On the Significance of Two-Dimensional Super-Structures in Biomembranes for Energy-Transfer and Signal Conversion

  • W. Kreutz
  • K.-P. Hofmann
  • R. Uhl
Part of the Colloquium der Gesellschaft für Biologische Chemie 25.–27. April 1974 in Mosbach/Baden book series (MOSBACH, volume 25)


The most evident two-dimensional super-structure so far determined in biomembranes is found in photosynthetic bacteria. Figure 1 shows an example of an electronmicroscopic picture of the bacterium Rhodopseudomonas viridis by Giessrecht and Drews [1]. The whole membrane surface is covered with double chained super-structures consisting of protein strands in a two-dimensional association, forming several dislocation areas in the membrane surface. Fig. 1 b gives a plane view of membranes of the same object in a different state as obtained by Fritz, Göbel and Kreutz. In this state corpuscular protein particles are attached onto the matrix in a hexagonal crystalline lattice arrangement. Apparently, the matrix protein strands of Fig. l a define the coordination loci (binding sites) for the protein particles seen in Fig. 1 b. The photosynthetic membrane of the higher plants also shows such combinations of linear super-structures and attached corpuscular particles in orthogonal arrangements. In an earlier paper a detailed discussion of these structural viewpoints was given [2].


Outer Segment Signal Conversion Linear Lattice Double Spiral Bleaching Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giesbrecht, P., Drews, G.: Arch. Mikrobiol. 54, 297 (1966).Google Scholar
  2. 2.
    Kbeutz, W.: Angew. Chem. 84, 597 (1972).CrossRefGoogle Scholar
  3. 3.
    Hosemann, R., Kreutz, W.: Naturwissenschaften 53, 298 (1966).PubMedCrossRefGoogle Scholar
  4. 4.
    Kreutz, W. in: Summer School in Biophysics, Cochran, J., Colbow, C. (ed.). Vancouver: Simon Frazer University Press (1974).Google Scholar
  5. 5.
    Kreuzz, W.: Naturforsch. 23b. 520 (1968).Google Scholar
  6. 6.
    De Grip, W. J., Daemen, F. J. R., Bonting, S. L.: Vision Res. 12, 1697 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    Eanucn, H. M.: Pflügers Arch. Ges. Phys. 319, 126 (1970).Google Scholar
  8. 8.
    Poo, M. M., Cone, R. A.: Exp. Eye Res. 17, 503 (1973).PubMedCrossRefGoogle Scholar
  9. 9.
    Cone, R.A.: Nature (Lond.) New Biol. 236, 39 (1972).Google Scholar
  10. 10.
    Matthews, R. G., Hubbard, R., Brown, P. K., Wald, G.: J. gen. Physiol. 47, 215 (1963).PubMedCrossRefGoogle Scholar
  11. 11.
    Falk, G., Fatt, P.: J. Physiol. (Lond.) 183, 211 (1966).Google Scholar
  12. 12.
    Mcconnell, D. G., Rafferty, C., Dilley, R. A.: J. biol. Chem. 243, 5820 (1968).PubMedGoogle Scholar
  13. 13.
    Emrich, H.M.: Habil.-Arbeit, Technische Universität Berlin 1972.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • W. Kreutz
    • 1
  • K.-P. Hofmann
    • 1
  • R. Uhl
    • 1
  1. 1.Institut für Biophysik und StrahlenbiologieUniversität Freiburg im BreisgauFreiburgFederal Republic of Germany

Personalised recommendations