Advertisement

Integrating Factors

  • J. Runnström

Abstract

The sea urchin egg has already in the ovary an animal-vegetal polarity that is maintained in embryo development even when the axis through the animal and vegetal pole is bent after gastrulation. The cytoplasm around the animal and vegetal poles shows structural differences (RUNNSTRÖM, 1928c, 1955b).

Keywords

Template Activity Dorsoventral Axis Paracentrotus Lividus Vegetal Gradient Attachment Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALBERTSSON, P.A., 1960. Partition of cell particles and macromolecules. Uppsala: Almqvist and Wiksell, p. 1–231.Google Scholar
  2. BäCKSTRöM, S., 1966. A complex between basic proteins and acid polysaccharides in sea urchin oocytes and eggs. Acta embryol. morph. exp.9, 37–43.Google Scholar
  3. BäCKSTRöM, S., 1966. Basic proteins in parthenogenetically activated sea urchin eggs. Acta embryol. morph. exp.9, 83–86.Google Scholar
  4. BäCKSTRöM, S., 1969. Passage de substance radioactive entre un greffon marque et son hôte non marque. Etude autoradiographique de l’embryon d’oursin soumis a la transplantation. CR. Acad. Sci. Paris269, 1684–1685.Google Scholar
  5. BONNER, J., HUANG, R.C., 1964. Role of histone in chromosomal RNA synthesis. In: The nucleohistones (J. Bonner, P. Ts’o, eds.), pp. 251–261. San Francisco: Holden-Day, Inc.Google Scholar
  6. BONNER, J., HUANG, R.C. Histones as specific repressors of chromosomal RNA synthesis. In: Histones (A.V.S. de Reuck, J. Knight, eds.), pp. 18–33. London: Churchill, Ltd.Google Scholar
  7. BONNER, J., DAHMUS, M.E., FAMBROUGH, D., HUANG, R.C, MARUSHIGE, K., TUAN, D.Y., 1968. The Biology of Isolated Chromatin Chromosomes, biologically active in the test tube, provide a powerful tool for the study of gene action. Science159, 47–56.CrossRefGoogle Scholar
  8. BOOIJ, H.L., BUNGENBERG de JONG, H.G., 1956. Biocolloids and their Interactions. In: Protoplasmatologia (L.V. Heilbrunh, F. Weber, eds.), pp. 1–162. Wien: Springer Verlag.Google Scholar
  9. BOVERI, Th., 1889. Ein geschlechtlich erzeugter Organismus ohne mütterliche Eigenschaften. Sitz.-Ber. Ges. Morphl. Phys. München5, 78–80.Google Scholar
  10. BOVERI, Th., 1901. Über die Polarität des Seeigels. Verh. phys.-med. Ges. Würzburg34, 145–176.Google Scholar
  11. BRITTEN, R.J., DAVIDSON, E.H., 1969. Gene regulation for higher cell. A theory. Science165, 349–357.Google Scholar
  12. CRICK, F., 1970. Diffusion in embryogenesis. Nature225, 420–422.PubMedCrossRefGoogle Scholar
  13. CZIHAK, G., 1960. Untersuchungen über die Coelomanlagen und die Metamorphose des Pluteus von Psammechinus miliaris (Gmelin). Zool. Jahrb. Abt. Anat. Ontog. d. Tiere 78, 235–266.Google Scholar
  14. CZIHAK, G., 1961. Ein neuer Gradient in der Pluteusentwicklung. Wilhelm Roux Arch. Entwicklungs-mech. Organ.153, 353–356.CrossRefGoogle Scholar
  15. CZIHAK, G., 1962. Entwicklungsphysiologische Untersuchungen an Echiniden (Topochemie der Blastula und Gastrula, Entwicklung der Bilateral und Radiär-Symmetrie und der Coelomdivertikel). Wilhelm Roux Arch. Entwicklungs-mech. Organ.154, 29–55.CrossRefGoogle Scholar
  16. CZIHAK, G., MEYER, G.F., 1964. Differentiation of the oral field of the sea urchin embryo (Psammechinus miliaris). Nature201, 315.PubMedCrossRefGoogle Scholar
  17. CZIHAK, G., 1965. Entwicklungsphysiologische Untersuchungen an Echiniden. Wilhelm Roux Arch. Entwicklungs-mech. Organ.155, 709–729.CrossRefGoogle Scholar
  18. De ANGELIS, E., RUNNSTRöM, J., 1970. The effect of temporary treatment of animal half embryos with lithium and the modification of this effect by simultaneous exposure to actinomycin D. Wihelm Roux Arch. Entwicklungs-mech. Organ.164, 236–246.CrossRefGoogle Scholar
  19. DE VINCENTIIS, M., LANCIERI, M., 1970. Observations on the development of the sea urchin embryo in the presence of actinomycin. Exp. Cell Res.59, 479–481.PubMedCrossRefGoogle Scholar
  20. DRIESCH, H., 1891. Entwicklungsmechanische Studien. I. Der Wert der beiden ersten Furchungszellen in der Echinodermenentwicklung. Z. wiss. Zool.53, 160–184.Google Scholar
  21. DRIESCH, H., 1894. Analytische Theorie der organischen Entwicklung. Leipzig: Engelmann-Verlag.Google Scholar
  22. FOERSTER, M., ÖRSTRöM, Å., 1933. Observations sur la predetermination de la partie ventrale dans l’oeuf d’oursin. Travaux Stat. Biol. Roscoff11, 63–83.Google Scholar
  23. FUKUSHI, T., 1959. The presumptive position of the dorsal and ventral areas in the sea urchin egg, studied with local vital staining. Bull. Mar. biol. Sta. Asamushi, Tohoky Univ.9, 127–132.Google Scholar
  24. GIUDICE, G., HöRSTADIUS, S., 1965. Effect of actinomycin D on the segregation of animal and vegetal potentialities in the sea urchin egg. Exp. Cell Res.39, 117–120.PubMedCrossRefGoogle Scholar
  25. GUSTAFSON, T., 1946. Observations on enlarged polar bodies and oocytary twins in Psammechinus miliaris (Gmelin). Arkiv f. Zool. (Stockholm)38A (4), 1–10.Google Scholar
  26. GUSTAFSON, T., 1952. Studies on the determination of the oral side of the sea urchin egg. II. The dorsoventral structure of the unfertilized egg. Arkiv f. Zool. (Stockholm)3 (19), 273–282.Google Scholar
  27. GUSTAFSON, T., 1963. Cellular mechanisms in the morphogenesis of the sea urchin embryos. Cell contacts within the entoderm and between mesenchyme and ectoderm cells. Exp. Cell Res.32, 570–589.PubMedCrossRefGoogle Scholar
  28. GUSTAFSON, T., WOLPERT, L., 1962. Cellular mechanism in the morphogenesis of the sea urchin larva. Changes in shape of the cell sheets. Exp. Cell Res.27, 260–279.PubMedCrossRefGoogle Scholar
  29. GUSTAFSON, T., WOLPERT, L., 1963. The cellular basis of morphogenesis and sea urchin development. Inter. Rev. Cytol.15, 139–214.CrossRefGoogle Scholar
  30. GUSTAFSON, T., WOLPERT, L., 1967. Cellular movement and contact in sea urchin morphogenesis. Biol. Revs.42, 442–498.CrossRefGoogle Scholar
  31. HAGSTRöM, B.E., LöNNING, S., 1965. Studies of cleavage and development of isolated sea urchin blastomeres. Sarsia18, 1–9.Google Scholar
  32. HAGSTRöM, B.E., LöNNING, S., 1967. Cytological and morphological studies on the action of lithium on the development of the sea urchin embryo. Wilhelm Roux Arch. Entwicklungs-mech. Organ.158, 1–12.CrossRefGoogle Scholar
  33. HERBST, C., 1892. Experimentelle Untersuchungen über den Einfluß der veränderten chemischen Zusammensetzung des umgebenden Mediums. Z. wiss. Zool.55, 446–518.Google Scholar
  34. HERBST, C., 1893. Experimentelle Untersuchungen über den Einfluß der veränderten chemischen Zusammensetzung des umgebenden Mediums auf die Entwicklung der Tiere, II. Mitt. Zool. Stn. Neapel11, 136–220.Google Scholar
  35. HNILICA, L.S., 1967. Proteins in the cell nucleus. Prog. Nucleic Acid Res. Mol. Biol. 1, 25–106.CrossRefGoogle Scholar
  36. HNILICA, L.S., JOHNSON, A.W., 1970. Fractionation and analysis of nuclear proteins in the sea urchin embryos. Exp. Cell Res.63, 261–270.PubMedCrossRefGoogle Scholar
  37. HöRSTADIUS, S., 1925. Entwicklungsmechanische Studien an Asterina gibbosa. Arkiff. Zool. (Stockholm)17B (6), 1–6.Google Scholar
  38. HöRSTADIUS, S., 1927. Studien über die Determination bei Paracentro-tus lividus, Lk. Wilhelm Roux Arch. Entwicklungs-mech. Organ.112, 239–246.CrossRefGoogle Scholar
  39. HöRSTADIUS, S., 1928. Über die Determination des Keimes bei Echino-dermen. Acta Zool. (Stockholm)9, 1–191.CrossRefGoogle Scholar
  40. HöRSTADIUS, S., 1935. Über die Determination im Verlaufe der Eiachse bei Seeigeln. Pubbl. Staz. Zool. Napoli14, 251–429.Google Scholar
  41. HöRSTADIUS, S., 1938. Schnürungsversuche an Seeigelkeimen. Wilhelm Roux Arch. Entwicklungs-mech. Organ.138, 197–259.CrossRefGoogle Scholar
  42. HöRSTADIUS, S., 1965a. Über fortschreitende Determination in Furchinsstadien von Seeigeleiern. Z. Naturforsch. 20, 331–333.Google Scholar
  43. HöRSTADIUS, S., 1965b. Über die animalisierende Wirkung von Trypsin auf Seeigelkeime. Zool. Jahrb. Abt. Allgem. Zool. Physiol.71, 241–244.Google Scholar
  44. HöRSTADIUS, S., JOSEFSSON, L., RUNNSTRöM, J., 1967. Morphogenetic agents from unfertilized eggs of the sea urchin Paracentrotus lividus. Develop. Biol. 16, 189–202.PubMedCrossRefGoogle Scholar
  45. HöRSTADIUS, S., WOLSKY, A., 1936. Studien über die Determination der Bilateralsymmetrie des jungen Seeigelkeimes. Wilhelm Roux Arch. Entwicklungs-mech. Organ.135, 69–113.CrossRefGoogle Scholar
  46. HUANG, R.C., BONNER, J., 1965. Histon-bound RNA, a component of nature. Nucleohistone. Proc. Nat. Acad. Sci. USA54, 960–967.PubMedCrossRefGoogle Scholar
  47. HULTIN, T., 1961a. Activation of ribosomes in sea urchin eggs in response to fertilization. Exp. Cell Res.25, 405–417.PubMedCrossRefGoogle Scholar
  48. HULTIN, T., 1961b. The effect of puromycin on protein metabolism and cell division in fertilized sea urchin eggs. Experientia17, 410–413.PubMedCrossRefGoogle Scholar
  49. IMMERS, J., RUNNSTRöM, J., 1965. Further studies of the effects of deprivation of sulfate on the early development of the sea urchin Paracentrotus lividus. J. Embryol. Exp. Morph.14, 289–305.PubMedGoogle Scholar
  50. IMMERS, J., RUNNSTRöM, J., in preparation. Nuclear and cytoplasmic changes in early development of lithium treated sea urchin embryos.Google Scholar
  51. IMMERS, J., RUNNSTRöM, J., in preparation. Nuclear and cytoplasmic changes during the advanced development of lithium treated sea urchin larvae.Google Scholar
  52. IMMERS, J., MARKMAN, B., RUNNSTRöM, J., 1967. Nuclear changes in the course of development of the sea urchin studied by means of Hale staining. Exp. Cell Res.47, 425–442.PubMedCrossRefGoogle Scholar
  53. JACOB, F., MONOD, J., 1963. Elements of regulatory circuits in bacteria. In: Biological Organization at the Cellular and Supercellu-lar Level (R.J.C. Harris, ed.), pp. 1–24. New York: Academic Press. JGoogle Scholar
  54. OHNSON, A.W., HNILICA, L.S., 1970. In vitro synthesis and nuclear proteins of isolated sea urchin embryo nuclei. Biochim. Biophys. Acta224, 518–530.Google Scholar
  55. JOSEFSSON, L., HöRSTADIUS, S., 1970. Isolation of animalizing and vegetalizing substances from unfertilized eggs of Paracentrotus lividus. Develop. Biol.20, 481–500.CrossRefGoogle Scholar
  56. LALLIER, R., 1955. Recherches sur le problème de la détermination embryonnaire chez les amphibiens et chez les echinodermes. Arch, biol. (Liège)66, 223–402.Google Scholar
  57. LALLIER, R., 1956. Recherches sur la détermination chez les echinodermes. L’action des oxydants et de l’acide p. Chloromercuribenzioque sur le développement de l’oeuf de Paracentrotus lividus. Arch. biol. (Liège)67, 181–209.Google Scholar
  58. LALLIER, R., 1958. Analyse expérimentale de la différenciation embryonnaire chez les echinodermes. Experientia14, 309–315.CrossRefGoogle Scholar
  59. LALLIER, R., 1964. Biochemical aspects of animalization and vegetali-zation of the sea urchin embryos. Advan. Morphogenesis3, 148–196.Google Scholar
  60. LINDAHL, P.E., 1932a. Zur experimentellen Analyse der Determination der Dorsoventralachse beim Seeigelkeim. I. Versuche mit gestreckten Eiern. Wilhelm Roux Arch. Entwicklungs-mech. Organ.127, 300–322.CrossRefGoogle Scholar
  61. LINDAHL, P.E., 1932b. Zur experimentellen Analyse der Determination der Dorsoventralachse beim Seeigelkeim. II. Versuche mit zentrifu-gierten Eiern. Wilhelm Roux Arch. Entwicklungs-mech. Organ.127, 323–338.CrossRefGoogle Scholar
  62. LINDAHL, P.E., 1936. Zur Kenntnis der physiologischen Grundlagen der Determination im Seeigelkeim. Acta Zool. (Stockholm)17, 179–365.CrossRefGoogle Scholar
  63. LINDAHL, P.E., 1941. Physiologische Probleme der Entwicklung und Formbildung des Seeigelkeimes. Naturwiss.29, 673–685.CrossRefGoogle Scholar
  64. LINDAHL, P.E., 1942. Contribution to the physiology of form generation in the sea urchin, development. Quart. Rev. Biol.17, 213–217.CrossRefGoogle Scholar
  65. LINDAHL, P.E., Örström, A., 1932. Beiträge zur Kenntnis des Pigmentringes in dem Ei von Paracentrotus lividus. Protoplasma17, 25–31.CrossRefGoogle Scholar
  66. LOEWENSTEIN, W.R., 1967. Cell surface membranes in close contact. Role of calcium and magnesium ions. J. Colloid interphase Sci.25, 34–46.CrossRefGoogle Scholar
  67. MACARTHUR, J.W., 1924. An experimental study and a physiological interpretation of exogastrulation and related modifications in echinoderm embryos. Biol. Bull.46, 60–87.CrossRefGoogle Scholar
  68. MASTRANGELO, FUDGE, M., 1959. Vegetalization of sea urchin embryos by treatment with tyrosine. Exp. Cell Res.18, 401–414.CrossRefGoogle Scholar
  69. MASTRANGELO, FUDGE, M., 1965. A study of the vegetalizing action of tyrosine on the sea urchin embryo. Dissertation for the Degree of Ph.D., Yale University.Google Scholar
  70. MASTRANGELO, FUDGE, M., 1966. Analysis of the vegetalizing action of tyrosine on the sea urchin embryo. J. Exp. Zool.161, 109–128.PubMedCrossRefGoogle Scholar
  71. MARKMAN, B., 1963. Morphogenetic effects of some nucleotide metabolites and antibiotics on early sea urchin development. Arkiv f. Zool. (Stockholm)16, 207–217.Google Scholar
  72. MARKMAN, B., 1963–65. Histochemical and autoradiographical studies on the role of the nucleus in the early development of sea urchin. Swedish Cancer Soc. Yearbook4, 494–499.Google Scholar
  73. MARKMAN, B., RUNNSTRöM, J., 1963. Animal and vegetal halves of sea urchin larvae subjected to temporary treatment with actinomycin D and mitomycin D. Exp. Cell Res.31, 615–618.PubMedCrossRefGoogle Scholar
  74. MARKMAN, B., RUNNSTRöM, J., 1970. The removal by actinomycin D of the effect on endogenous and exogenous agents in sea urchin development. Wilhelm Roux Arch. Entwicklungs-mech. Organ.165, 1–7.CrossRefGoogle Scholar
  75. MORGAN, T.H., 1894. Experimental studies on echinoderm eggs. Anat. Anz.9, 141–152.Google Scholar
  76. MORGAN, T.H., SPOONER, G.B., 1909. The polarity of the centrifuged eggs. Wilhelm Roux Arch. Entwicklungs-mech. Organ.28, 104–117.Google Scholar
  77. MOTOMURA, I., 1931. Notes on the effect of centrifugal force on the frog eggs. Sci. Rep. Tohoku Imp. Univ. Serie6, 4.Google Scholar
  78. MOTOMURA, I., 1949. Artificial alteration of the embryonic axis in the centrifuged eggs of sea urchins. Sci. Rep. Tohoky Univ. Biol.18, 117–125.Google Scholar
  79. MüLLER, W., 1962. Bindung von Actinomycinen und Actinomycin-Derivaten an Desoxyribonucleinsäure. Naturwiss.49, 156–157.CrossRefGoogle Scholar
  80. ORENGO, A., HNILICA, L.S., 1970. In vivo incorporation of labelled amino acids into nuclear proteins of the sea urchin embryo. Exp. Cell Res.62, 331–337.PubMedCrossRefGoogle Scholar
  81. PEASE, D., 1939. An analysis of the factors of bilateral determination in centrifuged echinoderm embryos. J. exp. Zool.80, 117–125.CrossRefGoogle Scholar
  82. RANZI, S., 1962. The proteins in embryonic and larval development. Adv. Morphogenesis2, 211–257.Google Scholar
  83. REICH, E., GOLDBERG, I.H., 1964. Actinomycin and nucleic acid function. Prog. Nuc. Acid Res. Mol. Biol.3, 84–324.Google Scholar
  84. RUNNSTRöM, J., 1914. Analytische Studien über die Seeigelentwicklung. Wilhelm Roux Arch. Entwicklungs-mech. Organ.40, 526–564.Google Scholar
  85. RUNNSTRöM, J., 1917. Analytische Studien über die Seeigelentwicklung. III Mitt. Wilhelm Roux Arch. Entwicklungs-mech. Organ.43, 223–328.Google Scholar
  86. RUNNSTRöM, J., 1917–1918. Zur Entwicklungsmechanik der Larve von Parechinus miliaris. Bergens Museums Aarbok. Nat. Sci.14, 1–23.Google Scholar
  87. RUNNSTRöM, J., 1918. Analytische Studien über die Seeigelentwicklung. IV Mitt. Wilhelm Roux Arch. Entwicklungs-mech. Organ.43, 409–431.Google Scholar
  88. RUNNSTRöM, J., 1920. Entwicklungsmechanische Studien an Henricia sanguinolenta Forbes und Solaster spec. Wilhelm Roux Arch. Entwicklungs-mech. Organ.46, 459–484.Google Scholar
  89. RUNNSTRöM, J., 1925a. Über den Einfluß des Kaliummangels auf das See-igelei. Pubbl. Staz. Zool. Napoli6, 2–199.Google Scholar
  90. RUNNSTRöM, J., 1925b. Experimentelle Bestimmung der Dorso-Ventral-achse bei dem Seeigelkeim. Arkiv f. Zool. (Stockholm)18A (4), 1–6.Google Scholar
  91. RUNNSTRöM, J., 1925c. Zur experimentellen Analyse der Entwicklung von Antedon. Wilhelm Roux Arch. Entwicklungs-mech. Organ.105, 63–113.CrossRefGoogle Scholar
  92. RUNNSTRöM, J., 1926. Über die Verteilung der Potenzen der Urdarmbil-dung bei dem Seeigelkeim. Acta Zool. (Stockholm)7, 117–121.CrossRefGoogle Scholar
  93. RUNNSTRöM, J., 1928a. Plasmabau und Determination bei dem Ei von Paracentrotus lividus Lk. Wilhelm Roux Arch. Entwicklungs-mech. Organ.113, 556–581.CrossRefGoogle Scholar
  94. RUNNSTRöM, J., 1928b. Zur experimentellen Analyse der Wirkung des Lithium auf dem Seeigelkeim. Acta Zool. (Stockholm)9, 365–424.CrossRefGoogle Scholar
  95. RUNNSTRöM, J., 1928c. Über die Veränderung der Plasmakolloide bei der Entwicklung des Seeigelkeimes. Protoplasma5, 201–310.CrossRefGoogle Scholar
  96. RUNNSTRöM, J., 1931. Zur Entwicklungsmechanik des Skelettmusters bei dem Seeigelkeim. Wilhelm Roux Arch Entwicklungs-mech. Organ.124, 273–297.CrossRefGoogle Scholar
  97. RUNNSTRöM, J., 1933. Kurze Mitteilung zur Physiologie der Determination des Seeigelkeimes. Wilhelm Roux Arch. Entwicklungs-mech. Organ.129, 442–444.CrossRefGoogle Scholar
  98. RUNNSTRöM, J., 1935. An analysis of the action of lithium on sea urchin development. Biol. Bull.68, 378–384.CrossRefGoogle Scholar
  99. RUNNSTRöM, J., 1955a. Die Analyse der primären Differenzierungsvorgänge im Seeigelkeim. In: Verh. Deutsch. Zool. Ges. Tübingen, pp. 32–68.Google Scholar
  100. RUNNSTRöM, J., 1955b. Changes in the submicroscopic structure of the cytoplasm attending maturation and activation of the sea urchin egg. Exp. Cell Res.8, 49–61.PubMedCrossRefGoogle Scholar
  101. RUNNSTRöM, J., 1957. Cellular structure and behavior under influence of animal and vegetal factors in sea urchin development. Arkiv f. Zool. (Stockholm)10, 523–537.Google Scholar
  102. RUNNSTRöM, J., 1961a. Effect of pretreatment of the sea urchin egg with trypsin of different doses with respect to cortical changes, cleavage and further development. Exp. Cell Res.22, 576–608.PubMedCrossRefGoogle Scholar
  103. RUNNSTRöM, J., 1961b. The role of nuclear metabolism in the determination of the sea urchin egg. Path. Biol.9, 781–785.Google Scholar
  104. RUNNSTRöM, J., 1962. Differential effects of pretreatment of sea urchin eggs (Paracentrotus lividus and Psammechinus miliaris) with low doses of trypsin. Zool. Bidrag, Uppsala,35, 385–395.Google Scholar
  105. RUNNSTRöM, J., 1963. Sperm-induced protrusions in sea urchin oocytes: A study of phase separation and mixing in living cytoplasm. Develop. Biol.7, 38–50.PubMedCrossRefGoogle Scholar
  106. RUNNSTRöM, J., 1964. Genetic and epigenic factors involved in the early differentiation of the sea urchin egg (Paracentrotus lividus, Psammechinus miliaris). In: Acidi Nucleici e loro funzione biologica, Ist. Lombarde e Fond. Baselli, pp. 342–351. Milano.Google Scholar
  107. RUNNSTRöM, J., 1966. Considerations on the control of differentiation in the early sea urchin development. Arch. Zool. Ital.51, 239–272.Google Scholar
  108. RUNNSTRöM, J., 1967a. The animalizing action of pretreatment of sea urchin eggs with thiocyanate in calcium-free sea water and its stabilization after fertilization. Arkiv f. Zool. (Stockholm)19, 251–263.Google Scholar
  109. RUNNSTRöM, J., 1967b. The mechanism of control of differentiation in early development of the sea urchin. A tentative discussion. Exp. Biol. Med.1, 52–62.Google Scholar
  110. RUNNSTRöM, J., 1968. The initiation of the development of the egg with special reference to sea urchin. Atti Accad. naz. Lincei104, 165–178.Google Scholar
  111. RUNNSTRöM, J., IMMERS, J., 1966. On the animalizing action of trypsin on the embryos of the sea urchins Psammechinus miliaris and Paracentrotus lividus. Arch. biol. (Liège)77, 365–410.Google Scholar
  112. RUNNSTRöM, J., Immers, J., 1970. Hetéromorphic budding in lithium treated sea urchin embryos. A study of gene expression. Exp. Cell Res.62, 228–238.PubMedCrossRefGoogle Scholar
  113. RUNNSTRöM, J., Immers, J., in press 1971. Treatment with lithium as a tool for the study of animal-vegetal interactions in sea urchin embryos. Wilhelm Roux Arch. Entwicklungs-mech. Organ.Google Scholar
  114. RUNNSTRöM, J., Manelli, H., 1964. Induction of polyspermy by treatment of sea urchin eggs with mercurials. Exp. Cell Res.35, 157–193.CrossRefGoogle Scholar
  115. RUNNSTRöM, J., MANELLI, H., 1967. The stereocilia of the sea urchin embryo, the conditions of their formation and disappearance. Atti Accad. naz. Lincei, fasc. 6, Ser. VIII,12, 1–8.Google Scholar
  116. RUNNSTRöM, J., MARKMAN, B., 1966. Gene dependency of vegetalization in sea urchin embryos treated with lithium. Biol. Bull.130, 402–414.CrossRefGoogle Scholar
  117. RUNNSTRöM, J., RUNNSTRöM, S., 1920. Über die Entwicklung von Cucumaria frondosa Gunnerus und Psolus phantapus Strussenfelt. Bergens Museums Aarbok, Nat. Sci.5, 5–99.Google Scholar
  118. RUNNSTRöM, J., HöRSTADIUS, S., IMMERS, J., FUDGE-MASTRANGELO, M., 1964. An analysis of the role of sulfate in the embryonic differentiation of the sea urchin (Paracentrotus lividus). Rev. Suisse Zool.71, 21–54.Google Scholar
  119. SCARANO, E., 1969. Enzymatic modifications of DNA and embryonic differentiation. Ann. d’Embryol. Morphogen. Suppl.1, 51–61.Google Scholar
  120. SCARANO, E., AUGUSTI-TOCCO, G., 1967. Biochemical pathways in embryos. In: Comprehensive Biochemistry, Vol. 28 (M. Florkin, E.H. Stotz, eds.), pp. 55–110. Amsterdam: Elsevier.Google Scholar
  121. SCARANO, E., De PETROCELLIS, B., AUGUSTI-TOCCO, G., 1964a. Deoxy-cytidylate aminohydrolase content in disaggregated cells from sea urchin embryos. Exp. Cell Res.36, 211–213.PubMedCrossRefGoogle Scholar
  122. SCARANO, E., De PETROCELLIS, B., AUGUSTI-TOCCO, G., 1964b. Studies on the control of enzyme synthesis during the early embryonic development of the sea urchins. Biochim. Biophys. Acta87, 174–176.PubMedGoogle Scholar
  123. SCARANO, E., MAGGIO, R., 1969. The enzymatic deamination of 5′-deoxycytidylic acid and of 5-methyl-5′-deoxycytidylic acid in the developing sea urchin embryo. Exp. Cell Res.18, 333–346.CrossRefGoogle Scholar
  124. SCHLEIP, W., 1929. Determination der Primitivenentwicklung. VIII. Echinodermen, pp. 379–553. Leipzig: Akad. Verlagsgesellschaft.Google Scholar
  125. SCHMIDT, H., 1904. Zur Kenntnis der Larvenentwicklung von Echinus microtuberculatus. Verh. Phys. Med. Ges. Würzburg N.F.36, 297–336.Google Scholar
  126. SEELIGER, O., 1892. Studien zur Entwicklungsgeschichte der Crinoiden (Antedon rosaea). Zool. Jahrb. Anat.6, 161–444.Google Scholar
  127. SPEMANN, H., 1936. Experimentelle Beiträge zu einer Theorie der Entwicklung. Berlin: Springer Verlag.Google Scholar
  128. TOMKINS, G.M., GELEHRTER, T.D., GRANNER, D., MARTIN, jr., D., SAMUELS, H., THOMPSON, B., 1968. Control of specific gene expression in higher organisms. First Ann. Midec Lecture, Nat. Inst. Health.Google Scholar
  129. VON UBISCH, L., 1925. Entwicklungsphysiologische Studien an Seeigelkeimen. III. Die normale und durch Lithium beeinflußte Anlage der Primitivorgane bei animalen und vegetativen Halbkeimen von Echino-cyamus pusillus. Z. wiss. Zool.124, 449–486.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • J. Runnström

There are no affiliations available

Personalised recommendations