Advertisement

Abstract

The hypophysis is a small, bean-shaped organ (0.6–0.65 g) located in the sella turcica at the base of the skull. On close examination of the gland, an anterior yellowish and a posterior more fibrous and whitish part can be distinguished. The two parts are separated by a pars intermedia, a lamellar structure, grayish and fibrous in appearance. The gland is attached to the floor of the third ventricle by a hollow pedicle, the stalk of the hypophysis.

Keywords

Growth Hormone Thyroid Hormone Fatty Acid Synthesis Ketone Body Glycogen Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knobil, E., Hotchkiss, J.: Growth hormone. Annu. Rev. Physiol. 26, 47–74 (1964)PubMedGoogle Scholar
  2. 2.
    Daughaday, W.H., Parker, M.L.: Human pituitary growth hormone. Annu. Rev. Med. 16, 47–66 (1965)PubMedGoogle Scholar
  3. 3.
    Armstrong, D.T.: Reproduction. Annu. Rev. Physiol. 32, 439–470 (1970)PubMedGoogle Scholar
  4. 4.
    Behrens, O.K., Grinnan, E.L.: Polypeptide hormones. Annu. Rev. Biochem. 38, 83–112 (1969)PubMedGoogle Scholar
  5. 5.
    Blizzard, R.M. (ed.): Human pituitary growth hormone, Report, 54th Ross Conf. Pediatric Res., Ross Laboratories, Columbus, Ohio (1966)Google Scholar
  6. 6.
    Hanson, L.A., Roos, P., Rymo, L.: Heterogeneity of human growth hormone preparations by immuno-gel filtration and gel filtration electrophoresis. Nature (Lond.) 212, 948–949 (1966)Google Scholar
  7. 7.
    Li, C.H., Liu, W.K., Dixon, J.S.: Human pituitary growth hormone. XII. The amino acid sequence of the hormone. J. Amer. chem. Soc. 88, 2050–2051 (1966)Google Scholar
  8. 8.
    Schwyzer, R.: Chemistry and metabolic action of nonsteroid hormones. Annu. Rev. Biochem. 33, 259–286 (1964)PubMedGoogle Scholar
  9. 9.
    Holmes, L.B., Frantz, A.G., Rabkin, M.T., Soeldner, J.S., Crawford, J.D.: Normal growth with subnormal growth-hormone levels. New Engl. J. Med. 279, 559–566 (1968)PubMedGoogle Scholar
  10. 10.
    Lewis, U.J., Cheever, E.V., Van der Laan, W.P.: Studies on the growth hormone of normal and dwarf mice. Endocrinology 76, 210–215 (1965)PubMedGoogle Scholar
  11. 11.
    Rimoin, D.L., Merimée, T.J., Rabinowitz, D., McKusick, V.A., Cavalli-Sforza, L.L.: Growth hormone in African pygmies. Lancet II, 523–526 (1967)Google Scholar
  12. 12.
    Kleeman, C.R., Cutler, R.E.: The neurohypophysis. Annu. Rev. Physiol. 25, 385–432 (1963)PubMedGoogle Scholar
  13. 13.
    Share, L.: Vasopressin; its bioassay and the physiological control of its release. Amer. J. Med. 42, 701–712 (1967)PubMedGoogle Scholar
  14. 14.
    Wollman, S.H.: Concentration and organic binding of radioiodine by the thyroid gland. Ann. N.Y. Acad. Sci. 86, 354–361 (1960)PubMedGoogle Scholar
  15. 15.
    Pitt-Rivers, R.: Some factors that affect thyroid hormone synthesis. Ann. N. Y. Acad. Sci. 86, 362–372 (1960)PubMedGoogle Scholar
  16. 16.
    Rall, J.E., Robbins, J., Edelhoch, H.: Iodoproteins in the thyroid. Ann. N. Y. Acad. Sci. 86, 373–399 (1960)PubMedGoogle Scholar
  17. 17.
    Stanbury, J.B.: Deiodination of the iodinated amino acids. Ann. N. Y. Acad. Sci. 86, 417–439 (1960)PubMedGoogle Scholar
  18. 18.
    Degroot, L.J.: Stimulation and inhibition of thyroid iodinating enzyme systems. Biochim. biophys. Acta (Amst.) 136, 364–374 (1967)Google Scholar
  19. 19.
    Fraser, R.: Endocrinology: The thyroid. Annu. Rev. Med. 11, 171–186 (1960)PubMedGoogle Scholar
  20. 20.
    Solomon, D.H., Dowling, J.T.: The thyroid. Annu. Rev. Physiol. 22, 615–650 (1960)PubMedGoogle Scholar
  21. 21.
    Ingbar, S.H., Galton, V.A.: Thyroid. Annu. Rev. Physiol. 25, 361–384 (1963)PubMedGoogle Scholar
  22. 22.
    Rosenberg, I.N., Bastomsky, C.H.: The thyroid. Annu. Rev. Physiol. 27, 71–106 (1965)PubMedGoogle Scholar
  23. 23.
    Hodgson, S.F., Wahner, H.W.: Hereditary increased thyroxine-binding-globulin capacity. Mayo Clin. Proc. 47, 720 (1972)PubMedGoogle Scholar
  24. 24.
    Schussler, G.C.: Thyroxine-binding globulin: Specificity for the hormonally active conformation of triiodothyronine. Science 178, 172 (1972)PubMedGoogle Scholar
  25. 25.
    Lehninger, A.L.: Thyroxine and the swelling and contraction cycle in mitochondria. Ann. N. Y. Acad. Sci. 86, 484–493 (1960)PubMedGoogle Scholar
  26. 26.
    Bronk, J.R.: The influence of thyroxine and related compounds on oxidative rate and efficiency of phosphorylation in liver mitochondria and submitochondrial particles. Ann. N. Y. Acad. Sci. 86, 494–505 (1960)PubMedGoogle Scholar
  27. 27.
    Lardy, H.A., Lee, Y.P., Takemori, A.: Enzyme responses to thyroid hormones. Ann. N. Y. Acad. Sci. 86, 506–511 (1960)PubMedGoogle Scholar
  28. 28.
    Money, W.L., Kumaoka, S., Rawson, R.W., Kroc, R.L.: Comparative effects of thyroxine analogues in experimental animals. Ann. N. Y. Acad. Sci. 86, 512–544 (1960)PubMedGoogle Scholar
  29. 29.
    Tata, J.R.: Basal metabolic rate and thyroid hormones. Advanc. Metab. Disord. 1, 153–184 (1964)Google Scholar
  30. 30.
    Sokoloff, L., Roberts, P.A., Januska, M.M., Kline, J.: Mechanisms of stimulation of protein synthesis by thyroid hormones in vivo. Proc. nat. Acad. Sci. (Wash.) 60, 652–659 (1968)Google Scholar
  31. 31.
    Vecchio, G., Salvatore, M., Salvatore, G.: Biosynthesis of thyroglobulin in vivo: Formation and polymerization of subunits in the rat and guinea pig. Biochem. biophys. Res. Commun. 25, 402–408 (1966)PubMedGoogle Scholar
  32. 32.
    Pastan, I.: Biochemistry of the nitrogen-containing hormones. Annu. Rev. Biochem. 35, 369–404 (1966)Google Scholar
  33. 33.
    Bronk, J.R.: Thyroid hormone: Effects on electron transport. Science 153, 638–639 (1966)PubMedGoogle Scholar
  34. 34.
    Cohen, P.P.: Biochemical aspects of metamorphosis: Transition from ammonotelism to ureatelism. Harvey Lect. Series 60, 119–154 (1964–1965)Google Scholar
  35. 35.
    Werner, S.C., Nauman, J.A.: The thyroid. Annu. Rev. Physiol. 30, 213–244 (1968)PubMedGoogle Scholar
  36. 36.
    Pitt-Rivers, R., Tata, J.R.: The chemistry of thyroid diseases. Springfield, Ill.: Charles C. Thomas Publisher 1960Google Scholar
  37. 37.
    Bogdanove, E.M.: Regulation of TSH secretion. Fed. Proc. 21, 623–627 (1962)PubMedGoogle Scholar
  38. 38.
    Nadler, N.J.: Synthesis and release of thyroid hormones. Fed. Proc. 21, 628–629 (1962)PubMedGoogle Scholar
  39. 39.
    Guillemin, R.: The adenohypophysis and its hypothalamic control. Annu. Rev. Physiol. 29, 313–348 (1967)PubMedGoogle Scholar
  40. 40.
    Burgus, R., Guillemin, R.: Hypothalamic releasing factors. Annu. Rev. Biochem. 39, 499–526 (1970)PubMedGoogle Scholar
  41. 41.
    Blagdon, D.E., Rivier, J., Goodman, M.: Proposed tertiary structure for the hypothalamic thyrotropin-releasing factor. Proc. nat. Acad. Sci. (Wash.) 70, 1166 (1973)Google Scholar
  42. 42.
    Halmi, N.S.: Thyroidal iodide transport. Vitam. and Horm. 19, 133–163 (1961)Google Scholar
  43. 43.
    Moon, H.D. (ed.): The adrenal cortex. New York: Paul B. Hoeber 1961Google Scholar
  44. 44.
    Greep, R.O., Deane, H.W.: The cytology and cytochemistry of the adrenal cortex. Ann. N. Y. Acad. Sci. 50, 596 (1969)Google Scholar
  45. 45.
    Reichstein, T., Shoppee, C.W.: The hormones of the adrenal cortex. Vitam. and Horm. 1, 346–413 (1943)Google Scholar
  46. 46.
    Dorfman, R.I., Ungar, F.: Metabolism of steroid hormones. New York: Academic Press 1965Google Scholar
  47. 47.
    Sih, C.J., Whitlock, H.W., Jr.: Biochemistry of steroids. Annu. Rev. Biochem. 37, 661–694 (1968)PubMedGoogle Scholar
  48. 48.
    Samuels, L.T., Eik-Nes, K.B.: Metabolism of steroid hormones. In: Metabolic pathways (Greenberg, D., ed.) 3rd ed., vol. II, p. 169. New York: Academic Press 1967Google Scholar
  49. 49.
    Tomkins, G.M., Maxwell, E.S.: Some aspects of steroid hormone action. Annu. Rev. Biochem. 32, 677–708 (1963)PubMedGoogle Scholar
  50. 50.
    Engel, L.L., Langer, L.J.: Biochemistry of steroid hormones. Annu. Rev. Biochem. 30, 499–524 (1961)Google Scholar
  51. 51.
    Litwack, G., Kritchevsky, D. (eds.): Actions of hormones on molecular processes. New York: John Wiley&Sons 1964Google Scholar
  52. 52.
    Seubert, W., Henning, H.V., Schoner, W., L’äge, M.: Effects of cortisol on the levels of metabolites and enzymes controlling glucose production from pyruvate. Advanc. Enzyme Regul. 6, 153–187 (1968)Google Scholar
  53. 53.
    Söling, H.D., Kaplan, J., Erbstoeszer, M., Pitot, H.C.: The role of hormones in glucose repression in rat liver. Advanc. Enzyme Regul. 7, 171–182 (1969)Google Scholar
  54. 54.
    Scrutton, M.C., Utter, M.F.: The regulation of glycolysis and gluconeogenesis in animal tissues. Annu. Rev. Biochem. 37, 249–302 (1968)Google Scholar
  55. 55.
    Van Lancker, J.V.: Hydrolases and cellular death. In: Metabolic conjugation and metabolic hydrolyses (Fishman, W.H., ed.), vol. 1, p. 356–418. New York: Academic Press 1970Google Scholar
  56. 56.
    Szentágothai, J., Flerkó, B., Mess, B., Halász, B.: Hypothalamic control of the anterior pituitary; an experimental-morphological study. Budapest: Publishing House of Hungarian Acad. Sci. 1962Google Scholar
  57. 57.
    Randle, P.J.: Endocrine control of metabolism. Annu. Rev. Physiol. 25, 291–324 (1963)PubMedGoogle Scholar
  58. 58.
    Venning, E.H.: Adenohypophysis and adrenal cortex. Annu. Rev. Physiol. 27, 107–132 (1965)PubMedGoogle Scholar
  59. 59.
    McCann, S.M., Dhariwal, P.S., Porter, J.C.: Regulation of the adenohypophysis. Annu. Rev. Physiol. 30, 589–640 (1968)PubMedGoogle Scholar
  60. 60.
    Reichlin, S.: Functions of the median-eminence gland. New Engl. J. Med. 275, 600–607 (1966)PubMedGoogle Scholar
  61. 61.
    Bransome, E.D., Jr.: Stimulation and inhibition of adrenal RNA synthesis by ACTH. Curr. Mod. Biol. 1, 21–23 (1967)PubMedGoogle Scholar
  62. 62.
    Ney, R.L., Davis, W.W., Garren, L.D.: Heterogeneity of template RNA in adrenal glands [rat]. Science 153, 896–197 (1966)PubMedGoogle Scholar
  63. 63.
    Roberts, S., McCune, R.W., Creange, J.E., Young, P.L.: Adenosine 3′,5′-cyclic phosphate: Stimulation of steroidogenesis in sonically disrupted adrenal mitochondria. Science 158, 372–374 (1967)PubMedGoogle Scholar
  64. 64.
    Taunton, O.D., Roth, J., Pastan, I.: Studies on the adrenocorticotropic hormone-activated adenyl cyclase of a functional adrenal tumor. J. biol. Chem. 244, 247–253 (1969)PubMedGoogle Scholar
  65. 65.
    Ross, E.J., Marshall-Jones, P., Friedman, M.: Cushing’s syndrome: Diagnostic criteria. Quart. J. Med. 35, 149–192 (1966)PubMedGoogle Scholar
  66. 66.
    Bondy, P.K.: Metabolism: The adrenal cortex. Yb. Med. 469–492 (1967–1968)Google Scholar
  67. 67.
    Espiner, E.A.: Urinary cortisol excretion in stress situations and in patients with Cushing’s syndrome. J. Endocr. 35, 29–44 (1966)PubMedGoogle Scholar
  68. 68.
    Nelson, D.H., Sprunt, J.G., Mims, R.B.: Plasma ACTH determinations in 58 patients before or after adrenalectomy for Cushing’s syndrome. J. clin. Endocr. 26, 722–728 (1966)PubMedGoogle Scholar
  69. 69.
    Jones, I.C., Bellamy, D.: Hormonal mechanisms in the homeostatic regulation of the vertebrate body with special reference to the adrenal cortex. Soc. exp. Biol. Symp. (Great Britain) XVIII, 195–236 (1964)Google Scholar
  70. 70.
    Crane, M.G., Harris, J.J.: Desoxycorticosterone secretion rates in hyperadrenocorticism. J. clin. Endocr. 26, 1135–1143 (1966)PubMedGoogle Scholar
  71. 71.
    Richardson, G.S.: Ovarian physiology (continued). New Engl. J. Med. 274, 1008–1015 (1966)PubMedGoogle Scholar
  72. 72.
    Kowal, J.: Metabolic events associated with steroid biosynthesis in adrenal tissue cultures. Trans. N. Y. Acad Sci. 31, 359–378 (1969)PubMedGoogle Scholar
  73. 73.
    Samuels, L.T.: Metabolism of the steroid hormones. Prog. Chem. Fats Other Lipids 3, 395 (1955)Google Scholar
  74. 74.
    Kupperman, H.S.: The endocrine status of the transsexual patient. Trans. N. Y. Acad. Sci. 29, 434–439 (1967)PubMedGoogle Scholar
  75. 75.
    Valadares, J.R.E., Singhal, R.L., Parulekar, M.R.: 17 β-estradiol: Inducer of uterine hexokinase. Science 159, 990–991 (1968)PubMedGoogle Scholar
  76. 76.
    Ui, H., Mueller, G.C.: The role of RNA synthesis in early estrogen action. Proc. nat. Acad. Sci. (Wash.) 50, 256–260 (1963)Google Scholar
  77. 77.
    Hamilton, T.H.: Control by estrogen of genetic transcription and translation: Binding to chromatin and stimulation of nucleolar RNA synthesis are primary events in the early estrogen action. Science 161, 649–661 (1968)PubMedGoogle Scholar
  78. 78.
    Wicks, W.D., Kenney, F.T.: RNA synthesis in rat seminal vesicles: Stimulation by testosterone. Science 144, 1346–1347 (1964)PubMedGoogle Scholar
  79. 79.
    Mueller, G.C., Herranen, A.M., Jervell, K.F.: Studies on the mechanism of action of estrogens. Recent Progr. Hormone Res. 14, 95–129 (1958)PubMedGoogle Scholar
  80. 80.
    McCorquodale, D.J., Veach, E.G., Mueller, G.C.: The incorporation in vitro of labeled amino acids into the proteins of normal and regenerating rat liver. Biochim. biophys. Acta (Amst.) 46, 335–343 (1961)Google Scholar
  81. 81.
    Gorski, J., Toft, D., Shyamala, G., Smith, D., Notides, A.: Hormone receptors: Studies on the interaction of estrogen with the uterus. Recent Progr. Hormone Res. 24, 45–80 (1968)PubMedGoogle Scholar
  82. 82.
    Shyamala, G., Gorski, J.: Estrogen receptors in the rat uterus: Studies on the interaction of cytosol and nuclear binding sites. J. biol. Chem. 244, 1097–1103 (1969)PubMedGoogle Scholar
  83. 83.
    Jensen, E.V., Hurst, D.J., De Sombre, E.R., Jungblut, P.W.: Sulfhydryl groups and estradiol-receptor interaction. Science 158, 385–387 (1967)PubMedGoogle Scholar
  84. 84.
    Jensen, E.V., Jacobson, H.I.: Basic guides to the mechanism of estrogen action. Recent Progr. Hormone Res. 18, 387–414 (1962)Google Scholar
  85. 85.
    Cross, B.: The hypothalamus in mammalian homeostasis. Soc. exp. Biol. Symp. (Great Britain) XVIII, 157–193 (1964)Google Scholar
  86. 86.
    Jones, G.S.: Induction of ovulation. Annu. Rev. Med. 19, 351–372 (1968)PubMedGoogle Scholar
  87. 87.
    Everett, J.W.: Central neural control of reproductive functions of the adenohypophysis. Physiol. Rev. 44, 373–431 (1964)PubMedGoogle Scholar
  88. 88.
    Federman, D.D.: Disorders of sexual development. New Engl. J. Med. 277, 351–360 (1967)PubMedGoogle Scholar
  89. 89.
    Richardson, G.S.: Ovarian physiology (continued). New Engl. J. Med. 274, 1121–1134 (1966)PubMedGoogle Scholar
  90. 90.
    Hirschhorn, K.: Chromosomes: Growth and development: Chromosomal influences on sexual differentiation. In: Environmental influences on genetic expression: Biological and behavioral aspects of sexual differentiation (Kretchmer, N., and Walcher, D.N., eds.), No. 2, p. 83–90. Washington, D.C.: Superintendent of Documents 1969Google Scholar
  91. 91.
    Segre, E.J., Klaiber, E.L., Lobotsky, J., Lloyd, C.W.: Hirsutism and virilizing syndromes. Annu. Rev. Med. 15, 315–324 (1964)PubMedGoogle Scholar
  92. 92.
    Kendall, J.W., Sloop, P.R., Jr.: Dexamethasone-suppressible adrenocortical tumor. New Engl. J. Med. 279, 532–535 (1968)PubMedGoogle Scholar
  93. 93.
    Lazarus, S.S., Volk, B.W.: The pancreas in human and experimental diabetes. New York: Grune & Stratton 1962Google Scholar
  94. 94.
    Wells, L.J., Lazarow, A.: Organ cultures of pancreases of fetuses from diabetic rats: Effects of high-glucose media upon the granulation of the beta cells and upon the insulin content of the media. Diabetes 16, 846–851 (1967)Google Scholar
  95. 95.
    Lacy, P.E.: Pathology of the islets of Langerhans. Path. Annu. 1, 352–370 (1966)Google Scholar
  96. 96.
    Bloodworth, J.M.B., Jr.: Histochemistry and electron microscopy of diabetic retinopathy. In: Small blood vessel involvement in diabetes mellitus (Siperstein, M.D., Colwell, S.R., and Meyer, K., eds.). Proc. Symp. p. 81–87. Washington, D.C.: Amer. Inst. Biol. Sci. 1964Google Scholar
  97. 97.
    Israel, M.: Diabetic retinopathy. Roslyn Heights, New York: Vascular Research Foundation 1968Google Scholar
  98. 98.
    Churg, J., Dachs, S.: Diabetic renal disease: arteriosclerosis and glomerulosclerosis. Path. Annu. 1, 148–171 (1966)Google Scholar
  99. 99.
    Gullick, H.D.: Carcinoma of the pancreas; a review and critical study of 100 cases. Medicine (Baltimore) 38, 47–84 (1959)Google Scholar
  100. 100.
    Farquhar, M.G., Hopper, J., Jr., Moon, H.D.: Diabetic glomerulosclerosis: Electron and light microscopic studies. Amer. J. Path. 35, 721–753 (1959)PubMedGoogle Scholar
  101. 101.
    Lendrum, A.C.: The hypertensive diabetic kidney as a model of the so-called collagen diseases. Canad. med. Ass. J. 88, 442–452 (1963)PubMedGoogle Scholar
  102. 102.
    Dolman, C.L.: The morbid anatomy of diabetic neuropathy. Neurology (Minneap.) 13, 135–142 (1963)Google Scholar
  103. 103.
    Vallance-Owen, J.: Insulin antagonists and inhibitors. Advanc. Metab. Disord. 1, 191–215 (1964)Google Scholar
  104. 104.
    Riklis, E., Quastel, J.H.: Effects of metabolic inhibitors on potassium-stimulated glucose absorption by isolated surviving guinea pig intestine. Canad. J. Biochem. 36, 363–367 (1958)PubMedGoogle Scholar
  105. 105.
    Levine, R., Mahler, R.: Production, secretion, and availability of insulin. Annu. Rev. Med. 15, 413–432 (1964)PubMedGoogle Scholar
  106. 106.
    Porte, D., Jr., Bagdade, J.D.: Human insulin secretion: An integraded approach. In: Annual review of medicine (DeGraff, A.C., and Creger, W.P., eds.), vol. 21, p. 219–240. Palo Alto, Calif.: Annual Reviews Inc. 1971Google Scholar
  107. 107.
    Rubenstein, A.H., Steiner, D.F.: Proinsulin. In: Annual review of medicine (DeGraff, A.C., and Creger, W.P., eds.), vol. 22, p. 1–18. Palo Alto, Calif.: Annual Reviews Inc. 1971Google Scholar
  108. 108.
    Katsoyannis, P.G.: Synthetic insulins. Recent Progr. Hormone Res. 23, 505–563 (1967)PubMedGoogle Scholar
  109. 109.
    Steiner, D.F.: Evidence for a precursor in the biosynthesis of insulin. Trans. N. Y. Acad. Sci. 30, 60–68 (1967–1968)PubMedGoogle Scholar
  110. 110.
    Steiner, D.F., Cunningham, D., Spigelman, L., Aten, B.: Insulin biosynthesis: Evidence for a precursor. Science 157, 697–700 (1967)PubMedGoogle Scholar
  111. 111.
    Kreisberg, R.A., Boshell, B.R., DiPlacido, J., Roddam, R.F.: Insulin secretion in obesity. New Engl. J. Med. 276, 314–319 (1967)PubMedGoogle Scholar
  112. 112.
    Stadie, W.C.: Current concepts of the action of insulin. Physiol. Rev. 34, 52–100 (1954)PubMedGoogle Scholar
  113. 113.
    Rieser, P.: Insulin, membranes and metabolism. Baltimore: Williams &Wilkins 1967Google Scholar
  114. 114.
    Krahl, M.E.: The action of insulin on cells. New York: Academic Press 1961Google Scholar
  115. 115.
    Levine, R., Haft, D.E.: Carbohydrate homeostasis (Part II). New Engl. J. Med. 283, 237–246 (1970)PubMedGoogle Scholar
  116. 116.
    Villee, C.A., White, V.K., Hastings, A.B.: Metabolism of C14-labeled glucose and pyruvate by rat diaphragm muscle in vitro. J. biol. Chem. 195, 287–297 (1952)PubMedGoogle Scholar
  117. 117.
    Villee, C.A., Hastings, A.B.: The metabolism of C14-labeled glucose by the rat diaphragm in vitro. J. biol. Chem. 179, 673–687 (1949)PubMedGoogle Scholar
  118. 118.
    Shaw, W.N., Stadie, W.C.: Coexistence of insulin-responsive and insulin-non-responsive glycolytic systems in rat diaphragm. J. biol. Chem. 227, 115–123 (1957)PubMedGoogle Scholar
  119. 119.
    Shaw, W.N., Stadie, W.C.: Two identical Embden-Meyerhof enzyme systems in normal rat diaphragms differing in cytological location and response to insulin. J. biol. Chem. 234, 2491–2496 (1959)PubMedGoogle Scholar
  120. 120.
    Chaikoff, I.L.: Metabolic blocks in carbohydrate metabolism in diabetes. Harvey Lect. Series 47, 99–125 (1951–1952)Google Scholar
  121. 121.
    Williamson, J.R., Kreisberg, R.A., Felts, P.W.: Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver. Proc. nat. Acad. Sci. (Wash.) 56, 247–254 (1966)Google Scholar
  122. 122.
    Randle, P.J., Garland, P.B., Hales, C.N., Newsholme, E.A., Denton, R.M., Pogson, C.I.: Interactions of metabolism and the physiological role of insulin. Recent Progr. Hormone Res. 22, 1–48 (1966)PubMedGoogle Scholar
  123. 123.
    Levine, R., Goldstein, M.S.: On the mechanism of action of insulin. Recent Progr. Hormone Res. 11, 343–380 (1955)Google Scholar
  124. 124.
    Fisher, R.B.: Insulin and the transport of sugars. In: The mechanism of action of insulin (Young, F.G., Broom, W.A., and Wolff, F.W., eds.), p. 35–46. Oxford: Blackwell Scientific Publications 1960Google Scholar
  125. 125.
    Ross, E.J.: Insulin and permeability of cell membranes to glucose. Nature (Lond.) 171, 125 (1953)Google Scholar
  126. 126.
    Ross, E.J.: Influence of insulin on permeability of blood-aqueous barrier to glucose. J. Physiol. (Lond.) 116, 414–423 (1952)Google Scholar
  127. 127.
    Cori, C.F.: Enzymatic reactions in carbohydrate metabolism. Harvey Lect. Series 41, 253–272 (1945–1946)Google Scholar
  128. 128.
    Colowick, S.P., Cori, C.F., Slein, M.W.: The effect of adrenal cortex and anterior pituitary extracts and insulin on the hexokinase reaction. J. biol. Chem. 168, 583–596 (1947)PubMedGoogle Scholar
  129. 129.
    Weil-Malherbe, H.: An inhibitor of hexokinase in the plasma of diabetics. Nature (Lond.) 165, 155 (1950)Google Scholar
  130. 130.
    Bornstein, J., Park, C.R.: Inhibition of glucose uptake by the serum of diabetic rats. J. biol. Chem. 205, 503–511 (1953)PubMedGoogle Scholar
  131. 131.
    Hastings, A.B., Renold, A.E., Teng, C.T.: Effects of ions and hormones on carbohydrate metabolism. Recent Progr. Hormone Res. 11, 381–400 (1955)Google Scholar
  132. 132.
    Fain, J.N., Loken, S.C.: Response of trypsin-treated brown and white fat cells to hormones. Preferential inhibition of insulin action. J. biol. Chem. 244, 3500–3506 (1969)PubMedGoogle Scholar
  133. 133.
    Porte, D., Jr., Bagdade, J.D.: Human insulin secretion: An integrated approach. Annu. Rev. Med. 21, 219–240 (1970)PubMedGoogle Scholar
  134. 134.
    Bressler, R.: The biochemistry of ketosis. Ann. N. Y. Acad. Sci. 104, 735–752 (1963)PubMedGoogle Scholar
  135. 135.
    Krebs, H.A.: The regulation of the release of ketone bodies by the liver. Advanc. Enzyme Regul. 4, 339–353 (1966)Google Scholar
  136. 136.
    Shreeve, W.W.: Diabetic ketosis. Ann. N. Y. Acad. Sci. 104, 772–786 (1963)PubMedGoogle Scholar
  137. 137.
    Stadie, W.C.: Ketogenesis. Diabetes 7, 173–179 (1958)PubMedGoogle Scholar
  138. 138.
    Lossow, W.J., Brown, G.W., Jr., Chaikoff, I.L.: The action of insulin in sparing fatty acid oxidation: A study with palmitic acid-1-C14 and octanoate-1-C14. J. biol. Chem. 220, 839 (1956)PubMedGoogle Scholar
  139. 139.
    Felts, J.M., Doell, R.G., Chaikoff, I.L.: The effect of insulin on the pathways of conversion of glucose to fatty acids in the liver. J. biol. Chem. 219, 473–478 (1956)PubMedGoogle Scholar
  140. 140.
    Wakil, S.J.: Mechanism of fatty acid synthesis. J. Lipid Res. 2, 1–24 (1961)Google Scholar
  141. 141.
    Frohman, C.E., Orten, J.M.: Tracer studies of the acids of the tricarboxylic acid cycle. I. The fate of labeled acetate in the livers of normal and diabetic rats. J. biol. Chem. 216, 795–799 (1955)PubMedGoogle Scholar
  142. 142.
    Cornblath, M.: Familial carbohydrate intolerance and hypoglycemia. Annu. Rev. Med. 17, 161–178 (1966)PubMedGoogle Scholar
  143. 143.
    Marble, A.: Oral hypoglycemic agents. Annu. Rev. Med. 12, 135–150 (1961)PubMedGoogle Scholar
  144. 144.
    Hanson, R.L., Ray, P.D., Walter, P., Lardy, H.A.: Mode of action of hypoglycemic agents. I. Inhibition of gluconeogenesis by quinaldic acid and 5-methoxyindole-2-carboxylic acid. J. biol. Chem. 244, 4351–4359 (1969)PubMedGoogle Scholar
  145. 145.
    Lefkowitz, R.J.: Isolated hormone receptors, physiologic and clinical implications. New Engl. J. Med. 288, 1061–1066 (1973)PubMedGoogle Scholar
  146. 146.
    Cuatrecasas, P.: Insulin receptor of liver and fat cell membranes. Fed. Proc. 32, 1838–1846 (1973)PubMedGoogle Scholar
  147. 147.
    Cuatrecasas, P.: Interaction of concanavalin A and wheat germ agglutinin with the insulin receptor of fat cells and liver. J. biol. Chem. 248, 3528–3534 (1973)PubMedGoogle Scholar
  148. 148.
    Karlin, A.: Molecular interactions of the acetylcholine receptor. Fed. Proc. 32, 1847–1853 (1973)PubMedGoogle Scholar
  149. 149.
    Dufau, M.L., Charreau, E.H., Catt, K.J.: Characteristics of a soluble gonadotropin receptor from the rat testis. J. biol. Chem. 248, 6973–6982 (1973)PubMedGoogle Scholar
  150. 150.
    Cuatrecasas, P.: Properties of the insulin receptor isolated from liver and fat cell membranes. J. biol. Chem. 247, 1980–1991 (1972)PubMedGoogle Scholar
  151. 151.
    Milgrom, E., Thi, L., Atger, J., Baulieu, E.E.: Mechanisms regulating the concentration and the conformation of progesterone receptor(s) in the uterus. J. biol. Chem. 248, 6366–6374 (1973)PubMedGoogle Scholar
  152. 152.
    Samuels, H.H., Tsai, J.S.: Thyroid hormone action in cell culture: Demonstration of nuclear receptors in intact cells and isolated nuclei. Proc. nat. Acad. Sci. (Wash.) 70, 3488–3492 (1973)Google Scholar
  153. 153.
    Marx, S.J., Woodward, C., Aurbach, G.D., Glossmann, H., Keutmann, H.T.: Renal receptors for calcitonin binding and degradation of hormone. J. biol. Chem. 248, 4797–4802 (1973)PubMedGoogle Scholar
  154. 154.
    Selinger, Z., Batzri, S., Eimerl, S., Schramm, M.: Calcium and energy requirements for K+ release mediated by the epinephrine α-receptor in rat parotid slices. J. biol. Chem. 248, 361–368 (1973)PubMedGoogle Scholar
  155. 155.
    Batzri, S., Selinger, Z., Schramm, M., Robinovitch, M.R.: Potassium release mediated by the epinephrine α-receptor in rat parotid slices; properties and relation to enzyme secretion. J. biol. Chem. 248, 361–368 (1973)PubMedGoogle Scholar
  156. 156.
    Gospodarowicz, D.: Properties of the luteinizing hormone receptor of isolated bovine corpus luteum plasma membranes. J. biol. Chem. 248, 5042–5049 (1973)PubMedGoogle Scholar
  157. 157.
    Chen, T.C., DeLuca, H.F.: Receptors of 1,25-dihydroxycholecalciferol in rat intestine. J. biol. Chem. 248, 4890–4895 (1973)PubMedGoogle Scholar
  158. 158.
    Sica, V., Parikh, I., Nola, E., Puca, G.A., Cuatrecasas, P.: Affinity chromatography and the purification of estrogen receptors. J. biol. Chem. 248, 6543–6558 (1973)PubMedGoogle Scholar
  159. 159.
    Sutherland, E.W.: Studies on the mechanism of hormone action. Science 177, 401–408 (1972)PubMedGoogle Scholar
  160. 160.
    Jost, J.P., Rickenberg, H.V.: Cyclic AMP. Annu. Rev. Biochem. 40, 741–774 (1971)Google Scholar
  161. 161.
    Bitensky, M.W., Gorman, R.E.: Chemical mediation of hormone action. Annu. Rev. Med. 23, 263–284 (1972)PubMedGoogle Scholar
  162. 162.
    Kolata, G.B.: Cyclic GMP: Cellular regulatory agent? Science 182, 149–151 (1973)PubMedGoogle Scholar
  163. 163.
    Liddle, G.W., Hardman, J.G.: Cyclic adenosine monophosphate as a mediator of hormone action. New Engl. J. Med. 285, 560–566 (1971)PubMedGoogle Scholar
  164. 164.
    Pastan, I.: Cyclic AMP. Sci. Amer. 227, 97–105 (1972)Google Scholar
  165. 165.
    Lesniak, M.A., Gorden, P., Roth, J., Gavin, J.R., III: Binding of 125I-human growth hormone to specific receptors in human cultured lymphocytes. Characterization of the interaction and a sensitive radioreceptor assay. J. biol. Chem. 249, 1661–1667 (1974)PubMedGoogle Scholar
  166. 166.
    Hall, K., Luft, R.: Growth hormone and somatomedin. In: Advances in metabolic disorders (Levine, R., and Luft, R., eds.), vol. 7, p. 1–36. New York: Academic Press 1974Google Scholar
  167. 167.
    Merimée, T.J.: Isolated growth hormone deficiency and related disorders. In: Annual review of medicine (Creger, W.P., Coggins, C.H., and Hancock, E.W., eds.), vol. 25, p. 137–142. Palo Alto, Calif.: Annual Reviews Inc. 1974Google Scholar
  168. 168.
    Dousa, T.P.: Cellular action of antidiuretic hormone in nephrogenic diabetes insipidus. Mayo Clin. Proc. 49, 188–199 (1974)PubMedGoogle Scholar
  169. 169.
    Breslow, E.: The neurophysins. In: Advances in enzymology (Meister, A., ed.), vol. 40, p. 271–333. New York: John Wiley & Sons 1974Google Scholar
  170. 170.
    Winokur, A., Utiger, R.D.: Thyrotropin-releasing hormone: Regional distribution in rat brain. Science 185, 265–267 (1974)PubMedGoogle Scholar
  171. 171.
    Brownstein, M.J., Palkovits, M., Saavedra, J.M., Bassiri, R.M., Utiger, R.D.: Thyrotropin-releasing hormone in specific nuclei of rat brain. Science 185, 267–269 (1974)PubMedGoogle Scholar
  172. 172.
    Guillemin, R.: Hypothalamic hormones: Releasing and inhibiting factors. Hosp. Pract. 8, 111–120 (1973)Google Scholar
  173. 173.
    Blackwell, R.E., Guillemin, R.: Hypothalamic control of adenohypophysial secretions. Annu. Rev. Physiol. 35, 357–390 (1973)PubMedGoogle Scholar
  174. 174.
    Besser, G.M., Mortimer, C.H.: Hypothalamic regulatory hormones: A review. J. clin. Path. 27, 173–184 (1974)PubMedGoogle Scholar
  175. 175.
    Wilber, J.F.: Thyrotropin releasing hormone: Secretion and actions. In: Annual review of medicine (Creger, W.P., Coggins, C.H., and Hancock, E.W., eds.), vol. 24, p. 353–364. Palo Alto, Calif.: Annual Reviews Inc. 1973Google Scholar
  176. 176.
    Shishiba, Y., Shimizu, T., Yoshimura, S., Shizume, K.: Direct evidence for human thyroidal stimulation by LATS-protector. J. clin. Endocr. 36, 517–521 (1973)PubMedGoogle Scholar
  177. 177.
    Valenta, L.J., Bode, H., Vickery, A.L., Caulfield, J.B., Maloof, F.: Lack of thyroid peroxidase activity as the cause of congenital goitrous hypothyroidism. J. clin. Endocr. 36, 830–844 (1973)PubMedGoogle Scholar
  178. 178.
    Fleischer, N., Lorente, M., Kirkland, J., Kirkland, R.: Synthetic thyrotropin releasing factor as a test of pituitary thyrotropin reserve. J. clin. Endocr. 34, 617–624 (1972)PubMedGoogle Scholar
  179. 179.
    Miyai, K., Azukizawa, M., Kumahara, Y.: Familial isolated thyrotropin deficiency with cretinism. New Engl. J. Med. 285, 1043–1048 (1971)PubMedGoogle Scholar
  180. 180.
    Krüskemper, H.L., Beisenherz, W., Herrmann, J., Kley, H.K.: Hypothyreose mit isoliertem Mangelan thyreotropin-releasing-hormon (TRH). Dtsch. med. Wschr. 97, 76–81 (1972)PubMedGoogle Scholar
  181. 181.
    Baxter, J.D., Harris, A.W., Tomkins, G.M., Cohn, M.: Glucocorticoid receptors in lymphoma cells in culture: Relationship to glucocorticoid killing activity. Science 171, 189–191 (1971)PubMedGoogle Scholar
  182. 182.
    Rinehart, J.J., Sagone, A.L., Balcerzak, S.P., Ackerman, G.A., LoBuglio, A.F.: Effects of corticosteroid therapy on human monocyte function, New Engl. J. Med. 292, 236–241 (1975)PubMedGoogle Scholar
  183. 183.
    Chayen, J., Bitensky, L., Butcher, R.G., Altman, F.P.: Cellular biochemical assessment of steroid activity. In: Advances in steroid biochemistry and pharmacology (Briggs, M.H., and Christie, G.A., eds.), vol. 4, p. 1–60. London: Academic Press 1974Google Scholar
  184. 184.
    Jensen, E.V., De Sombre, E.R.: Mechanism of action of the female sex hormones. In: Annual review of biochemistry (Snell, E.E., Boyer, P.D., Meister, A., and Sinsheimer, R.L., eds.), vol. 41, p. 203–230. Palo Alto, Calif.: Annual Reviews Inc. 1972Google Scholar
  185. 185.
    Vaitukaitis, J.L., Ross, G.T.: Recent advances in evaluation of gonadotropic hormones. In: Annual review of medicine (Creger, W.P., Coggins, C.H., and Hancock, E.W., eds.), vol. 24, p. 295–302. Palo Alto, Calif.: Annual Reviews Inc. 1973Google Scholar
  186. 186.
    Blackwell, R.E., Guillemin, R.: Hypothalamic control of adenohypophysial secretions. In: Annual review of physiology (Comroe, J.H., Jr., Edelman, I.S., and Sonnenschein, R.R., eds.), vol. 35, p. 357–390. Palo Alto, Calif.: Annual Reviews Inc. 1973Google Scholar
  187. 187.
    Tager, H.S., Steiner, D.F.: Peptide hormones. In: Annual review of biochemistry (Snell, E.E., Boyer, P.D., Meister, A., and Richardson, C.C., eds), vol. 43, p. 509–538. Palo Alto, Calif.: Annual Reviews Inc. 1974Google Scholar
  188. 188.
    Wilson, J.D., Harrod, M.J., Goldstein, J.L., Hemsell, D.L., Mac Donald, P.C.: Familial incomplete male pseudohermaphroditism, type 1. Evidence for androgen resistance and variable clinical manifestations in a family with the Reifenstein syndrome. New Engl. J. Med. 290, 1097–1103 (1974)PubMedGoogle Scholar
  189. 189.
    Werk, E.E., Jr., Sholiton, L.J., Kalejs, L.: Testosterone-secreting adrenal adenoma under gonadotropin control. New Engl. J. Med. 289, 767–770 (1973)PubMedGoogle Scholar
  190. 190.
    Adlercreutz, H.: Hepatic metabolism of estrogens in health and disease, New Engl. J. Med. 290, 1081–1083 (1974)PubMedGoogle Scholar
  191. 191.
    Hochberg, R.B., McDonald, P.D., Feldman, M., Lieberman, S.: Studies on the biosynthetic conversion of cholesterol into pregnenolone. Side chain cleavage of some 20-φ-tolyl analogs of cholesterol and 20α-hydroxycholesterol. J. biol. Chem. 249, 1277–1285 (1974)PubMedGoogle Scholar
  192. 192.
    Kimura, T., Nakamura, S., Huang, J.J., Chu, J-W, Wang, H-P, Tsernoglou, D.: Electron transport system for adrenocortical mitochondrial steroid hydroxylation reactions: The mechanism of the hydroxylation reactions and properties of the flavoprotein-iron-sulfur protein complex. Ann. N. Y. Acad. Sci. 212, 94–106 (1973)PubMedGoogle Scholar
  193. 193.
    Kefalides, N.A.: Biochemical properties of human glomerular basement membrane in normal and diabetic kidneys. J. clin. Invest. 53, 403–407 (1974)PubMedGoogle Scholar
  194. 194.
    Krahl, M.E.: Endocrine function of the pancreas. In: Annual review of physiology (Comroe, J.H., Jr., Sonnenschein, R.R., Zierler, K.L., eds.), vol. 36, p. 331–360. Palo Alto, Calif.: Annual Reviews Inc. 1974Google Scholar
  195. 195.
    Cahill, G.F., Jr., Soeldner, J.S.: Diabetes, glucagon and growth hormone. New Engl. J. Med. 291, 577–578 (1974)PubMedGoogle Scholar
  196. 196.
    Steiner, D.F., Kemmler, W., Tager, H.S., Peterson, J.D.: Proteolytic processing in the biosynthesis of insulin and other proteins. Fed. Proc. 33, 2105–2115 (1974)PubMedGoogle Scholar
  197. 197.
    Hellman, B., Idahl, L-Å, Lernmark, Å., Täljedal, I.-B.: The pancreatic β-cell recognition of insulin secretagogues: Does cyclic AMP mediate the effect of glucose? Proc. nat. Acad. Sci. (Wash.) 71, 3405–3409 (1974)Google Scholar
  198. 198.
    Senior,B.:Neonatalhypoglycemia.NewEngl.J.Med.289,790–793 (1973)Google Scholar
  199. 199.
    Schneider, P.B.: A site of action of thyrotropin. Stimulation of the conversion of glycerophosphate to phosphatidic acid in bovine thyroid slices. J. biol. Chem. 247, 7910–7914 (1972)PubMedGoogle Scholar
  200. 200.
    Goldberg, N.D.: Cyclic nucleotides and cell function. Hosp. Pract. 9, 127–142 (1974)Google Scholar
  201. 201.
    Rasmussen, H.: Cell communication, calcium ion and cyclic adenosine monophosphate. Science 170, 404–412 (1970)PubMedGoogle Scholar
  202. 202.
    Rasmussen, H., Goodman, D.B.P., Tenenhouse, A.: The role of cyclic AMP and calcium in cell activation. Critical Reviews Biochem. 1, 95–148 (1972)Google Scholar
  203. 203.
    Rasmussen, H.: Ions as “second messengers”. Hosp. Pract. 9, 99–107 (1974)Google Scholar
  204. 204.
    Beisswenger, P.J., Spiro, R.G.: Studies on the human glomerular basement membrane. Composition, nature of the carbohydrate units and chemical changes in diabetes mellitus. Diabetes 22, 180–193 (1973)PubMedGoogle Scholar
  205. 205.
    Beaumont, P., Schofield, P.J., Hollows, F.C.: Growth hormone, sorbitol and diabetic capillary disease. Lancet I, 579–581 (1971)Google Scholar
  206. 206.
    Unger, R.H.: The essential role of glucagon in the pathogenesis of diabetes mellitus. Lancet I, 14–16 (1975)Google Scholar
  207. 207.
    Dobbs, R., Sakurai, H., Sasaki, H., Faloona, G.: Glucagon: Role in the hyperglycemia of diabetes mellitus. Science 187, 544–547 (1975)PubMedGoogle Scholar
  208. 208.
    Mallette, L.E., Exton, J.H., Park, C.R.: Effects of glucagon on amino acid transport and utilization in the perfused rat liver. J. biol. Chem. 244, 5724–5728 (1969)PubMedGoogle Scholar
  209. 209.
    MacCuish, A.C., Irvine, W.J., Barnes, E.W., Duncan, L.J.P.: Antibodies to pancreatic islet cells in insulin-dependent diabetics with coexistent autoimmune disease. Lancet I, 7869 (1974)Google Scholar
  210. 210.
    Hamlym, A.M., Morris, J.W., Lunzer, M.R., Puritz, H.: Portal hypertension with varices in unusual sites. Lancet II, 1531 (1974)Google Scholar
  211. 211.
    Bottazzo, G.F., Florin-Christensen, A., Doniach, D.: Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet II, 1279–1283 (1974)Google Scholar
  212. 212.
    Schrier, R.W., Berl, T.: Nonosmolar factors affecting renal water excretion (Part I and II). New Engl. J. Med. 292, 81–88, 141–145 (1975)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Julien L. Van Lancker
    • 1
  1. 1.Department of PathologyU.C.L.A. School of MedicineLos AngelesUSA

Personalised recommendations