Advertisement

Abstract

The lipids of sea-urchin eggs have been studied since the beginning of the century, in many cases before the development of modern lipid chemistry. Those results therefore need to be critically reinterpreted from the standpoint of recent lipid research.

Keywords

Sialic Acid Total Lipid Content Free Lipid Paracentrotus Lividus Total Cholesterol Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BALLENTINE, R., 1940. Total nitrogen content of the Arbacia eggs. J. Cell. Comp. Physiol. 15, 121–122.CrossRefGoogle Scholar
  2. CHEN, P.S., 1958. Further studies on free amino acids and peptides in eggs and embryos of different sea urchin species and hybrids. Experientia 14, 369–371.PubMedCrossRefGoogle Scholar
  3. CLELAND, K.W., ROTHSCHILD, LORD, 1952. The metabolism of the sea urchin egg. Anaerobic breakdown of carbohydrate. J. Exp. Biol. 29, 285–294.Google Scholar
  4. CRANE, R.K., 1947. The distribution of phosphorus in the unfertilized egg of Arbacia punctulata. Biol. Bull. 93, 192–193.PubMedGoogle Scholar
  5. DE NICOLA, M., 1954. Further investigations of the change in the pigment during embryonic development of echinoderms. Exp. Cell Res. 7, 368–373.CrossRefGoogle Scholar
  6. DE NICOLA, M., GOODWIN, T.W., 1954. Carotenoids in the developing eggs of the sea urchin Paracentrotus lividus. Exp. Cell Res. 7, 23–31.CrossRefGoogle Scholar
  7. EPHRUSSI, B., 1933. Contribution à l’analyse des premiers stades du développement de l’oeuf. Action de la température. Arch. Biol. 44, 1–147.Google Scholar
  8. EPHRUSSI, B., RAPKINE, L., 1928. Composition chimique de l’oeuf d’oursin (Paracentrotus lividus Lk.) et ses variations au cours du développement. Ann. Physiol. Physicochim. Biol. 4, 386–399.Google Scholar
  9. GRIFFITHS, M., 1966. The carotenoids of the eggs and embryos of the sea urchin Strongylocentrotus purpuratus. Develop. Biol. 13, 296–309.PubMedCrossRefGoogle Scholar
  10. HAYES, F.R., 1938. The relation of fat changes to the general chemical embryology of the sea urchin. Biol. Bull. 74, 267–277.CrossRefGoogle Scholar
  11. HOSHI, M., NAGAI, Y., 1970. Biochemistry of mucolipids of sea urchin gametes and embryos. III. Mucolipids during early development. Jap. J. Exp. Med. 40, 361–365.PubMedGoogle Scholar
  12. HOSHI, M., NAGAI, Y., 1975. Novel sialosphingolipid from spermatozoa of the sea urchin, Anthocidaris crassispina. Biochim. Biophys. Acta, in press.Google Scholar
  13. HULTIN, T., 1953. Incorporation of C14-labeled carbonate and acetate into sea urchin embryos. Arkiv.Kemi 6, 195–200.Google Scholar
  14. HUNTER, F.R., Parpart, A.K., 1946. The distribution of lipid between the light and heavy halves of the Arbacia egg. Biol. Bull. 91, 222.PubMedGoogle Scholar
  15. ISONO, N., 1963. Carbohydrate metabolism in sea urchin eggs. III. Changes in respiratory quotient during early embryonic development. Annot. Zool. Japon. 36, 126–132.Google Scholar
  16. ISONO, N., YASUMASU, I., 1968. Pathways of carbohydrate breakdown in sea urchin eggs. Exp. Cell Res. 50, 616–626.PubMedCrossRefGoogle Scholar
  17. ISONO, Y., 1965. Phospholipids of sea urchin eggs. I. Thin-layer and paper chromatographic studies. Sci. Papers Coll. Gen. Educ. Univ. Tokyo 15, 87–94.Google Scholar
  18. ISONO, Y., 1967. Changes of glycolipids during early development of sea urchin embryos. Jap. J. Exp. Med. 37, 87–96.Google Scholar
  19. ISONO, Y., MOHRI, H., NAGAI, Y., 1967. Effect of egg sulpholipid on respiration of sea urchin spermatozoa. Nature 214, 1336–1338.PubMedCrossRefGoogle Scholar
  20. ISONO, Y., NAGAI, Y., 1966. Biochemistry of glycolipids of sea urchin gametes. I. Separation and characterization of new type of sulfo-lipid and sialoglycolipid. Jap. J. Exp. Med. 36, 461–476.PubMedGoogle Scholar
  21. KOCHETKOV, N.K., ZHUKOVA, I.G., SMIRNOVA, G.P., VAS’KOVSKII, V.E., 1968. Isolation of sphingoglycolipids containing sialic acid from Strongylocentrotus intermedius gonads. Dokl. Akad. Nauk SSSR 177, 1472–1474. Chem. Abstr. 68, No. 84412a.Google Scholar
  22. LEITCH, J.L., 1934. The water exchanges of living cells. II. Non-solvent volume determinations from swelling and analytical data. J. Cell. Comp. Physiol. 4, 457–473.CrossRefGoogle Scholar
  23. LINDVALL, S., 1948. Changes in activity of tributyrin splitting enzyme during early sea urchin egg development. Arkiv Kemi, Mineral. Geol. 26B, No. 9, 1–3.Google Scholar
  24. LINDVALL, S., CARSJö, A., 1948. Cholesterol during early sea-urchin egg development. Arkiv Kemi, Mineral. Geol. 26B, No. 12, 1–3.Google Scholar
  25. LOEB, J., 1913. Artificial parthenogenesis and fertilization. Chicago Univ. Press, Chicago.Google Scholar
  26. MAGGIO, R., MONROY, A., 1955. Some experiments pertaining to the chemical mechanisms of the cortical reaction in fertilization of sea urchin eggs. Exp. Cell Res. 8, 240–244.PubMedCrossRefGoogle Scholar
  27. MARSH, J.B., 1965. Isolation and composition of a water-soluble lipoprotein from Arbacia eggs. Biol. Bull. 129, 415.Google Scholar
  28. MATHEWS, A.P., 1913. An important chemical difference between the eggs of the sea urchin and those of the starfish. J. Biol. Chem. 14, 465–467.Google Scholar
  29. MCCLENDON, J.F., 1909. Chemical studies on the effects of centrifugal force on the eggs of the sea urchin (Arbacia punctulata). Am. J. Physiol. 23, 460–466.Google Scholar
  30. MEYERHOF, O., 1911. Untersuchungen über die Wärmetönung der vitalen Oxydationsvorgänge in Eiern. II. Versuche an Eiern und Larven von Strongylocentrotus lividus. Biochem. Z. 35, 2 80–315.Google Scholar
  31. MOHRI, H., 1957. Endogenous substrates of respiration in sea-urchin spermatozoa. J. Fac. Sci. Univ. Tokyo IV, 8, 51–63.Google Scholar
  32. MOHRI, H., 1959. Plasmalogen content in sea-urchin gametes. Sci. Papers Coll. Gen. Educ. Univ. Tokyo 9, 263–267.Google Scholar
  33. MOHRI, H., 1964a. Utilization of C14-labeled acetate and glycerol for lipid synthesis during the early development of sea urchin embryos. Biol. Bull. 126, 440–455.CrossRefGoogle Scholar
  34. MOHRI, H., 1964b. Phospholipid utilization in sea-urchin spermatozoa. Pubbl. Sta. Zool. Napoli 34, 53–58.Google Scholar
  35. MONROY, A., 1945. Di alcuni fenomeni corticali che accompagnano la fecondazione e le prime divisioni dell ‘uovo di riccio di mare. Experientia 1, 335–336.PubMedCrossRefGoogle Scholar
  36. MONROY, A., 1947. Further observations on the fine structure of the cortical layer of unfertilized and fertilized sea urchin eggs. J. Cell. Comp. Physiol. 30, 105–109.CrossRefGoogle Scholar
  37. MONROY, A., 1957. An analysis of the process of fertilization and activation of the egg. Inter. Rev. Cytol. 6, 107–127.CrossRefGoogle Scholar
  38. MONROY, A., MONROY-ODDO, A., DE NICOLA, M., 1951. The carotenoid pigments during early development of the egg of the sea urchin Paracentrotus lividus. Exp. Cell Res. 2, 700–702.CrossRefGoogle Scholar
  39. MONROY, A., MONTALENTI, G., 1947. Variations of the submicroscopic structure of the cortical layer of fertilized and parthenogenetic sea urchin eggs. Biol. Bull. 92, 151–161.CrossRefGoogle Scholar
  40. MONROY, A., RUFFO, A., 1945. Variazioni del colesterolo durante la fecondazione di uova di riccio di mare. Boll. Soc. Ital. Biol. Sper. 20, 6–7.Google Scholar
  41. MOORE, B., WHITLEY, E., ADAMS, A., 1913. The rôle of glycogen, lecithides, and fats in the reproductive organs of echinoderms. Biochem. J. 7, 127–141.PubMedGoogle Scholar
  42. NAGAI, Y., HOSHI, M., 1975. Sialosphingolipids of sea urchin eggs and spermatozoa showing a characteristic composition for species and gamete. Biochim. Biophys. Acta, in press.Google Scholar
  43. NAGAI, Y., ISONO, Y., 1965. Occurrence of animal sulfolipid in the gametes of sea urchins. Jap. J. Exp. Med. 35, 315–318.PubMedGoogle Scholar
  44. NAVEZ, A.E., 1938. Indophenoloxidase in Arbacia eggs and the Nadi reaction. Biol. Bull. 75, 357–358.Google Scholar
  45. NEEDHAM, J., NEEDHAM, D.M., 1930. On phosphorus metabolism in embryonic life. I. Invertebrate eggs. J. Exp. Biol. 7, 317–348.Google Scholar
  46. NUMANOI, H., 1959. Studies on the fertilization substance. IX. Enzymic degradation of lecithin during development of sea urchin eggs. Sci. Papers Coll. Gen. Educ. Univ. Tokyo 9, 285–296.Google Scholar
  47. ÖHMAN, L.O., 1945. On the lipids of the sea urchin egg. Arkiv Zool. 36A, No. 7, 1–95.Google Scholar
  48. PAGE, I.H., 1927a. The oils of the sea urchin and starfish egg. Biol. Bull. 52, 164–167.CrossRefGoogle Scholar
  49. PAGE, I.H., 1927b. The electrolytic content of the sea urchin and starfish egg. Biol. Bull. 52, 168–172.CrossRefGoogle Scholar
  50. PARPART, A.K., 1941. Lipo-protein complexes in the egg of Arbacia. Biol. Bull. 81, 296.Google Scholar
  51. PAYNE, N.M., 1930. Some effects of low temperature on internal structure and function in animals. Ecology 11, 500–504.CrossRefGoogle Scholar
  52. RICOTTA, C.M.B., 1956. Quantitative changes of the free phospholipids in the sea-urchin egg at fertilization. Experientia 12, 104–106.PubMedCrossRefGoogle Scholar
  53. ROBERTSON, T.B., Wasteneys, H., 1913. On the changes in lecithin-content which accompany the development of sea urchin eggs. Arch. f. Entw. Mech. 37, 485–496.Google Scholar
  54. RUNNSTRöM, J., 1928. Die Veränderungen der Plasmakolloide bei der Entwicklungserregung des Seeigeleies. Protoplasma 4, 388–514.CrossRefGoogle Scholar
  55. SCHMIDT, G., HECHT, L., THANNHAUSER, S.J., 1948. The behavior of the nucleic acids during the early development of the sea urchin egg (Arbacia). J. Gen. Physiol. 31, 203–207.PubMedCrossRefGoogle Scholar
  56. SHACKELL, L.F., 1911. Phosphorus metabolism during early cleavage of the echinoderm egg. Science, N.S. 34, 573–576.CrossRefGoogle Scholar
  57. TENNENT, D.H., Gardiner, M.S., Smith, D.E., 1931. A cytological and biochemical study of the ovaries of the sea urchin Echinometra lucunter. Carnegie Inst. Washington Publ. No. 413, 1–46.Google Scholar
  58. WARREN, L., HATHAWAY, R., 1960. Lipid-soluble sialic acid containing material in Arbacia eggs. Biol. Bull. 119, 354–355.Google Scholar
  59. WETZEL, G., 1907. Die Entwicklung des Ovarialeies und des Embryos, chemisch untersucht mit Berücksichtigung der gleichzeitigen morphologischen Veränderungen. II. Die chemische Zusammensetzung der Eier des Seeigels, der Seespinne, des Tintenfisches und des Hundshaies. Arch. Anat. Physiol., Physiol. Abt., Suppl. 1907, 507–542.Google Scholar
  60. WHITELEY, A.H., 1949. The phosphorus compounds of sea urchin eggs and uptake of radio-phosphate upon fertilization. Am. Naturalist 83, 249–267.CrossRefGoogle Scholar
  61. YAMAGAMI, K., 1963. Changes in the amounts of some endogenous phosphates in the development of the sea urchin. Zool. Mag. 72, 252–255. (In Japanese, with Abstract in English).Google Scholar
  62. ZIELINSKI, M.A., 1939. Carbohydrate metabolism and phosphorus compounds in the fertilized eggs of the sea urchin (Paracentrotus lividus Lm.). Acta Biol. Exp. Warsaw 13, 35–48.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • Y. Isono
  • N. Isono

There are no affiliations available

Personalised recommendations