitions: membrane structure and ionic environment. Proc. nat. Acad. Sci. (Wash.) 71, 214–219 (1974).

    Article  Google Scholar 

  17. Tasaki, I., Singer, I., Takenaka, T.: Effects of internal and external ionic environment on excitability of squid giant axon. J. gen. Physiol. 48, 1095–1123 (1965).

    Article  CAS  PubMed  Google Scholar 

  18. Julian, F. J., Goldman, D.E.: The effects of mechanical stimulation on some electrical properties of axons. J. gen. Physiol. 46, 197–313 (1962).

    Article  Google Scholar 

  19. Carnay, L. D., Tasaki, I.: Ion exchange properties and excitability of the squid giant axon. In: Adelman, W.J.,Jr. (Ed.): Biophysics and physiology of excitable membranes, pp. 379–422. New York: Van Nostrand Reinhold Co. 1971.

    Google Scholar 

  20. Katz, B.: Nerve, muscle, and synapse. New York: McGraw-Hill 1966.

    Google Scholar 

  21. Landowne, D.: Movement of sodium ions associated with the nerve impulse. Nature (Lond.) New Biol. 242, 457–459 (1973).

    Article  CAS  Google Scholar 

  22. Oster, G. F., Perelson, A. S., Katchalsky, A.: Network thermodynamics: dynamic modelling of biophysical systems. Quart. Rev. Biophys. 6, 1–134 (1973).

    Article  CAS  Google Scholar 

  23. Plonsey, R.: Bioelectric phenomena. New York: McGraw-Hill 1969.

    Google Scholar 

  24. Huneeus-Cox, F., Fernandez, H. L., Smith, B. H.: Effects of redox and sulfhydryl reagents on the bioelectric properties of the giant axon of the squid. Biophys. J. 6, 675–689 (1966).

    Article  CAS  PubMed  Google Scholar 

  25. Robertson, J. D.: The ultrastructure of synapses. In: Schmitt, F.O. (Ed.): The neurosciences, Vol. 2, pp. 715–728. New York: The Rockefeller University Press 1970.

    Google Scholar 

  26. Muralt, A.V., Stämpfli, R.: Die photochemische Wirkung von Ultraviolettlicht auf den erregten Ranvierschen Knoten der einzelnen Nervenfaser. Rely. physiol. Acta 11, 182–193 (1953).

    Google Scholar 

  27. Fox, J. M.: Veränderungen der spezifischen Ionenleitfähigkeiten der Nervenmembran durch ultraviolette Strahlung. Dissertation. Homburg-Saarbrücken: 1972.

    Google Scholar 

  28. Evans, M.H.: Tetrodotoxin and saxitoxin in neurobiology. Int. Rev. Neurobiol. 15, 83–166 (1972).

    Article  CAS  PubMed  Google Scholar 

  29. Cole, K. S.: Dielectric properties of living membranes. In: Snell, F. et al. (Eds.): Physical principles of biological membranes, pp. 1–15. New York: Gordon and Breach 1970.

    Google Scholar 

  30. Abbot, B.C., Hill, A. V., Howarth, J. V.: The positive and negative heat production associated with a single impulse. Proc. Roy. Soc. B 148, 149–187 (1958).

    Article  Google Scholar 

  31. Howarth, J. V., Keynes, R.D., Ritchie, J. M.: The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres. J. Physiol. (Lond.) 194, 745–793 (1968).

    CAS  Google Scholar 

  32. Neumann, E.: Molecular hysteresis and its cybernetic significance. Angew. Chem. (int. Edit.) 12, 356–369 (1973).

    Article  CAS  Google Scholar 

  33. Guggenheim, E. A.: Thermodynamics. New York: Interscience 1949.

    Google Scholar 

  34. Brzin, M., Dettbarn, W.-D., Rosenberg, PH., Nachmansohn, D.: Cholinesterase activity per unit surface area of conducting membranes. J. Cell Biol. 26, 353–364 (1965).

    Article  CAS  PubMed  Google Scholar 

  35. Gruber, H., Zenker, W.: Acetylcholinesterase: histochemical differentiation between motor and sensory nerve fibres. Brain Res. 51, 207–214 (1973).

    Article  CAS  PubMed  Google Scholar 

  36. Calabro, W.: Sulla regolazione neuro-umorale cardiaca. Riv. biol. 15, 299–320 (1933).

    Google Scholar 

  37. Lisskk, K.: Liberation of acetylcholine and adrenaline by stimulating isolated nerves. Amer. J. Physiol. 127, 263–271 (1939).

    Google Scholar 

  38. Dettbarn, W.-D., Rosenberg, PH.: Effects of ions on the efflux of acetylcholine from peripheral nerve. J. gen. Physiol. 50, 447–460 (1966).

    Article  CAS  PubMed  Google Scholar 

  39. Porter, C. W., Chic, T. H., Wieckowski, J., Barnard, E. A.: Types and locations of cholinergic receptor-like molecules in muscle fibres. Nature (Lond.) New Biol. 241, 3–7 (1973).

    CAS  Google Scholar 

  40. Denburg, J. L., Eldefrawi, M. E., O’brien, R. D.: Macromolecules from lobster axon membranes that bind cholinergic ligands and local anesthetics. Proc. nat. Acad. Sci. (Wash.) 69, 177–181 (1972).

    Article  CAS  Google Scholar 

  41. Koelle, G. B.: Current concepts of synaptic structure and function. Ann. N. Y. Acad. Sci. 183, 5–20 (1971).

    Article  CAS  PubMed  Google Scholar 

  42. Lewis, P.R., Shute, C. C. D.: The distribution of cholinesterase in cholinergie neurons demonstrated with the electron microscope. J. Cell Sci. 1, 381–390 (1966).

    CAS  PubMed  Google Scholar 

  43. Masland, R. L., Wigton, R. S.: Nerve activity accompanying fasciculation produced by Prostigmine. J. Neurophysiol. 3, 269–275 (1940).

    CAS  Google Scholar 

  44. Riker, W.F., Jr., Werner, G., Roberts, J., Kuperman, A.: The pre-synaptic element in neuromuscular transmission. Ann. N.Y. Acad. Sci. 81, 328–344 (1959).

    Article  Google Scholar 

  45. Dettbarn, W.-D.: The acetylcholine system in peripheral nerve. Ann. N.Y. Acad. Sci. 144, 483–503 (1967).

    Article  CAS  Google Scholar 

  46. Hoskin, F. C. G., Rosenberg, PH., Brzin, M.: Re-examination of the effect of DFP on electrical and cholinesterase activity of squid giant axon. Proc. nat. Acad. Sci. (Wash.) 55, 1231–1235 (1966).

    Article  CAS  Google Scholar 

  47. Nachmansohn, D.: Proteins of excitable membranes. J. gen. Physiol. 54, 187–224 (1969).

    Article  CAS  PubMed  Google Scholar 

  48. Hoskin, F. C. G., Kremzner, L. T., Rosenberg, PH.: Effects of some cholinesterase inhibitors on the squid giant axon. Biochem. Pharmacol. 18, 1727–1737 (1969).

    Article  CAS  PubMed  Google Scholar 

  49. Rosenberg, P., Hoskin, F. C. G.: Demonstration of increased permeability as a factor in the effect of acetylcholine on the electrical activity of venomtreated axons. J. gen. Physiol. 46, 1065–1073 (1963).

    Article  CAS  PubMed  Google Scholar 

  50. Nachmansohn, D.: Actions on axons and the evidence for the role of acetylcholine in axonal conduction. In: Koelle, G.B. (Ed.): Cholinesterases and anticholinesterase agents. Handb. d. exp. Pharmakologie, Erg. XV, pp. 701–740. Berlin-Heidelberg-New York: Springer 1963.

    Google Scholar 

  51. Dettbarn, W.-D.: The effect of curare on conduction in myelinated, isolated nerve fibres of the frog. Nature (Lond.) 186, 891–892 (1960).

    Article  CAS  Google Scholar 

  52. Dettbarn, W.-D.: New evidence for the role of acetylcholine in conduction. Biochim biophys. Acta (Amst.) 41, 377–386 (1960).

    Article  CAS  Google Scholar 

  53. Bartels, E.: Relationship between acetylcholine and local anesthetics. Biochim. biophys. Acta (Amst) 109, 194–203 (1965).

    Article  CAS  Google Scholar 

  54. Seeman, P.: The membrane actions of anesthetics and tranquilizers. Pharmacol. Rev. 24, 583–655 (1972).

    CAS  PubMed  Google Scholar 

  55. Harris, A. J., Dennis, M. J.: Acetylcholine sensitivity and distribution on mouse neuroblastoma cells. Science 167, 1253–1255 (1970).

    Article  CAS  PubMed  Google Scholar 

  56. Nelson, P. G., Peacock, J. H., Amano, T.: Responses of neuroblastoma cells to iontophoretically applied acetylcholine. J. Cell Physiol. 77, 353–362 (1971).

    Article  CAS  PubMed  Google Scholar 

  57. Hamprecht, B.: Cell cultures as model systems for studying the biochemistry of differentiated functions of nerve cells. Hoppe-Seylers Z. physiol. Chem. 355, 109–110 (1974).

    Google Scholar 

  58. Armett, C. J., Ritchie, J.M.: The action of acetylcholine on conduction in mammalian non-myelinated fibres and its prevention by anti-cholinesterase. J. Physiol. (Lond.) 152, 141–158 (1960).

    CAS  Google Scholar 

  59. Rrrcxie, J.M.: The action of acetylcholine and related drugs on mammalian non-myelinated nerve fibres. Biochem. Pharmacol. 12 (S), 3 (1963).

    Google Scholar 

  60. Takeuchi, A., Takeuchi, N. Actions of transmitter substances on the neuromuscular junctions of vertebrates and invertebrates. In: Kotani, M. (Ed.): Advan. in Biophys. 3, 45–95. Baltimore: University Park Press 1972.

    Google Scholar 

  61. Nachmansohn, D.: Chemical and molecular basis of nerve activity. New York: Academic Press 1959.

    Google Scholar 

  62. Whittaker, V. P.: The biochemistry of synaptic transmission. Naturwissenschaften 60, 281–289 (1973).

    Article  CAS  PubMed  Google Scholar 

  63. Neher, E., Lux, H. D.: Rapid changes of potassium concentration at the outer surface of exposed single neurons during membrane current flow. J. gen. Physiol. 61, 385–399 (1973).

    Article  CAS  PubMed  Google Scholar 

  64. Spector, I., Kimm, Y, Nelson, P.G.: Tetrodotoxin and cobalt blockage of Neuroblastoma action potentials. Nature (Lond.) New Biol. 246, 124–126 (1973).

    CAS  Google Scholar 

  65. Adam, G.: Theory of nerve excitation as a cooperative cation exchange in a two-dimensional lattice. In: Snell, F., et al. (Eds.): Physical principles of biological membranes, pp. 35–64. New York: Gordon and Breach 1970.

    Google Scholar 

  66. Katchalsky, A., Spangler, R.: Dynamics of membrane processes. Quart. Rev. Biophys. 1, 127–175 (1968).

    Article  CAS  Google Scholar 

  67. Blumenthal, R., Changeux, J.-P., Lefèvre, R.: Membrane excitability and dissipative instabilities. J. Membrane Biol. 2, 351–374 (1970).

    Article  Google Scholar 

  68. Rawlings, P. K., Neumann, E.: In preparation.

    Google Scholar 

  69. Eigen, M.: Dynamic aspects of information transfer and reaction control in biomolecular systems. In: Quarton, G. C., Melnecruk, T., Schmitt, F. O. (Eds.): The neurosciences, pp. 130–142. New York: The Rockefeller University Press 1967.

    Google Scholar 

  70. Neumann, E., Katchalsky, A.: Long-lived conformation changes induced by electric impulses in biopolymers. Proc. nat. Acad. Sci. (Wash.) 69, 993–997 (1972).

    Article  CAS  Google Scholar 

  71. Revzin, A., Neumann, E.: Conformational changes in rRNA induced by electric impulses. Biophys. Chem. 2, 144–150 (1974).

    Article  CAS  PubMed  Google Scholar 

  72. Neumann, E., Rosenheck, K.: Permeability changes induced by electric impulses in vesicular membranes. J. Membrane Biol. 10, 279–290 (1972).

    Article  CAS  Google Scholar 

  73. Eigen, M., Demaeyer, L.: Relaxation methods. In: Friess, S. L., Lewis, E. S., Weissberger, A. (Eds.): Technique of organic chemistry, Vol. 8, p. 895. New York: Interscience Publ. Inc. 1963.

    Google Scholar 

  74. Neumann, E., Nachmansohn, D.: In Manson, L. (Ed.): Biomembranes, Vol. 7. London. New York: Academic Press 1974.

    Google Scholar 

  75. Chang, Rai Won: Purification and characterization of acetylcholine receptor-I from electrophorus electricus. Proc. nat. Acad. Sci. (Wash.) 71, 2113–2117 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Neumann, E. (1974). Towards a Molecular Model of Nerve Excitability. In: Jaenicke, L. (eds) Biochemistry of Sensory Functions. Colloquium der Gesellschaft für Biologische Chemie 25.–27. April 1974 in Mosbach/Baden, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66012-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66012-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66014-6

  • Online ISBN: 978-3-642-66012-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics