On the Significance of Two-Dimensional Super-Structures in Biomembranes for Energy-Transfer and Signal Conversion

  • W. Kreutz
  • K.-P. Hofmann
  • R. Uhl
Part of the Colloquium der Gesellschaft für Biologische Chemie 25.–27. April 1974 in Mosbach/Baden book series (MOSBACH, volume 25)

Abstract

The most evident two-dimensional super-structure so far determined in biomembranes is found in photosynthetic bacteria. Figure 1 shows an example of an electronmicroscopic picture of the bacterium Rhodopseudomonas viridis by Giessrecht and Drews [1]. The whole membrane surface is covered with double chained super-structures consisting of protein strands in a two-dimensional association, forming several dislocation areas in the membrane surface. Fig. 1 b gives a plane view of membranes of the same object in a different state as obtained by Fritz, Göbel and Kreutz. In this state corpuscular protein particles are attached onto the matrix in a hexagonal crystalline lattice arrangement. Apparently, the matrix protein strands of Fig. l a define the coordination loci (binding sites) for the protein particles seen in Fig. 1 b. The photosynthetic membrane of the higher plants also shows such combinations of linear super-structures and attached corpuscular particles in orthogonal arrangements. In an earlier paper a detailed discussion of these structural viewpoints was given [2].

Keywords

Chlorophyll Chrome Hexagonal Retina Oligomer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giesbrecht, P., Drews, G.: Arch. Mikrobiol. 54, 297 (1966).Google Scholar
  2. 2.
    Kbeutz, W.: Angew. Chem. 84, 597 (1972).CrossRefGoogle Scholar
  3. 3.
    Hosemann, R., Kreutz, W.: Naturwissenschaften 53, 298 (1966).PubMedCrossRefGoogle Scholar
  4. 4.
    Kreutz, W. in: Summer School in Biophysics, Cochran, J., Colbow, C. (ed.). Vancouver: Simon Frazer University Press (1974).Google Scholar
  5. 5.
    Kreuzz, W.: Naturforsch. 23b. 520 (1968).Google Scholar
  6. 6.
    De Grip, W. J., Daemen, F. J. R., Bonting, S. L.: Vision Res. 12, 1697 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    Eanucn, H. M.: Pflügers Arch. Ges. Phys. 319, 126 (1970).Google Scholar
  8. 8.
    Poo, M. M., Cone, R. A.: Exp. Eye Res. 17, 503 (1973).PubMedCrossRefGoogle Scholar
  9. 9.
    Cone, R.A.: Nature (Lond.) New Biol. 236, 39 (1972).Google Scholar
  10. 10.
    Matthews, R. G., Hubbard, R., Brown, P. K., Wald, G.: J. gen. Physiol. 47, 215 (1963).PubMedCrossRefGoogle Scholar
  11. 11.
    Falk, G., Fatt, P.: J. Physiol. (Lond.) 183, 211 (1966).Google Scholar
  12. 12.
    Mcconnell, D. G., Rafferty, C., Dilley, R. A.: J. biol. Chem. 243, 5820 (1968).PubMedGoogle Scholar
  13. 13.
    Emrich, H.M.: Habil.-Arbeit, Technische Universität Berlin 1972.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • W. Kreutz
    • 1
  • K.-P. Hofmann
    • 1
  • R. Uhl
    • 1
  1. 1.Institut für Biophysik und StrahlenbiologieUniversität Freiburg im BreisgauFreiburgFederal Republic of Germany

Personalised recommendations