Skip to main content
  • 619 Accesses

Abstract

The integral

$$ {\text{M}}[\phi {\text{(x),}}\,{\text{z}}] = \Phi {\text{(z)}} = \int\limits_0^{\infty } {{{\text{x}}^{{z - 1}}}\phi {\text{(x)dx}}} $$
((1))

is called the Mellin transform of the function Φ (x) with respect to the complex parameter

$$ z = \sigma + {\text{i}}\tau $$
((2))

The substitution x = e-t transforms (1) into a two-sided Laplace integral

$$ \Phi (z) = \int\limits_{{ - \infty }}^{\infty } {\phi ({{\text{e}}^{{{\text{ - t}}}}}){{\text{e}}^{{{\text{ - tz}}}}}{\text{dt}}} $$
((3))

or into the sum of two one-sided Laplace integrals of parameter z and -z (3′)

$$ \Phi (z) = \int\limits_0^{\infty } {\phi ({{\text{e}}^{{{\text{ - t}}}}}){{\text{e}}^{{{\text{ - tz}}}}}{\text{dt}}} + \int\limits_0^{\infty } {\phi ({{\text{e}}^{\text{t}}}){{\text{e}}^{{{\text{ - t( - z)}}}}}{\text{dt}}} $$
((3′))

Denote the abscissas of absolute and ordinary convergence by β and α respectively for the first integral in (3) and by β′ and α′ for the second integral. Then it is evident that the domains of absolute and ordinary convergence of the integral (1) consist of the respective strips.

$$ \beta < {\rm Re} \,z < - \beta ';\quad \alpha < {\rm Re} \,z < - \alpha ' $$

for the inversion of the integral (1)

$$ \phi (x) = {M^{{ - 1}}}[\phi (z);x] $$
((4))

exists the following theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin Heidelberg New York

About this chapter

Cite this chapter

Oberhettinger, F. (1974). Introduction. In: Tables of Mellin Transforms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65975-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65975-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06942-3

  • Online ISBN: 978-3-642-65975-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics