Fertilization takes place when the spermatozoon activates the egg and when the maternal and paternal hereditary factors combine. O. HERTWIG (1876) ascribed the egg activation in fertilization to the fusion of gamete nuclei (syngamy). BOVERI (1887) discussed this fusion from a cytologic point of view and proved it to be inconsistent with the phenomena of parthenogenesis, partial fertilization, merogony, and gynogenesis, in none of which does activation involve the process of syngamy. He found that what is essential to the fertilization phenomenon is the introduction and subsequent behavior of the sperm centriole.


Sperm Nucleus Cortical Granule Vitelline Membrane Middle Piece Fertilization Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AFZELIUS, B.A., 1955. The fine structure of the sea urchin spermatozoa as revealed by the electron microscope. Z. Zeilforsch. 42, 134–148.CrossRefGoogle Scholar
  2. AKETA, K., 1967. On the sperm-egg bonding as the initial step of fertilization in the sea urchin. Embryologia 9, 238–245.PubMedCrossRefGoogle Scholar
  3. AKETA, K., ONITAKE, K., 1969. Effect on fertilization of antiserum against sperm-binding protein from homo- and heterologous sea urchin egg surfaces. Exp. Cell Res. 56, 84–86.PubMedCrossRefGoogle Scholar
  4. BAXANDALL, J., 1966. The surface reactions associated with fertilization of the sea urchin egg as studied by immunoelectron microscopy. J. Ultrastr. Res. 16, 158–180.CrossRefGoogle Scholar
  5. BAXANDALL, J., PERLMANN, P., AFZELIUS, B.A., 1964a. Immuno-electron microscope analysis of the surface layers of the unfertilized sea urchin egg. I. Effects of the antisera on the cell ultrastructure. J. Cell Biol. 23, 609–628.PubMedCrossRefGoogle Scholar
  6. BAXANDALL, J., PERLMANN, P., AFZELIUS, B.A., 1964b. Immuno-electron microscope analysis of the surface layers of the unfertilized sea urchin egg. II. Localization of surface antigens. J. Cell Biol. 23, 629–650.PubMedCrossRefGoogle Scholar
  7. BERNSTEIN, M.H., 1962. Normal and reactive morphology of sea urchin spermatozoa. Exp. Cell Res. 27, 197–209.PubMedCrossRefGoogle Scholar
  8. BOVERI, TH., 1887. Über den Anteil der Spermatozoen an der Teilung des Eies. Sitz. Ges. Morph, u. Physiol. 3, 151–164.Google Scholar
  9. BOVERI, Th., 1888. Über partielle Befruchtung. Sitz. Ges. Morph. u. Physiol. 4, 64–72.Google Scholar
  10. BOWEN, R.H., 1924. On the acrosome of the animal sperm. Anat. Res. 28, 1–13.CrossRefGoogle Scholar
  11. BURY, J., 1913. Experimentelle Untersuchungen über die Einwirkung der Temperatur 0°C auf die Entwicklung der Echinideneier. Arch. f. Entw. Mech. 36, 537–594.Google Scholar
  12. DAN, J.C., 1950a. Sperm entrance in echinoderms observed with the phase contrast microscope. Biol. Bull. 99, 399–411.PubMedCrossRefGoogle Scholar
  13. DAN, J.C., 1950b. Fertilization in the medusan, Spirocodon saltatrix. Biol. Bull. 99, 412–415.PubMedCrossRefGoogle Scholar
  14. DAN, J.C., 1952. Studies on the acrosome. I. Reaction to egg-water and other stimuli. Biol. Bull. 103, 54–66.CrossRefGoogle Scholar
  15. DAN, J.C., 1954. Studies on the acrosome. III. Effect of calcium deficiency. Biol. Bull. 107, 335–349.CrossRefGoogle Scholar
  16. DAN, J.C., 1956. The acrosome reaction. Inter. Rev. Cytol. 5, 368–385.Google Scholar
  17. DAN, J.C., OHORI, Y., KUSHIDA, H., 1964. Studies on the acrosome. VII. Formation of the acrosomal process in sea urchin spermatozoa. J. Ultrastr. Res. 11, 508–524.CrossRefGoogle Scholar
  18. FOX, H.M., 1924. Lunar periodicity in reproduction. Proc. Roy. Soc. London 95, 523–550.CrossRefGoogle Scholar
  19. FRANKLIN, L.E., 1965. Morphology of gamete membrane fusion and of sperm entry into oocytes of the sea urchin. J. Cell Biol. 25, 81–100.PubMedCrossRefGoogle Scholar
  20. HAGSTRÖM, B., HAGSTRÖM, B., 1954. Re-fertilization of the sea urchin egg. Exp. Cell Res. 6, 491–496.PubMedCrossRefGoogle Scholar
  21. HAGSTRÖM, B.E., LÖNNING, S., 1961. Studies of the species specificity of echinoderms. Sarsia 4, 5–19.Google Scholar
  22. HARRIS, P.J., 1961. Electron microscope study of mitosis in sea urchin blastomeres. J. Biophys. Biochem. Cytol. 11, 419–431.PubMedCrossRefGoogle Scholar
  23. HARRIS, P.J., 1967a. Nucleolus-like bodies in sea urchin eggs. Amer. Zool. 7, 753–754.Google Scholar
  24. HARRIS, P.J., 1967b. Structural changes following fertilization in the sea urchin egg: Formation and dissolution of heavy bodies. Exp. Cell Res. 48, 569–581.CrossRefGoogle Scholar
  25. HARVEY, E.B., 1956. The American Arbacia and other sea urchins. Princeton Univ. Press, Princeton, N.J.Google Scholar
  26. HERBST, C., 1912. Vererbungsstudien. VII. Die cytologischen Grundlagen der verschiebung der Vererbungsrichtung nach der mütterlichen Seite. 2. Mitteilung. Arch. f. Entw. Mech. 34, 1–89.Google Scholar
  27. HERTWIG, O., 1876. Beiträge zur Kenntnis der Bildung, Befruchtung und Teilung des tierischen Eies. Morphol. Jahrb., Leipzig 1, 347–434.Google Scholar
  28. HIRAMOTO, Y., 1962a. Microinjection of the live spermatozoa into sea urchin eggs. Exp. Cell Res. 27, 416–426.PubMedCrossRefGoogle Scholar
  29. HIRAMOTO, Y., 1962b. An analysis of the mechanism of fertilization by means of enucleation of sea urchin eggs. Exp. Cell Res. 28, 323–334.PubMedCrossRefGoogle Scholar
  30. HULTIN, T., 1948a. Species specificity in fertilization reaction. The role of the vitelline membrane of sea urchin eggs in species specificity. Arkiv Zool. 40A, no. 12, 1–9.Google Scholar
  31. HULTIN, T., 1948b. Species specificity in fertilization reaction. II. Influence of certain factors on the cross-fertilization capacity of Arbacia lixula. Arkiv Zool. 40A, no. 20, 1–8.Google Scholar
  32. ISHIDA, J., NAKANO, E., 1950. Fertilization of activated sea urchin eggs deprived of fertilization membrane by washing with Ca-Mg-free media. Annot. Zool. Japon. 23, 43–48.Google Scholar
  33. ISHIKAWA, M., 1954. Experiments on the conjugation of the nuclei in the re-fertilized egg and the activated egg following superimposed fertilization (in Japanese). Zool. Mag. (Tokyo) 63, 424.Google Scholar
  34. ISHIKAWA, M., 1958. Experimental formation of the mark of sperm-entry and its relation to the toughening of the fertilization membrane in the sea urchin egg. Bull. Mar. Biol. Stat., Asamushi 9, 49–50.Google Scholar
  35. ISHIKAWA, M., 1960. Experimental formation of the mark of sperm-entry on the fertilization membrane in the sea urchin egg. Embryologia 5, 186–193.CrossRefGoogle Scholar
  36. ISHIKAWA, M., 1962. Studies on the conjugation of the nuclei in Polyspermie eggs and re-fertilized blastomeres of the sea urchin, Temno-pleurus toreumaticus. Embryologia 7, 259–265.CrossRefGoogle Scholar
  37. ITO, S., 1960. The lamellar systems of cytoplasmic membranes in dividing spermatogenic cells of Drosophila virilis. J. Biophys. Bio-chem. Cytol. 7, 433–440.CrossRefGoogle Scholar
  38. JUST, E.E., 1922. Initiation of development in the egg of Arbacia. I–III. Biol. Bull. 43, 384–422.CrossRefGoogle Scholar
  39. KUHL, W., KÜHL, G., 1949. Neue Ergebnisse zur Cytodynamik der Befruchtung und Furchung des Eies von Psammechinus miliaris GMEL. Zool. Jb., Abt. Anat. Ontog. 70, 1–59.Google Scholar
  40. LILLIE, F.R., 1913. The mechanism of fertilization. Science 38, 524–528.PubMedCrossRefGoogle Scholar
  41. LILLIE, F.R., 1919. Problem of fertilization. Chicago: Univ. Chicago Press.Google Scholar
  42. LILLIE, F.R., 1921. Studies of fertilization. IX. On the question of superposition of fertilization on parthenogenesis in Strongylocen-trotus purpuratus. Biol. Bull. 40, 23–31.CrossRefGoogle Scholar
  43. LILLIE, F.R., JUST, E.E., 1924. Fertilization, pp. 451–506. Cowdry’s General Cytology.Google Scholar
  44. LOEB, J., 1913a. Artificial parthenogenesis and fertilization. Chicago: Univ. Chicago Press.Google Scholar
  45. LOEB, J., 1913b. Reversibility in artificial parthenogenesis. Science 38, 749–751.PubMedCrossRefGoogle Scholar
  46. LOEB, J., 1915. Reversible activation and incomplete membrane formation of the unfertilized eggs of the sea urchin. Biol. Bull. 29, 103–110.CrossRefGoogle Scholar
  47. LOEB, J., 1916. The organism as a whole. New York, London: Putnam’s and Sons.Google Scholar
  48. LONGO, F.J., ANDERSON, E., 1968. The fine structure of pronuclear development and fusion in the sea urchin, Arbacia punctulata. J. Cell Biol. 39, 339–368.PubMedCrossRefGoogle Scholar
  49. LONGO, F.J., ANDERSON, E., 1970. The effects of nicotine on fertilization in the sea urchin, Arbacia punctulata. J. Cell Biol. 46, 308–325.PubMedCrossRefGoogle Scholar
  50. LÖNNING, S., 1964. Studies of the ultrastructure of sea urchin oocyte and the changes induced by insemination. Sarsia 15, 9–15.Google Scholar
  51. METZ, C.B., THOMPSON, P.H., 1967. Effect of papain digested, univalent antibody on the morphology, cleavage and fertilizing capacity of sea urchin eggs. Exp. Cell Res. 45, 433–449.PubMedCrossRefGoogle Scholar
  52. MILLONIG, G., 1967. The structural changes of the nucleolus during oogenesis and embryogenesis of Arbacia lixula. J. Cell Biol. 35, 177A.Google Scholar
  53. MOORE, C.R., 1916. On the superposition of fertilization on parthenogenesis. Biol. Bull. 31, 137–179.CrossRefGoogle Scholar
  54. MOORE, C.R., 1917. On the capacity for fertilization after initiation of development. Biol. Bull. 33, 258–295.CrossRefGoogle Scholar
  55. MOTOMURA, I., 1941. Materials of the fertilization membrane in the eggs of Echinoderms. Sei. Rep. Tohoku Imp. Univ., 4th Ser. 16, 345–363.Google Scholar
  56. MOTOMURA, I., 1950. On a new factor for the toughening of the fertilization membrane of the sea urchins. Sci. Rep. Tohoku Univ., 4th Ser. 18, 561–570.Google Scholar
  57. NAKANO, E., 1954. Further studies on the fertilization of activated sea urchin eggs. Jap. J. Zool. 11, 245–251.Google Scholar
  58. PASTEELS, J., 1965. Aspects structuraux de la fécondation vus au microscope électronique. Arch. Biol. Liège 76, 463–509.PubMedGoogle Scholar
  59. PERLMANN, P., 1954. Study on the effect of antisera on unfertilized sea urchin eggs. Exp. Cell Res. 6, 485–490.PubMedCrossRefGoogle Scholar
  60. PERLMANN, P., 1956. Response of unfertilized sea urchin eggs to antiserum. Exp. Cell Res. 10, 324–353.PubMedCrossRefGoogle Scholar
  61. PERLMANN, P., 1957. Analysis of the surface structures of the sea urchin egg by means of antibodies. I. Comparative study of the effects of various antisera. Exp. Cell Res. 13, 365–390.PubMedCrossRefGoogle Scholar
  62. PERLMANN, P., PERLMANN, H., 1957a. Analysis of the surface structures of the sea urchin egg by means of antibodies. II. The J- and A-antigens. Exp. Cell Res. 13, 454–474.PubMedCrossRefGoogle Scholar
  63. PERLMANN, P., PERLMANN, H., 1957b. Analysis of the surface structures of the sea urchin egg by means of antibodies. III. The C- and F-antigens. Exp. Cell Res. 13, 475–487.PubMedCrossRefGoogle Scholar
  64. POPA, G.T., 1927. The distribution of substances in the spermatozoon (Arbacia and Nereis). Biol. Bull. 52, 238–257.CrossRefGoogle Scholar
  65. REBHUN, L., BERNSTEIN, L., 1967. In vivo sperm aster augmentation by hexylene glycol: Independence of protein synthesis. J. Cell Biol. 35, 111A.Google Scholar
  66. RETZIUS, G., 1910. Zur Kenntnis der Spermien der Echinodermen. Biol. Untersuch. 15, 55–62.Google Scholar
  67. ROBBIN, E., GONATAS, N.K., 1964. The ultrastructure of mammalian cell during the mitotic cycle. J. Cell Biol. 21, 429–463.CrossRefGoogle Scholar
  68. ROTHSCHILD, LORD, 1953. The fertilization reaction in the sea urchin. The induction of polyspermy by nicotine. J. Exp. Biol. 30, 57–67.Google Scholar
  69. ROTHSCHILD, LORD, 1956a. Sea-urchin spermatozoa. Endeavour 15, 79–86.Google Scholar
  70. ROTHSCHILD, LORD, 1956b. The fertilizing spermatozoon. Discovery 18, 64–65.Google Scholar
  71. ROTHSCHILD, LORD, 1956c. Fertilization. London: Methuen and Co., Ltd.Google Scholar
  72. ROTHSCHILD, LORD, SWANN, M.M., 1949. The fertilization reaction in the sea urchin egg. A propagated response to sperm attachment. J. Exp. Biol. 26, 164–176.PubMedGoogle Scholar
  73. ROTHSCHILD, LORD, TYLER, A., 1955. Acrosomal filaments in spermatozoa. Exp. Cell Res. Suppl. 3, 304–311.Google Scholar
  74. RUNNSTRÖM, J., 1928. Die Veränderungen der Plasmakolloide bei der Entwicklungserregung des Seeigeleies. Protoplasma 4, 388–514.CrossRefGoogle Scholar
  75. RUNNSTRÖM, J., 1963. Sperm-induced protrusions in sea urchin oocytes: A study of phase separation and mixing in living cytoplasm. Develop. Biol. 7, 38–50.PubMedCrossRefGoogle Scholar
  76. RUNNSTRÖM, J., Hagström, B.E., Perlmann, P., 1959. Fertilization. In: The cell — biochemistry, physiology, morphology (J. Brächet, A.E. Mirsky, eds.), 1, 327–397. New York: Academic Press.Google Scholar
  77. RUNNSTRÖM, J., Kriszat, G., 1952. The cortical propagation of the activation impulse in the sea urchin egg. Exp. Cell Res. 3, 419–426.CrossRefGoogle Scholar
  78. SUGIYAMA, M., 1938a. Effect of some divalent ions upon the membrane development of sea urchin eggs. J. Fac. Sci. Imp. Univ. Tokyo, Sec. 4, 4, 501–508.Google Scholar
  79. SUGIYAMA, M., 1938b. Further studies on the development of the fertilization membrane in sea urchin eggs. Annot. Zool. Japon. 17, 360–364.Google Scholar
  80. SUGIYAMA, M., 1951. Re-fertilization of the fertilized eggs of the sea urchin. Biol. Bull. 101, 335–344.CrossRefGoogle Scholar
  81. SUGIYAMA, M., 1953a. Physiological analysis of the cortical response of the sea urchin egg to stimulating reagents. I. Response to sodium choleinate and wasp venom. Biol. Bull. 104, 210–215.CrossRefGoogle Scholar
  82. SUGIYAMA, M., 1953b. Physiological analysis of the cortical response of the sea urchin egg to stimulating reagents. II. The propagating or non-propagating nature of the cortical changes induced by various reagents. Biol. Bull. 104, 216–223.CrossRefGoogle Scholar
  83. SUGIYAMA, M., 1956. Physiological analysis of the cortical response of the sea urchin egg. Exp. Cell Res. 10, 364–376.PubMedCrossRefGoogle Scholar
  84. TAKASHIMA, R., TAKASHIMA, Y., 1960. Electron microscope observations on the fertilization phenomenon of sea urchin with special reference to the acrosome filament. Tokushima J. Exp. Med. 6, 334–339.Google Scholar
  85. TEICHMANN, E., 1903. Über die Beziehung zwischen Astrosphären und Furchen. Arch. f. Entw. Mech. 16, 243–327.Google Scholar
  86. TYLER, A., 1941. The role of fertilizin in the fertilization of eggs of the sea urchin and other animals. Biol. Bull. 81, 190–204.CrossRefGoogle Scholar
  87. TYLER, A., MONROY, A., METZ, C.B., 1956. Fertilization of fertilized sea urchin eggs. Biol. Bull. 110, 184–195.CrossRefGoogle Scholar
  88. UEHARA, T., SUGIYAMA, M., 1969. Propagation of the fertilization-wave on the once-activated surface of the sea urchin egg. Embryologia 10, 356–362.PubMedCrossRefGoogle Scholar
  89. WASTENEYS, H., 1916. The rate of oxidations in reversed artificial parthenogenesis. J. Biol. Chem. 24, 281–298.Google Scholar
  90. WILSON, E.B., 1925. The cell in development and heredity. New York: Macmillan Co., 3rd ed.Google Scholar
  91. YAMAMOTO, T., 1944. Physiological studies on fertilization and activation of fish eggs. I. Response of the cortical layer of the egg of Oryzias latipes to insemination and to artificial stimulation. Annot. Zool. Japon. 22, 109–125.Google Scholar
  92. YANAGIMACHI, R., 1953. A note on the so-called “boring movement” of sea urchin spermatozoa (in Japanese). Zool. Mag. (Tokyo) 62, 22–26.Google Scholar
  93. YOSHIDA, M., 1952. Some observations on the maturation of the sea-urchin, Diadema setosum. Annot. Zool. Japon. 25, 265–271.Google Scholar
  94. ZIMMERMAN, A.M., SILBERMAN, L., 1964. Further studies on incorporation of H3-thymidine in Arbacia eggs under hydrostatic pressure. Biol. Bull. 127, 355.Google Scholar
  95. ZIMMERMAN, A.M., ZIMMERMAN, S., 1967. Action of Colcemid in sea urchin eggs. J. Cell Biol. 34, 483–488.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • M. Ishikawa

There are no affiliations available

Personalised recommendations