Skip to main content

Carbohydrate Metabolism and Related Enzymes

  • Chapter
The Sea Urchin Embryo
  • 132 Accesses

Abstract

Based on 20th century biochemical research, an explanation has been found for that once-mysterious phenomenon — glycolysis. Yeast fermentation, characterized by “boiling” and spirit formation, is the result of the vigorous evolution of CO2 bubbles and the production of ethanol as an end product of the anaerobic breakdown of starch. Lactate formation in muscle tissues during their “movement” is also a result of that carbohydrate catabolism via glycolysis (a process almost identical to that of fermentation) that accompanies the production of energy for muscle contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AKETA, K., 1957. Quantitative analyses of lactic acid and related compounds in sea urchin eggs at the time of fertilization. Embryologia 3, 267–278.

    Article  Google Scholar 

  • AKETA, K., 1961a. Studies on the production of the fertilization acid in sea urchin eggs. I. Acid production at fertilization and activation, and the effect of some metabolic inhibitors. Embryologia 5, 397–405.

    Article  Google Scholar 

  • AKETA, K., 1961b. Studies on the production of the fertilization acid in sea urchin eggs. II. Experimental analysis of the production mechanism. Embryologia 5, 406–412.

    Google Scholar 

  • AKETA, K., 1962. Studies on the production of the fertilization acid in sea urchin eggs. III. Cytochemical examination on the possible role of acid mucopolysaccharide components in the acid production. Embryologia 7, 223–227.

    Article  Google Scholar 

  • AKETA, K., 1963. Studies on the acid production at fertilization of sea urchin eggs. Exp. Cell Res. 30, 93–97.

    Article  PubMed  CAS  Google Scholar 

  • AKETA, K., 1964. Some comparative remarks on the transient change in lactic acid content in sea urchin eggs following fertilization. Exp. Cell Res. 34, 192–194.

    Article  PubMed  CAS  Google Scholar 

  • AKETA, K., BIANCHETTI, R., MARRE, E., MONROY, A., 1964. Hexose monophosphate level as a limiting factor for respiration in unfertilized sea urchin eggs. Biochim. Biophys. Acta 86, 211–215.

    PubMed  CAS  Google Scholar 

  • ASHBEL, R., 1930. Sul quoziente respiratorio delle uova fecondate e non fecondate dei ricci di mare (Arbacia pustulosa). Boll. soc. ital. biol. sper. 5, 72–74.

    CAS  Google Scholar 

  • BäCKSTRöM, S., 1959. Activity of glucose-6-phosphate dehydrogenase in sea urchin embryos of different developmental trends. Exp. Cell Res. 18, 347–356.

    Article  PubMed  Google Scholar 

  • BäCKSTRöM, S., 1963. 6-Phosphogluconate dehydrogenase in sea urchin embryos. Exp. Cell Res. 32, 566–569.

    Article  Google Scholar 

  • BäCKSTRöM, S., HULTIN, K., HULTIN, T., 1960. Pathways of glucose metabolism in early sea urchin development. Exp. Cell Res. 19, 634–636.

    Article  PubMed  Google Scholar 

  • BALL, E.G., MEYERHOFF, B., 1940. On the occurrence of iron-porphyrin compounds and succinic dehydrogenase in marine organisms possessing the copper blood pigment hemocyanine. J. Biol. Chem. 134, 483–493.

    CAS  Google Scholar 

  • BALLENTINE, R., 1940. Analysis of the changes in respiratory activity accompanying the fertilization of marine eggs. J. Cell. Comp. Physiol. 15, 217–232.

    Article  CAS  Google Scholar 

  • BARNETT, R.C., 1953. Cell division inhibition of Arbacia and Chaetopterus eggs and its reversal by KREBS cycle intermediates and certain phosphate compounds. Biol. Bull. 104, 263–274.

    Article  CAS  Google Scholar 

  • BARNETT, R.C., DOWNEY, M., 1955. Phosphorus content and 32P uptake of marine eggs during cell division. Fed. Proc. 14, 9.

    Google Scholar 

  • BARRON, E.S.G., 1932. Studies on cell metabolism. I. The oxygen consumption of Nereis eggs before and after fertilization. Biol. Bull. 62, 42–45.

    Article  CAS  Google Scholar 

  • BARRON, E.S.G., GOLDINGER, J.M., 1941. Intermediary carbohydrate metabolism of eggs and sperm of Arbacia punctulata before and after fertilization. Biol. Bull. 81, 289.

    Google Scholar 

  • BERGAMI, M., MANSOUR, T.E., Scarano, E., 1968. Properties of glycogen Phosphorylase before and after fertilization in the sea urchin eggs. Exp. Cell Res. 49, 650–655.

    Article  PubMed  CAS  Google Scholar 

  • BILLIAR, R.B., BRUNGARD, J.C., VILLEE, C.A., 1964. D-malate: Effects on activity of L-malate dehydrogenase in developing sea urchin embryos. Science 146, 1464–1465.

    Article  PubMed  CAS  Google Scholar 

  • BILLIAR, R.B., ZELEWSKI, L., VILLEE, C.A., 1966. L-malate dehydrogenase activity and protein synthesis in sea urchin embryos. Develop. Biol. 13, 282–295.

    Article  PubMed  CAS  Google Scholar 

  • BLACK, R.E., TYLER, A., 1959a. The oxidation of C13-labelled carbon monoxide by embryos of Urechis caupo and Strongylocentrotus purpuratus. Anat. Rec. 134, 535.

    Google Scholar 

  • BLACK, R.E., TYLER, A., 1959b. Effects of fertilization and development on the oxidation of carbon monoxide by eggs of Strongylocentrotus and Urechis as determined by use of 13C. Biol. Bull. 117, 443–453.

    Article  Google Scholar 

  • BLACK, R.E., TYLER, A., 1959c. Cytochrome oxidase and oxidation of CO in eggs of sea urchin Strongylocentrotus purpuratus. Biol. Bull. 117, 454–457.

    Article  Google Scholar 

  • BLANCHARD, K.C., 1935. The nucleic acid of the eggs of Arbacia punctulata. J. Biol. Chem. 108, 251–256.

    CAS  Google Scholar 

  • BLOMQUIST, C.H., 1969. Reversible inactivation of nicotinamide adenine dinucleotide kinase in extracts of unfertilized sea urchin eggs. Exp. Cell Res. 56, 172–174.

    Article  PubMed  CAS  Google Scholar 

  • BOLST, A.L., WHITELEY, A.H., 1957. Studies of the metabolism of phosphorus in the development of the sea urchin, Strongylocentrotus pur-puratus. Biol. Bull. 112, 276–287.

    Article  CAS  Google Scholar 

  • BOREI, H., 1933. Beiträge zur Kenntnis der Vorgänge bei der Befruchtung des Echinodermeneies. Z. Physiol. 20, 258–266.

    Google Scholar 

  • BOREI, H., 1948. Respiration of oocytes, unfertilized eggs and fertilized eggs from Psammechinus and Asterias. Biol. Bull. 95, 124–150.

    Article  PubMed  CAS  Google Scholar 

  • BOREI, H., 1949. Independence of post-fertilization respiration in the sea urchin egg from the level of respiration before fertilization. Biol. Bull. 96, 117–122.

    Article  PubMed  CAS  Google Scholar 

  • BOREI, H., 1950. Cytochrome c in sea-urchin eggs. Acta Chem. Scand. 4, 1607–1608.

    Article  CAS  Google Scholar 

  • BOREI, H., LYBING, S., 1949. Temperature coefficients of respiration in Psammechinus eggs. Biol. Bull. 96, 107–116.

    Article  PubMed  CAS  Google Scholar 

  • BOYD, M., 1928. A comparison of the oxygen consumption of unfertilized and fertilized eggs of Fundulus heterocritus. Biol. Bull. 55, 92–100.

    Article  CAS  Google Scholar 

  • BRACHET, J., 1934. Étude du métabolisme de l’oeuf de Grenouille (Rana fusca) au cours du développement. 1-La respiration et la glycolyse, de la segmentation à l’éclosion. Arch. Biol. 45, 611–727.

    CAS  Google Scholar 

  • BROCK, N., DRUCKREY, H., HERKEN, H., 1938. Der Stoffwechsel des geschädigten Gewebes. III. Arch. exp. Pathol. Pharmark. 188, 451–464.

    Article  Google Scholar 

  • CASTANEDA, M., TYLER, A., 1968. Adenyl cyclase in plasma membrane preparations of sea urchin eggs and its increase in activity after fertilization. Biochem. Biophys. Res. Comm. 33, 782–787.

    Article  PubMed  CAS  Google Scholar 

  • CHAIGNE, M., 1934. Sur la surcharge en glycogène des organes reproducteurs de quelques invertébrés au moment de la ponte. Compt. rend. soc. biol. 115, 174–176.

    CAS  Google Scholar 

  • CHAMBERS, E.L., MENDE, T.J., 1953a. The adenosine triphosphate content of the unfertilized and fertilized eggs of Asterias forbesii and Strongylocentrotus droebachiensis. Arch. Biochem. Biophys. 44, 46–56.

    Article  PubMed  CAS  Google Scholar 

  • CHAMBERS, E.L., MENDE, T.J., 1953b. Alterations of the inorganic phosphate and arginine phosphate content in sea urchin eggs following fertilization. Exp. Cell Res. 5, 508–519.

    Article  PubMed  CAS  Google Scholar 

  • CHAMBERS, E.L., WHITE, W.E., 1949. The accumulation of phosphate and evidence for synthesis of adenosinetriphosphate in the fertilized sea urchin egg. Biol. Bull. 97, 225–226.

    Google Scholar 

  • CHAMBERS, E.L., WHITE, W.E., JEUNG, N., BROOKS, S.C., 1948. Penetration and effects of low Temperature and cyanide on penetration of radioactive potassium into the eggs of Strongylocentrotus purpuratus and Arbacia punctulata. Biol. Bull. 95, 252–253.

    PubMed  CAS  Google Scholar 

  • CLELAND, K.W., 1950a. Respiration and cell division in developing oyster eggs. Proc. Linn. Soc. N.S.W. 75, 282–295.

    CAS  Google Scholar 

  • CLELAND, K.W., 1950b. Intermediary metabolism of unfertilized oyster eggs. Proc. Linn. Soc. N.S.W. 75, 296–319.

    CAS  Google Scholar 

  • CLELAND, K.W., ROTHSCHILD, LORD, 1952a. The metabolism of the sea-urchin egg. Anaerobic breakdown of carbohydrate. J. Exp. Biol. 29, 285–294.

    CAS  Google Scholar 

  • CLELAND, K.W., ROTHSCHILD, LORD, 1952b. The metabolism of the sea urchin egg. Oxidation of carbohydrate. J. Exp. Biol. 29, 416–428.

    CAS  Google Scholar 

  • CLOWES, G.H.A., KRAHL, M.E., 1936. Studies on cell metabolism and cell division. I. On the relation between molecular structures, chemical properties, and biological activities of nitrophenols. J. Gen. Physiol. 20, 145–171.

    Article  PubMed  CAS  Google Scholar 

  • CLOWES, G.H.A., KRAHL, M.E., 1940. Studies on cell metabolism and cell division. III. Oxygen consumption and cell division of fertilized sea urchin eggs in the presence of respiratory inhibitors. J. Gen. Physiol. 23, 401–411.

    Article  PubMed  CAS  Google Scholar 

  • CONNORS, W.M., SCHEER, B.T., 1947. Adenosine triphosphatase in the sea urchin egg. J. Cell. Comp. Physiol. 30, 271–283.

    Article  CAS  Google Scholar 

  • CRANE, R.K., 1947. The distribution of phosphorus in the unfertilized egg of Arbacia punctulata. Biol. Bull. 93, 192–193.

    PubMed  CAS  Google Scholar 

  • CRANE, R.K., KELTCH, A.K., 1949. Dinitrocresol and phosphate stimulation of the oxygen consumption of a cell-free oxidative system obtained from sea-urchin eggs. J. Gen. Physiol. 32, 503–509.

    Article  PubMed  CAS  Google Scholar 

  • DEUTSCH, H.F., GUSTAFSON, T., 1952. The changes in catalase and cytochrome oxidase activity in developing sea-urchin eggs. Arkiv Kemi 4, 221–231.

    CAS  Google Scholar 

  • DE VINCENTIIS, M., HöRSTADIUS, S., RUNNSTRöM, J., 1966. Studies on controlled and released respiration in animal and vegetal halves of the embryo of the sea urchin, Paracentrotus lividus. Exp. Cell Res. 41, 535–544.

    Article  PubMed  Google Scholar 

  • DE VINCENTIIS, M., RUNNSTRöM, J., 1967. Studies on controlled and released respiration in animalized and vegetalized embryos of the sea urchin Paracentrotus lividus. Exp. Cell Res. 45, 681–689.

    Article  PubMed  Google Scholar 

  • DICKENS, F., SIMER, F., 1930. Carbohydrate metabolism of normal and tumor tissue. I. A method for the measurement of the respiratory quotient. Biochem. J. 24, 905–913.

    PubMed  CAS  Google Scholar 

  • EPEL, D., 1963. The effects of carbon monoxide inhibition on ATP level and the rate of mitosis in the sea urchin egg. J. Cell Biol. 17, 315–319.

    Article  PubMed  CAS  Google Scholar 

  • EPEL, D., 1964a. A primary metabolic change of fertilization: Inter-conversion of pyridine nucleotides. Biochem. Biophys. Res. Comm. 17, 62–68.

    Article  CAS  Google Scholar 

  • EPEL, D., 1964b. Simultaneous measurement of TPNH formation and respiration following fertilization of the sea-urchin egg. Biochem. Biophys. Res. Comm. 17, 69–73.

    Article  CAS  Google Scholar 

  • EPEL, D., 1965. Some aspects of metabolic control in the fertilization transition of sea urchin eggs. In: Control of Energy Metabolism (B. Chance, R.W. Estabrook, J.R. Williamson, eds.), pp. 267–272. New York: Academic Press.

    Google Scholar 

  • EPEL, D., 1969. Does ADP regulate respiration following fertilization of sea urchin eggs? Exp. Cell Res. 58, 312–319.

    Article  PubMed  CAS  Google Scholar 

  • EPEL, D., WEAVER, A.M., MUCHIMORE, A., SCHIMKE, R.T., 1969. β-1,3-glucanase of sea urchin eggs: release from particles at fertilization. Science 163, 294–296.

    Article  PubMed  CAS  Google Scholar 

  • EPHRUSSI, B., 1933. Contribution à l’analyse des premiers stades du développement de l’oeuf. Action de la température. Arch. Biol. 44, 1–147.

    Google Scholar 

  • EPHRUSSI, B., RAPKINE, L., 1928. Composition chimique de l’oeuf d’Oursin Paracentrotus lividus LK. et ses variations au cours du développement, Ann. Physiol. Physicochem. Biol. 4, 386–398.

    Google Scholar 

  • ESTABROOK, R.W., MAITRA, P.K., 1962. A fluorimetric method for the quantitative microanalysis of adenine and pyridine nucleotides. Anal. Biochem. 3, 369–382.

    Article  PubMed  CAS  Google Scholar 

  • FAURE-FREMIET, E., 1922. Echanges respiratoires des oeufs de Sabellaria alveolata L. au cours de la segmentation et de la cytolyse. C.R. soc. Biol. 86, 20–23.

    CAS  Google Scholar 

  • FUJII, T., OHNISHI, T., 1962. Inhibition of acid production by nicotinamide and other inhibitors of DPNase in the sea urchin. J. Fac. Sci., Univ. Tokyo, Sect. IV 9, 333–348.

    CAS  Google Scholar 

  • GERARD, R.W., Rubenstein, B.B., 1934. A note on the respiration of Arbacia eggs. J. Gen. Physiol. 17, 375–381.

    Article  PubMed  CAS  Google Scholar 

  • GHIRETTI, F., D’AMELIO, V., 1956. The metabolism of pentose phosphate in sea urchin sperm and eggs. Exp. Cell Res. 10, 734–737.

    Article  CAS  Google Scholar 

  • GOLDINGER, J.M., BARRON, E.S.G., 1946. The pyruvate metabolism of sea urchin eggs during the process of cell division. J. Gen. Physiol. 30, 73–82.

    Article  PubMed  CAS  Google Scholar 

  • GONSE, P.H., 1960. Respiratory levels in mature sea urchin eggs. J. Embryol. Exp. Morphol. 8, 7 3–93.

    Google Scholar 

  • GRAY, J., 1925. The mechanism of cell-division. II. Oxygen consumption during cleavage. Proc. Camb. Phil. Soc. (Biol. Sci.) 1, 225–236.

    Google Scholar 

  • GRAY, J., 1927. The mechanism of cell-division. III. The relationship between cell-division and growth in segmenting eggs. J. Exp. Biol. 4, 313–321.

    Google Scholar 

  • GRIFFITHS, W.M., WHITELEY, A.H., 1964. A study of the mechanism of phosphate transport in sea urchin eggs by ion exchange analysis of rapidly labeled compounds. Biol. Bull. 126, 69–82.

    Article  CAS  Google Scholar 

  • GUSTAFSON, T., HASSELBERG, I., 1951. Studies on enzymes in the developing sea urchin egg. Exp. Cell Res. 11, 642–672.

    Article  Google Scholar 

  • HARVEY, E.N., 1932. Physical and chemical constants of the egg of the sea urchin, Arbacia punctulata. Biol. Bull. 74, 267–277.

    Google Scholar 

  • HERK, A.W.H. VAN, 1933. The metabolism of the eggs of the sea urchin. I. The influence on respiration and lactic acid formation through dyestuffs. Arch. Neerl. Physiol. 18, 578–602.

    Google Scholar 

  • HIRAMOTO, Y., 1959a. Changes in electric properties upon fertilization in the sea urchin egg. Exp. Cell Res. 16, 421–424.

    Article  PubMed  CAS  Google Scholar 

  • HIRAMOTO, Y., 1959b. Electric properties of echinoderm eggs. Embryologia 4, 219–235.

    Article  Google Scholar 

  • HOLTER, H., ZEUTHEN, E., 1944. The respiration of the egg and embryos of the ascidian, Ciona intestinalis L. C.R. Trav. Lab. Carlsberg, Sér. Chim. 25, 33–65.

    Google Scholar 

  • HORWITZ, B.A., 1965. Rates of oxygen consumption of fertilized and unfertilized Asterias, Arbacia and Spisula eggs. Exp. Cell Res. 38, 620–625.

    Article  PubMed  CAS  Google Scholar 

  • HULTIN, T., 1949. The effect of calcium on respiration and acid formation in homogenates of sea-urchin eggs. Ark. Kemi, Mineral. Geol. 26A (27), 1–10.

    Google Scholar 

  • HULTIN, T., 1950a. On the oxygen uptake of Paracentrotus lividus egg homogenates after the addition of calcium. Exp. Cell Res. 1, 159–168.

    Article  Google Scholar 

  • HULTIN, T., 1950b. On the acid formation, breakdown of cytoplasmic inclusions, and increased viscosity in Paracentrotus egg homogenates after the addition of calcium. Exp. Cell Res. 1, 272–283.

    Article  Google Scholar 

  • HULTIN, T., 1953. Incorporation of C14-labeled carbonate and acetate into sea urchin embryos. Ark. Kemi 6, 19 5–200.

    Google Scholar 

  • HULTIN, T., 1957. Acid-soluble nucleotides in the early development of Psammechinus miliaris. Exp. Cell Res. 12, 413–415.

    Article  PubMed  CAS  Google Scholar 

  • HULTIN, T., WESSEL, G., 1952. Incorporation of C14-labeled carbon dioxide into the proteins of developing sea urchin eggs. Exp. Cell Res. 3, 613–616.

    Article  CAS  Google Scholar 

  • HUTCHENS, J.O., KELTCH, A.K., KRAHL, M.E., CLOWES, G.H.A., 1942a. Studies on cell metabolism and cell division. VI. Observations on the glycogen content, carbohydrate consumption, lactic acid production, and ammonia production of eggs of Arbacia punctulata. J. Gen. Physiol. 25, 717–731.

    Article  PubMed  CAS  Google Scholar 

  • HUTCHENS, J.O., KRAHL, M.E., CLOWES, G.H.A., 1939. Physiological effects of nitro- and halo-substituted phenols on Arbacia eggs in the presence of ammonia. J. Cell. Comp. Physiol. 14, 313–325.

    Article  CAS  Google Scholar 

  • HUTCHENS, J.O., KOPAC, M.J., KRAHL, M.E., 1942b. The cytochrome oxidase content of centrifugally separated fractions of unfertilized Arbacia eggs. J. Cell. Comp. Physiol. 20, 113–116.

    Article  Google Scholar 

  • IMMERS, J., 1952. Carbohydrate components in unfertilized sea urchin eggs. Arkiv Zool. 3, 367–371.

    Google Scholar 

  • IMMERS, J., 1956. Changes in acid mucopolysaccharides attending the fertilization and development of the sea urchin. Arkiv Zool. 9, 367–375.

    Google Scholar 

  • IMMERS, J., 1960. Studies on cytoplasmic components of sea urchin eggs stratified by centrifugation. Exp. Cell Res. 19, 499–514.

    Article  PubMed  CAS  Google Scholar 

  • IMMERS, J., RUNNSTRöM, J., 1960. Release of respiratory control by 2,4-dinitrophenol in different stages of sea urchin development. Develop. Biol. 2, 90–104.

    Article  PubMed  CAS  Google Scholar 

  • ISHIHARA, K., 1957. Release and activation of aldolase at fertilization in sea urchin eggs. J. Fac. Sci., Tokyo Univ., Sect. IV 8, 71–93.

    CAS  Google Scholar 

  • ISHIHARA, K., 1958a. Activation of glycolytic process at the time of fertilization in sea urchin eggs. Annot. Zool. Japon. 31, 1–5.

    CAS  Google Scholar 

  • ISHIHARA, K., 1958b. Compensatory respiration and pentose formation in sea urchin eggs by the treatment with monoiodoacetate. Sci. Rep. Saitama Univ., Ser. B 3, 1–10.

    Google Scholar 

  • ISHIHARA, K., 1958c. Effect of butyric acid on aldolase complex in sea urchin eggs. Sci. Rep. Saitama Univ., Ser. B 3, 11–20.

    Google Scholar 

  • ISHIHARA, K., 1958d. Enhanced respiration of sea urchin eggs induced by mechanical stimulation. Sci. Rep. Saitama Univ., Ser. B 3, 21–32.

    Google Scholar 

  • ISHIHARA, K., 1968a. Chemical analysis of glycoproteins in the egg surface of the sea urchin, Arbacia punctulata. Biol. Bull. 134, 425–433.

    Article  PubMed  CAS  Google Scholar 

  • ISHIHARA, K., 1968b. An analysis of acid polysaccharides produced at fertilization of sea urchin. Exp. Cell Res. 51, 473–484.

    Article  PubMed  CAS  Google Scholar 

  • ISHIKAWA, M., 1954. Relation between the breakdown of the cortical granules and permeability to water in the sea urchin egg. Embryologia 2, 57–62.

    Article  Google Scholar 

  • ISONO, N., 1962. Carbohydrate metabolism in sea urchin eggs. II. Pentose phosphate cycle in developing eggs. J. Fac. Sci., Univ. Tokyo, Sect. IV 9, 369–377.

    CAS  Google Scholar 

  • ISONO, N., 1963a. Carbohydrate metabolism in sea urchin eggs. III. Changes in respiratory quotient during early embryonic development. Annot. Zool. Japon. 36, 12.6–132.

    Google Scholar 

  • ISONO, N., 1963b. Carbohydrate metabolism in sea urchin eggs. IV. Intracellular localization of enzymes of pentose phosphate cycle in unfertilized and fertilized eggs. J. Fac. Sci., Univ. Tokyo, Sect. IV 10, 37–53.

    Google Scholar 

  • ISONO, N., 1963c. Studies on glucose-6-phosphate dehydrogenase in sea urchin eggs. II. J. Fac. Sci,, Univ. Tokyo, Sect. IV, 10, 67–74.

    Google Scholar 

  • ISONO, N., 1967a. Release of glucose-6-phosphate dehydrogenase of unfertilized sea urchin eggs, in vitro (preliminary report) (in Japanese with English summary). Zool. Mag. 76, 57–59.

    Google Scholar 

  • ISONO, N., 1967b. Increase in respiratory rate following fertilization of sea urchin eggs (in Japanese with English summary). Zool. Mag. 76, 207–215.

    Google Scholar 

  • ISONO, N., 1969. Release of glucose-6-phosphate dehydrogenase following fertilization of sea urchin eggs (preliminary report with English summary). Zool. Mag. 78, 305–306.

    Google Scholar 

  • ISONO, N., ISHIDA, J., 1962. Carbohydrate metabolism in sea urchin eggs. I. Pentose phosphate cycle in unfertilized sea urchin eggs. J. Fac. Sci., Univ. Tokyo, Sect. IV 9, 357–367.

    CAS  Google Scholar 

  • ISONO, N., YANAGISAWA, T., 1966. Acid-soluble nucleotides in the sea urchin egg. II. Uridine diphosphate sugars. Embryologia 9, 184–195.

    Article  PubMed  CAS  Google Scholar 

  • ISONO, N., YASUMASU, I., 1966. Carbohydrate metabolism in sea urchin embryos (preliminary report with English summary). Zool. Mag. 75, 276–279.

    Google Scholar 

  • ISONO, N., YASUMASU, I., 1968. Pathways of carbohydrate breakdown in sea urchin eggs. Exp. Cell Res. 50, 616–626.

    Article  PubMed  CAS  Google Scholar 

  • ISONO, N., TSUSAKA, A., NAKANO, E., 1963. Studies on glucose-6-phos-phate dehydrogenase in sea urchin eggs. I. J. Fac. Sci., Univ. Tokyo, Sect. IV 10, 55–66.

    CAS  Google Scholar 

  • JANDORF, B.J., KRAHL, M.E., 1942. Studies on cell metabolism and cell division. VIII. The diphosphopyridine nucleotide (cozymase) content of eggs of Arbacia punctulata. J. Gen. Physiol. 25, 749–754.

    Article  PubMed  CAS  Google Scholar 

  • KELTCH, A.K., KRAHL, M.E., CLOWES, G.H.A., 1956. Alteration by dini-trocresol of pathways for glucose oxidation in eggs of Arbacia punctulata. J. Gen. Physiol. 40, 27–35.

    Article  PubMed  CAS  Google Scholar 

  • KELTCH, A.K., Strittmater, C.F., Walters, C.P., Clowes, G.H.A., 1949. Oxidative phosphorylation by a cell-free particulate enzyme system from unfertilized Arbacia eggs. Biol. Bull. 97, 242–243.

    Google Scholar 

  • KELTCH, A.K., STRITTMATER, CF., WALTERS, C.P., CLOWES, G.H.A., 1950. Oxidative phosphorylation by a cell-free particulate system from unfertilized Arbacia eggs. J. Gen. Physiol. 33, 547–553.

    Article  PubMed  CAS  Google Scholar 

  • KORR, I.M., 1937. Respiratory mechanisms in the unfertilized and fertilized sea urchin egg. A temperature analysis. J. Cell. Comp. Physiol. 10, 461–485.

    Article  CAS  Google Scholar 

  • KORR, I.M., 1939. Oxidation-reductions in heterogeneous systems. Cold Spring Harb. Symp. 7, 74–93.

    CAS  Google Scholar 

  • KRAHL, M.E., 1950. Metabolic activities and cleavage of egg of the sea urchin, Arbacia punctulata. A review, 1932–1949. Biol. Bull. 98, 175–217.

    Article  Google Scholar 

  • KRAHL, M.E., 1956. Oxidative pathways for glucose in eggs of the sea urchin. Biochim. Biophys. Acta 20, 27–32.

    Article  PubMed  CAS  Google Scholar 

  • KRAHL, M.E., Clowes, G.H.A., 1936. Studies on cell metabolism and cell division. II. Stimulation of cellular oxidation and reversible inhibition of cell division by dihalo- and trihalophenols. J. Gen. Physiol. 20, 173–184.

    Article  PubMed  CAS  Google Scholar 

  • KRAHL, M.E., CLOWES, G.H.A., 1938a. Physiological effects of nitro-and halo-substituted phenols in relation to extracellular and intracellular hydrogen ion concentration. I. Dissociation constants and theory. J. Cell Comp. Physiol. 11, 1–20.

    Article  CAS  Google Scholar 

  • KRAHL, M.E., Clowes, G.H.A., 1938b. Physiological effects of nitro-and halo-substituted phenols in relation to extracellular and intracellular hydrogen ion concentration. II. Experiments with Arbacia eggs. J. Cell. Comp. Physiol. 11, 21–39.

    Article  CAS  Google Scholar 

  • KRAHL, M.E., Clowes, G.H.A., 1940. Studies on cell metabolism and cell division. IV. Combined action of substituted phenols, cyanide, carbon monoxide, and other respiratory inhibitors on respiration and cell division. J. Gen. Physiol. 23, 413–428.

    Article  PubMed  CAS  Google Scholar 

  • KRAHL, M.E., JANDORF, B.J., CLOWES, G.H.A., 1942. Studies on cell metabolism and cell division. VII. Observations on the amount and possible function of diphosphothiamine (cocarboxylase) in eggs of Arbacia punctulata. J. Gen. Physiol. 25, 733–747.

    Article  PubMed  CAS  Google Scholar 

  • KRAHL, M.E., KELTCH, A.K., CLOWES, G.H.A., 1939. Oxygen consumption and cell Division of fertilized Arbacia eggs in the presence of respiratory inhibitors. Biol. Bull. 77, 318–319.

    Google Scholar 

  • KRAHL, M.E., KELTCH, A.K., CLOWES, G.H.A., 1940. Flavin-dinucleotide in eggs of the sea urchin, Arbacia punctulata. Proc. soc. Exp. Biol. Med. 45, 719–721.

    CAS  Google Scholar 

  • KRAHL, M.E., KELTCH, A.K., NEUBECK, CE., CLOWES, G.H.A., 1941. Studies on cell metabolism and cell division. V. Cytochrome oxidase activity in the eggs of Arbacia punctulata. J. Gen. Physiol. 24, 597–617.

    Article  PubMed  CAS  Google Scholar 

  • KRAHL, M.E., KELTCH, A.K., WALTERS, C.P., CLOWES, G.H.A., 1953. Hexo-kinase and isomerase activity in eggs of the sea urchin, Arbacia punctulata, and other marine forms. Biol. Bull. 105, 377.

    Google Scholar 

  • KRAHL, M.E., KELTCH, A.K., WALTERS, C.P., CLOWES, G.H.A., 1954a. Activity of glucose-6-phosphate and 6-phosphogluconate dehydrogenase in relation to glycolytic enzymes of Arbacia eggs. Biol. Bull. 107, 315–316.

    Google Scholar 

  • KRAHL, M.E., KELTCH, A.K., WALTERS, C.P., CLOWES, G.H.A., 1954b. Hexokinase activity from eggs of the sea urchin, Arbacia punctulata. J. Gen. Physiol. 38, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • KRAHL, M.E., KELTCH, A.K., WALTERS, C.P., CLOWES, G.H.A., 1955. Glucose-6-phosphate and 6-phosphogluconate dehydrogenase from eggs of the sea urchin, Arbacia punctulata. J. Gen. Physiol. 38, 431–439.

    Article  PubMed  CAS  Google Scholar 

  • KRANE, S.M., CRANE, R.K., 1958. Changes in the levels of triphospho-pyridine nucleotide in the eggs of Arbacia punctulata subsequent of fertilization: presence of pyridine nucleotide transhydrogenase and diphosphopyridine nucleotide kinase. Biol. Bull. 115, 355.

    Google Scholar 

  • KRANE, S.M., CRANE, R.K., 1960. Changes in levels of triphosphopyridine nucleotide in marine eggs subsequent to fertilization. Biochim. Biophys. Acta 43, 369–373.

    Article  PubMed  CAS  Google Scholar 

  • KRISZAT, G., 1954. Die Wirkung von Purinen, Nucleosiden, Nucleotiden und Adenosintriphosphat auf die Teilung und Entwicklung des Seeigeleies bei Anwendung von Dinitrophenol. Exp. Cell Res. 6, 425–439.

    Article  PubMed  CAS  Google Scholar 

  • KUN, E., ABOOD, L.G., 1949. Colorimetric estimation of succinic dehydrogenase by triphenyltetrazoliumchloride. Science 109, 144–146.

    Article  PubMed  CAS  Google Scholar 

  • LANDAU, J.V., MARSLAND, D., ZIMMERMAN, A., 1955. The energetics of cell division: Effects of adenosine triphosphate and related substances on the furrowing capacity of marine eggs (Arbacia and Chaetopterus). J. Cell. Comp. Physiol. 45, 309–329.

    Article  CAS  Google Scholar 

  • LARDY, H.A., WELLMAN, H., 1952. Oxidative phosphorylations: role of inorganic phosphate and acceptor systems in control of metabolic rates. J. Biol. Chem. 195, 215–224.

    PubMed  CAS  Google Scholar 

  • LASER, H., ROTHSCHILD, LORD, 1939. The metabolism of the eggs of Psammechinus miliaris during the fertilization reaction. Proc. Roy. Soc. London B 126, 539–557.

    Article  CAS  Google Scholar 

  • LENTINI, R., 1961. The oxygen uptake of Ciona intestinalis eggs during development in normal and in experimental conditions. Acta Embryol. Morphol. Exp. 4, 209–218.

    Google Scholar 

  • LILLIE, R.S., 1916. Increase of permeability of water following normal and artificial activation in the sea urchin eggs. Am. J. Physiol. 40, 249–266.

    CAS  Google Scholar 

  • LINDAHL, P.E., 1936. Zur Kenntnis der physiologischen Grundlagen der Determination im Seeigelkeim. Acta Zool. 17, 179–365.

    Article  Google Scholar 

  • LINDAHL, P.E., 1939a. Über die biologische Sauerstoffaktivierung nach Versuchen mit Kohlenmonoxyd an Seeigeleiern und Keimen. Z. Physiol. 27, 136–168.

    CAS  Google Scholar 

  • LINDAHL, P.E., 1939b. Zur Kenntnis der Entwicklungsphysiologie des Seeigeleies. Z. Physiol. 27, 233–250.

    Google Scholar 

  • LINDAHL, P.E., 1940. Über die CN-resistente Atmung des Seeigeleies. Arkiv Kemi, Mineral. Geol. 14 A (12), 1–31.

    Google Scholar 

  • LINDAHL, P.E., HOLTER, H., 1941. Über die Atmung der Ovozyten erster Ordnung von Paracentrotus lividus und ihre Veränderung während der Reifung. Comp. Rend. Trav. Lab. Carlsberg, Ser. Chim. 24, 49–57.

    CAS  Google Scholar 

  • LINDAHL, P.E., ÖHMAN, L.O., 1938. Weitere Studien über Stoffwechsel und Determination im Seeigelkeim. Biol. Zentralblatt 58, 179–218.

    CAS  Google Scholar 

  • LINDBERG, O., 1943. Studien über das Problem des Kohlenhydratabbaus und der Säurebildung bei der Befruchtung des Seeigeleies. Arkiv Kemi, Mineral. Geol. 16 A (15), 1–15.

    Google Scholar 

  • LINDBERG, O., 1945. On the metabolism of glycogen in the fertilization of the sea urchin egg. Arkiv Kemi, Mineral. Geol. 20 B (1), 1–8.

    Google Scholar 

  • LINDBERG, O., 1946. On the occurrence of propanediol phosphate and its effect on the carbohydrate metabolism in animal tissues. Arkiv Kemi, Mineral. Geol. 23 A (2), 1–45.

    Google Scholar 

  • LINDBERG, O., 1949. On the turnover of adenosine triphosphate in the sea urchin egg. Arkiv Kemi, Mineral. Geol. 26 B (13), 1–4.

    Google Scholar 

  • LINDBERG, O., Ernster, L., 1948. On carbohydrate metabolism in homogenized sea urchin eggs. Biochim. Biophys. Acta 2, 471–477.

    Article  CAS  Google Scholar 

  • LITCHFIELD, J.B., WHITELEY, A.H., 1959. Studies on the mechanism of phosphate accumulation by sea urchin embryos. Biol. Bull. 117, 133–149.

    Article  CAS  Google Scholar 

  • LOEB, J., 1896. Untersuchungen über die physiologischen Wirkungen des Sauerstoffmangels. Pflüger’s Arch. Physiol. 62, 249–295.

    Article  Google Scholar 

  • LOEB, J., 1906a. Versuche über den chemischen Charakter des Befruchtungsvorganges. Biochem. Z. 1, 183–206.

    Google Scholar 

  • LOEB, J., 1906b. Über die Hemmung der toxischen Wirkung hypertonischer Lösungen auf das Seeigelei durch Sauerstoffmangel und Cyankalium. Pflüger’s Arch. Physiol. 113, 487–511.

    Article  CAS  Google Scholar 

  • LOEB, J., WASTENEYS, H., 1911. Sind die Oxydationsvorgänge die unabhängige Variable in den Lebenserscheinungen? Biochem. Z. 36, 345–356.

    Google Scholar 

  • LOEB, J., WASTENEYS, H., 1913. The influence of hypertonic solution upon the rate of oxidations in fertilized and unfertilized eggs. J. Biol. Chem. 14, 469–480.

    CAS  Google Scholar 

  • LøVTRUP, S., IVERSON, R.M., 1969. Respiratory phases during early sea urchin development, measured with the automatic diver balance. Exp. Cell Res. 55, 25–32.

    Article  PubMed  Google Scholar 

  • MACKINTOSH, F.R., BELL, E., 1969. Labelling of nucleotide pools in sea urchin eggs. Exp. Cell Res. 57, 71–73.

    Article  PubMed  CAS  Google Scholar 

  • MAGGIO, R., 1957. Mitochondrial and cytoplasmic protease activity in sea urchin eggs. J. Cell. Comp. Physiol. 50, 135–144.

    Article  CAS  Google Scholar 

  • MAGGIO, R., 1959. Cytochrome oxidase activity in the mitochondria of unfertilized and fertilized sea urchin eggs. Exp. Cell Res. 16, 272–278.

    Article  PubMed  CAS  Google Scholar 

  • MAGGIO, R., AJELLO, F., MONROY, A., 1960. Inhibitor of the cytochrome oxidase of unfertilized sea urchin eggs. Nature 188, 1195–1196.

    Article  PubMed  CAS  Google Scholar 

  • MAGGIO, R., GHIRETTI-MAGALDI, A., 1958. The cytochrome system in mitochondria of unfertilized sea urchin eggs. Exp. Cell Res. 15, 95–102.

    Article  PubMed  CAS  Google Scholar 

  • MAGGIO, R., MONROY, A., 1959. An inhibitor of cytochrome oxidase activity in the sea urchin egg. Nature 184, 68–69.

    PubMed  CAS  Google Scholar 

  • MAGGIO, R., VITTORELLI, M.L., RINALDI, A.M., MONROY, A., 1964. In vitro incorporation of amino acids into protein stimulated by RNA from unfertilized sea urchin eggs. Biochem. Biophys. Res. Comm. 15, 436–441.

    Article  PubMed  CAS  Google Scholar 

  • MATSUNAGA, Y., YANAGISAWA, T., 1970. Glucose metabolism during the early development of sea urchin eggs (abstract in Japanese). Zool. Mag. 79, 356–357.

    Google Scholar 

  • MAZIA, D., 1937. The release of calcium in Arbacia eggs on fertilization. J. Cell. Comp. Physiol. 10, 291–304.

    Article  CAS  Google Scholar 

  • MAZIA, D., 1961. Mitosis and the physiology of cell division. In: The Cell (J. Brachet, A.E. Mirsky, eds.), vol. 3, pp. 77–412. New York: Academic Press.

    Google Scholar 

  • MAZIA, D., 1963. Synthetic activities leading to mitosis. J. Cell. Comp. Physiol. 62, 123–140.

    Article  CAS  Google Scholar 

  • MAZIA, D., PRESCOTT, D.M., 1954. Nuclear function and mitosis. Science 120, 120–122.

    Article  PubMed  CAS  Google Scholar 

  • MEHL, J.W., SWANN, M.M., 1961. Acid and base production at fertilization in the sea urchin. Exp. Cell Res. 22, 233–245.

    Article  PubMed  CAS  Google Scholar 

  • MENDE, J.M., CHAMBERS, E.L., 1953. The occurrence of arginine phosphate in echinoderm eggs. Arch. Biochem. Biophys. 45, 105–116.

    Article  PubMed  CAS  Google Scholar 

  • MEYERHOF, O., 1911. Untersuchungen über die Wärmetönung der vitalen Oxydationsvorgänge in Eiern. I-III. Biochem. Z. 35, 246–328.

    Google Scholar 

  • MINGANTI, A., 1957. Experiments on the respiration of Phallusia eggs and embryos (ascidians). Acta Embryol. Morphol. Exp. 1, 150–163.

    CAS  Google Scholar 

  • MONNE, L., HåRDE, S., 1951. On the cortical granules of the sea urchin egg. Arkiv Zool. 1, 487–498.

    CAS  Google Scholar 

  • MONROY, A., 1957a. Swelling properties of the mitochondria of unfertilized and newly fertilized sea urchin eggs. Experientia 13, 398–399.

    Article  Google Scholar 

  • MONROY, A., 1957b. Adenosinetriphosphatase in the mitochondria of unfertilized and newly fertilized sea-urchin eggs. J. Cell. Comp. Physiol. 50, 73–82.

    Article  CAS  Google Scholar 

  • MONROY, A., 1965. Chemistry and physiology of fertilization. New York: Holt Rinehart and Winston, Inc.

    Google Scholar 

  • MONROY, A., VITTORELLI, M.L., 1960. On a glycoprotein of the sea urchin eggs and its changes following fertilization. Experientia 16, 56–59.

    Article  PubMed  CAS  Google Scholar 

  • MONROY, A., VITTORELLI, M.L., 1962. Utilization of 14C-glucose for amino acids and protein synthesis by the sea urchin embryo. J. Cell. Comp. Physiol. 60, 285–287.

    Article  PubMed  CAS  Google Scholar 

  • MOORE, R.O., VILLEE, C.A., 1962. Malic dehydrogenases in sea urchin eggs. Science 138, 508–509.

    Article  PubMed  CAS  Google Scholar 

  • MOORE, R.O., VILLEE, CA., 1963a. Multiple molecular forms of malate dehydrogenase in echinoderm embryos. Comp. Biochem. Physiol. 9, 81–94.

    Article  CAS  Google Scholar 

  • MOORE, R.O., VILLEE, CA., 1963b. Malate dehydrogenase: Multiple forms in separated blastomeres of sea urchin embryos. Science 142, 389–390.

    Article  PubMed  CAS  Google Scholar 

  • MUCHMORE, A.V., EPEL, D., WEAVER, A.M., SCHIMKE, R.T., 1969. Purification and properties of an exo-3-D-1,3-glucanase from sea urchin eggs. Biochim. Biophys. Acta 178, 551–560.

    PubMed  CAS  Google Scholar 

  • NAKANO, E., 1953. Respiration during maturation and at fertilization of fish eggs. Embryologia 2, 21–30.

    Article  Google Scholar 

  • NAKANO, E., MONROY, A., 1958. Incorporation of 35S-methionine in the cell fractions of sea urchin eggs and embryos. Exp. Cell Res. 14, 236–244.

    Article  PubMed  CAS  Google Scholar 

  • NEEDHAM, J., NEEDHAM, D.M., 1926. The hydrogen-ion concentration and oxidation-reduction potential of the cell-interior before and after fertilization and cleavage: A micro-injection study on marine eggs. Proc. Roy. Soc. London, B 99, 173–199.

    Article  CAS  Google Scholar 

  • NEEDHAM, J., NEEDHAM, D.M., 1930. On phosphorus metabolism in embryonic life. I. Invertebrate eggs. J. Exp. Biol. 7, 317–348.

    CAS  Google Scholar 

  • NEEDHAM, D.M., NEEDHAM, J., BALDWIN, E., YUDKIN, J., 1932. A comparative study of the Phosphagens, with some remarks on the origin of vertebrates. Proc. Roy. Soc. London, B 110, 260–294.

    Article  CAS  Google Scholar 

  • NEMOTO, S., 1970. Changes in the content of arginine phosphate during cell cycle of sea urchin eggs (abstract in Japanese). Zool. Mag. 79, 342–343.

    Google Scholar 

  • NEMOTO, S., YANAGISAWA, T., 1969. Arginine Phosphokinase and creatine Phosphokinase in echinoderms. IX. From when the content of arginine phosphate begins to increase in fertilized eggs? (Abstract in Japanese), Zool. Mag. 78, 378–379.

    Google Scholar 

  • NILSSON, R., 1959. Acid-soluble nucleotides in the unfertilized eggs of the sea-urchin Paracentrotus lividus. Acta Chem. Scand. 13, 395–408.

    Article  CAS  Google Scholar 

  • NILSSON, R., 1961. Acid-soluble nucleotides during early embryonic development of the sea-urchin Paracentrotus lividus. Acta Chem. Scand. 15, 583–591.

    Article  CAS  Google Scholar 

  • ÖHMAN, L.O., 1940. Über die Veränderung des respiratorischen Quotienten während der Frühentwicklung des Seeigeleies. Arkiv Zool. 32 A (15), 1–9.

    Google Scholar 

  • OHNISHI, T., 1961. Changes in diphosphopyridine nucleotide contents of sea-urchin eggs after fertilization and during mitotic phases, with special reference to the effect of nicotinamide. J. Fac. Sci., Univ. Tokyo, Sect. IV, 9, 205–211.

    CAS  Google Scholar 

  • OHNISHI, T., SUGIYAMA, 1963. Polarographic studies of oxygen uptake of sea-urchin eggs. Embryologia 8, 79–88.

    Article  Google Scholar 

  • ÖRSTRöM, A., 1932. Zur Analyse der Atmungssteigerung bei der Befruchtung des Seeigeleies auf der Grundlage von Versuchen über Oxydation und Reduktion von Dimethylparaphenylendiamin in der Eizelle. Protoplasma 15, 566–589.

    Article  Google Scholar 

  • ÖRSTRöM, Å., Lindberg, O., 1940. Über den Kohlenhydratstoffwechsel bei der befruchtung des Seeigeleies. Enzymologia 8, 367–383.

    Google Scholar 

  • OZAKI, H., WHITELEY, A.H., 1967. L-malate dehydrogenase of the sea-urchin Strongylocentrotus purpuratus. Biochim. Biophys. Acta 146, 587–590.

    PubMed  CAS  Google Scholar 

  • OZAKI, H., WHITELEY, A.H., 1970. L-malate dehydrogenase in the development of the sea urchin Strongylocentrotus purpuratus. Develop. Biol. 21, 196–215.

    Article  PubMed  CAS  Google Scholar 

  • PANDIT, C.G., CHAMBERS, R., 1932. Intracellular hydrion-concentration studies. IX. The pH of the egg of the sea-urchin, Arbacia punctulata. J. Cell. Comp. Physiol. 2, 243–249.

    Article  Google Scholar 

  • PATTON, G.W., JR., METS, L., VILLEE, C.A., 1967. Malic dehydrogenase isozymes: distribution in developing nucleate and anucleate halves of sea urchin eggs. Science 156, 400–401.

    Article  PubMed  CAS  Google Scholar 

  • PERLZWEIG, W.A., BARRON, E.S.G., 1928. Lactic acid and carbohydrate in sea urchin eggs under aerobic and anaerobic conditions. J. Biol. Chem. 79, 19–26.

    CAS  Google Scholar 

  • PHILIPS, F.S., 1940. Oxygen consumption and its inhibition in the development of Fundulus and various pelagic eggs. Biol. Bull. 78, 256–274.

    Article  CAS  Google Scholar 

  • RAPOPORT, S., HOFMANN, E.C.G., GHIRETTI-MAGALDI, A., 1958. Über die Atmungsenzyme des Seeigeleies. Experientia 14, 169–170.

    Article  CAS  Google Scholar 

  • ROBBIE, W.A., 1946a. The quantitative control of cyanide in mano-metric experimentation. J. Cell. Comp. Physiol. 27, 181–209.

    Article  CAS  Google Scholar 

  • ROBBIE, W.A., 1946b. The effect of cyanide on the oxygen consumption and cleavage of the sea urchin egg. J. Cell. Comp. Physiol. 28, 305–324.

    Article  CAS  Google Scholar 

  • ROTHSCHILD, LORD, 1939. The effect of phlorizin on the metabolism of cytolyzing sea-urchin eggs. J. Exp. Biol. 16, 49–55.

    CAS  Google Scholar 

  • ROTHSCHILD, LORD, 1949. The metabolism of fertilized and unfertilized sea-urchin eggs. The action of light and carbon monoxide. J. Exp. Biol. 26, 100–111.

    PubMed  CAS  Google Scholar 

  • ROTHSCHILD, LORD, 1951. Sperm-egg interacting substances and metabolic changes associated with fertilization. Biochem. Soc. Symp. 7, 40–51.

    Google Scholar 

  • ROTHSCHILD, LORD, 1956. Fertilization. London: Methuen.

    Google Scholar 

  • ROTHSCHILD, LORD, 1958. Acid production after fertilization of sea-urchin eggs. A re-examination of the lactic acid hypothesis. J. Exp. Biol. 15, 843–849.

    Google Scholar 

  • ROTHSCHILD, LORD, BARNES, H., 1953. The inorganic constituents of the sea-urchin egg. J. Exp. Biol. 30, 534–544.

    CAS  Google Scholar 

  • RUBENSTEIN, B.B., GERARD, R.W., 1934. Fertilization and the temperature coefficients of oxygen consumption in eggs of Arbacia punctulata. J. Gen. Physiol. 17, 677–685.

    Article  PubMed  CAS  Google Scholar 

  • RUDNEY, H., 1954. The synthesis of dl-propanediol-1-phosphate and C14-labeled propanediol and their isolation from liver tissue. J. Biol. Chem. 210, 353–360.

    PubMed  CAS  Google Scholar 

  • RUNNSTRöM, J., 1930a. Atmungsmechanismus und Entwicklungserregung bei dem Seeigelei. Protoplasma 10, 106–173.

    Article  Google Scholar 

  • RUNNSTRöM, J., 1930b. Spaltung und Atmung bei der Entwicklungserregung des Seeigeleies. Arkiv Zool. 21B (8), 1–5.

    Google Scholar 

  • RUNNSTRöM, J., 1932. Über den Mechanismus der Entwicklungserregung bei dem Seestern- und Seeigelkeim. Protoplasma 15, 448–452.

    Article  Google Scholar 

  • RUNNSTRöM, J., 1933. Zur Kenntnis der Stoffwechselvorgänge bei der Entwicklungserregung des Seeigeleies. Biochem. Z. 258, 257–279.

    Google Scholar 

  • RUNNSTRöM, J., 1935a. On the influence of pyocyanine on the respiration of the sea-urchin egg. Biol. Bull. 68, 327–334.

    Article  Google Scholar 

  • RUNNSTRöM, J., 1935b. Acid formation in frozen and thawed Arbacia punctulata eggs and its possible bearing on the problem of activation. Biol. Bull. 69, 345–350.

    Article  Google Scholar 

  • RUNNSTRöM, J., 1935c. Influence of iodoacetate on activation and development of the eggs of Arbacia punctulata. Biol. Bull. 69, 351–355.

    Article  Google Scholar 

  • RUNNSTRöM, J., 1949. The mechanism of fertilization in metazoa. Adv. Enzymol. 9, 241–327.

    Google Scholar 

  • RUNNSTRöM, J., 1956a. Some considerations on metabolic changes occurring at fertilization and during early development of the sea-urchin egg. Pubbl. Sta. Zool. Napoli 28, 315–340.

    Google Scholar 

  • RUNNSTRöM, J., 1956b. Some aspects of the initiating processes in the fertilization of the sea urchin egg. Zool. Anz. 156, 91–101.

    Google Scholar 

  • RUNNSTRöM, J., BOTTE, L., DE VINCENTIIS, M., 1970. Experiments and considerations on the state of respiratory chains before and after fertilization and in the early development of the sea urchin egg. Rendiconti di Istituto Lombardo di Scienze e Lettere 104, 20–32.

    Google Scholar 

  • RUNNSTRöM, J., HAGSTRöM, B.E., PERLMAN, P., 1959. Fertilization. In: The Cell (J. Brächet, A.E. Mirsky, eds.), vol. 1, pp. 327–397. New York, London: Academic Press.

    Google Scholar 

  • RUNNSTRöM, J., IMMERS, J., 1956. The role of mucopolysaccharides in the fertilization of the sea-urchin eggs. Exp. Cell Res. 10, 354–363.

    Article  PubMed  Google Scholar 

  • SACKS, J., 1949. A fractionation procedure for the acid-soluble phosphorus compounds of liver. J. Biol. Chem. 181, 655–666.

    PubMed  CAS  Google Scholar 

  • SCHMIDT, G., HECHT, L., THANNHAUSER, S.J., 1948. The behavior of the nucleic acids during the early development of the sea urchin egg (Arbacia). J. Gen. Physiol. 31, 203–207.

    Article  PubMed  CAS  Google Scholar 

  • SCHMIDT, G., THANNHAUSER, S.J., 1945. A method for the determination of deoxyribonucleic acid, ribonucleic acid, and phosphoproteins in animal tissues. J. Biol. Chem. 161, 83–89.

    PubMed  CAS  Google Scholar 

  • SCHOLANDER, P.F., CLAFF, C.L., SVEINSSON, S.L., 1952a. Respiratory studies of single cells. I. Methods. Biol. Bull. 102, 157–177.

    Article  CAS  Google Scholar 

  • SCHOLANDER, P.F., CLAFF, C.L., SVEINSSON, S.L., SCHOLANDER, S.I., 1952b. Respiratory studies of single cells. III. Oxygen consumption during cell division. Biol. Bull. 102, 185–199.

    Article  CAS  Google Scholar 

  • SCHOLANDER, P.F., LEIVESTAD, H., SUNDNES, G., 1958. Cycling in the oxygen consumption of cleaving eggs. Exp. Cell Res. 15, 505–511.

    Article  PubMed  CAS  Google Scholar 

  • SHAPIRO, H., 1935. The respiration of fragments obtained by centri-fuging the egg of the sea urchin, Arbacia punctulata. J. Cell. Comp. Physiol. 6, 101–116.

    Article  Google Scholar 

  • SHEARER, C., 1922a. On the oxidation processes of the echinoderm egg during fertilization. Proc. Roy. Soc. London B 93, 213–229.

    Article  CAS  Google Scholar 

  • SHEARER, C., 1922b. On the heat production and oxidation processes of the echinoderm egg during fertilization and early development. Proc. Roy. Soc. London B 93, 410–425.

    Article  CAS  Google Scholar 

  • SIBLEY, J.A., LEHNINGER, A.L., 1949. Determination of aldolase in animal tissues. J. Biol. Chem. 177, 859–872.

    PubMed  CAS  Google Scholar 

  • STEFANELLI, A., 1938. Il metabolismo dell’uovo e dell’embrione studiato negli Anfibi Anuri. II. L’assunzione di ossigeno. Arch. Sc. Biol. 24, 411–441.

    CAS  Google Scholar 

  • STOTT, F.C., 1931. The spawning of Echinus esculentus and some changes in gonad composition. J. Exp. Biol. 8, 133–150.

    Article  CAS  Google Scholar 

  • SUGINO, Y., 1960. Studies on deoxynucleosidic compounds. II. Deoxycytidine diphosphate choline in sea urchin eggs. Biochim. Biophys. Acta 40, 425–434.

    Article  PubMed  CAS  Google Scholar 

  • SUGINO, Y., SUGINO, N., OKAZAKI, R., OKAZAKI, T., 1957. Deoxyribosidic compounds of sea urchin eggs. Biochim. Biophys. Acta 26, 453–454.

    Article  PubMed  CAS  Google Scholar 

  • SUGINO, Y., SUGINO, N., OKAZAKI, R., OKAZAKI, T., 1960. Studies on deoxynucleosidic compounds. I. A modified microbioassay method and its application to sea urchin eggs and several other materials. Biochim. Biophys. Acta 40, 417–424.

    Article  PubMed  CAS  Google Scholar 

  • SWANN, M.M., 1953. The mechanism of cell division. A study with carbon monoxide on the sea-urchin egg. Quart. J. Micro. Sci. 94, 369–379.

    Google Scholar 

  • SWANN, M.M., 1954. The mechanism of cell division. Experiments with ether on the sea-urchin egg. Exp. Cell Res. 7, 505–517.

    Article  PubMed  CAS  Google Scholar 

  • SWANN, M.M., 1957. The control of cell division: A review. I. General mechanisms. Cancer Res. 17, 727–757.

    PubMed  CAS  Google Scholar 

  • SWANN, M.M., 1958. The control of cell division: A review. II. Special mechanisms. Cancer Res. 18, 1118–1160.

    PubMed  CAS  Google Scholar 

  • TAGUCHI, S., 1962. Changes in the content of adenosine nucleotides during early development of sea urchins, Pseudocentrotus depressus and Hemicentrotus pulcherrimus. Annot. Zool. Japon. 35, 183–187.

    CAS  Google Scholar 

  • TANG, P.S., 1931a. The oxygen tension-oxygen consumption curve of unfertilized Arbacia eggs. Biol. Bull. 60, 242–244.

    Article  CAS  Google Scholar 

  • TANG, P.S., 1931b. The rate of oxygen consumption of Asterias eggs before and after fertilization. Biol. Bull. 61, 468–471.

    Article  CAS  Google Scholar 

  • TANG, P.S., 1948. Rhythmic respiration in the sea urchin. Nature 162, 189.

    Article  PubMed  CAS  Google Scholar 

  • TANG, P.S., Gerard, R.W., 1932. The oxygen tension-oxygen consumption curve of fertilized Arbacia eggs. J. Cell. Comp. Physiol. 1, 503–513.

    Article  CAS  Google Scholar 

  • TYLER, A., Humason, W.D., 1937. On the energetics of differentiation. VI. Comparison of temperature coefficients of the respiratory rates of unfertilized and of fertilized eggs. Biol. Bull. 73, 261–279.

    Article  Google Scholar 

  • TYLER, A., Monroy, A., 1959. Changes in rate of transfer of potassium across the membrane upon fertilization of eggs of Arbacia punctulata. J. Exp. Zool. 142, 675–690.

    Article  PubMed  CAS  Google Scholar 

  • TYLER, A., RICCI, N., HOROWITZ, N.H., 1938. The respiration and fertilizable life of Arbacia eggs under sterile and non-sterile conditions. J. Exp. Zool. 79, 129–143.

    Article  CAS  Google Scholar 

  • TYLER, A., MONROY, A., KAO, C.Y., GRUNDFERT, H., 1956. Membrane potential and resistance of the starfish egg before and after fertilization. Biol. Bull. 111, 153–177.

    Article  Google Scholar 

  • WARBURG, O., 1908. Beobachtungen über die Oxidationsprozesse im Seeigelei. Z. physiol. Chem. 57, 1–16.

    Article  Google Scholar 

  • WARBURG, O., 1915. Notizen zur Entwicklungsphysiologie des Seeigeleies. Pflüger’s Arch. Physiol. 160, 324–332.

    Article  CAS  Google Scholar 

  • WHITAKER, D.M., 1931a. On the rate of oxygen consumption by fertilized and unfertilized eggs. I. Fucus vesiculosus. J. Gen. Physiol. 15, 167–182.

    CAS  Google Scholar 

  • WHITAKER, D.M., 1931b. On the rate of oxygen consumption by fertilized and unfertilized eggs. II. Cumingia tellinoides. J. Gen. Physiol. 15, 183–190.

    Article  PubMed  CAS  Google Scholar 

  • WHITAKER, D.M., 1931c. On the rate of oxygen consumption by fertilized and unfertilized eggs. III. Nereis limbata. J. Gen. Physiol. 15, 191–200.

    Article  PubMed  CAS  Google Scholar 

  • WHITAKER, D.M., 1933a. On the rate of oxygen consumption by fertilized and unfertilized eggs. IV. Chaetopterus and Arbacia punctulata. J. Gen. Physiol. 16, 475–495.

    Article  PubMed  CAS  Google Scholar 

  • WHITAKER, D.M., 1933b. On the rate of oxygen consumption by fertilized and unfertilized eggs. V. Comparisons and interpretation. J. Gen. Physiol. 16, 497–528.

    Article  PubMed  CAS  Google Scholar 

  • WHITELEY, A.H., 1949. The phosphorus compounds of sea-urchin eggs and the uptake of radio-phosphate upon fertilization. Amer. Nat. 83, 249–267.

    Article  CAS  Google Scholar 

  • WHITELEY, A.H., BALTZER, F., 1958. Development, respiratory rate and content of desoxyribonucleic acid in the hybrid Paracentrotus ♀ × Arbacia ♂. Pubbl. Sta. Zool. Napoli 30, 402–457.

    CAS  Google Scholar 

  • WHITELEY, A.H., CHAMBERS, E.L., 1966. Phosphate transport in fertilized sea urchin eggs. II. Effects of metabolic inhibitors and studies on differentiation. J. Cell Physiol. 68, 309–324.

    Article  CAS  Google Scholar 

  • WIERCINSKI, F.J., 1944. An experimental study of protoplasmic pH determination. I. Amoebae and Arbacia punctulata. Biol. Bull. 86, 98–112.

    Article  CAS  Google Scholar 

  • WINTERS, R.W., 1962. Intracellular pH in Arbacia eggs. Biol. Bull. 123, 519–520.

    Google Scholar 

  • YANAGISAWA, T., 1959a. Studies on echinoderm Phosphagens. I. Occurrence and nature of Phosphagens in sea-urchin eggs and spermatozoa. J. Fac. Sci., Univ. Tokyo, Sect. IV, 8, 473–479.

    Google Scholar 

  • YANAGISAWA, T., 1959b. Studies on guanidine phosphoryltransferases. I. Occurrence in spermatozoa and eggs of sea-urchins. J. Fac. Sci., Univ. Tokyo, Sect. IV, 8, 481–486.

    Google Scholar 

  • YANAGISAWA, T., 1968. Studies on echinoderm Phosphagens. IV. Changes in the content of arginine phosphate in the sea-urchin egg after fertilization and the effect of some metabolic inhibitors. Exp. Cell Res. 53, 525–536.

    Article  CAS  Google Scholar 

  • YANAGISAWA, T., 1969a. Cell division and energy metabolism (in se). (Japanese). Prot. Nuc. Acid Enzyme 14, 677–687.

    CAS  Google Scholar 

  • YANAGISAWA, T., 1969b. Nucleic acid metabolism during the early development of sea-urchin eggs (in Japanese). Jap. J. Develop. Biol. 23, 138–139.

    Google Scholar 

  • YANAGISAWA, T., ISONO, N., 1966. Acid-soluble nucleotides in the sea-urchin egg. I. Ion-exchange chromatographic separation and characterization. Embryologia 9, 170–183.

    Article  PubMed  CAS  Google Scholar 

  • YASUMASU, I., NAKANO, E., 1963. Respiratory level of sea-urchin eggs before and after fertilization. Biol. Bull. 125, 182–187.

    Article  Google Scholar 

  • YASUMASU, I., ASAMI, K., SHOGER, R., FUJIWARA, A., 1973. Glycolysis in sea-urchin eggs. Rate-limiting steps and activation at fertilization. Exp. CellRes. 80, 361–371.

    Article  CAS  Google Scholar 

  • YCAS, M., 1954. The respiration and glycolytic enzymes of sea-urchin eggs. J. Exp. Biol. 31, 208–217.

    CAS  Google Scholar 

  • ZEUTHEN, E., 1944. Oxygen uptake during mitosis. Experiments on the eggs of the frog (Rana platyrrhina). C.R. Trav. Lab. Carlsberg, Sér. Chim. 25, 191–228.

    Google Scholar 

  • ZEUTHEN, E., 1947. Respiration and cell division in eggs of the sea urchin, Psammechinus miliaris. Nature 160, 577–578.

    Article  PubMed  CAS  Google Scholar 

  • ZEUTHEN, E., 1950a. Cartesian diver respirometer. Biol. Bull. 98, 139–143.

    Article  PubMed  CAS  Google Scholar 

  • ZEUTHEN, E., 1950b. Respiration during cell division in the egg of the sea urchin Psammechinus miliaris. Biol. Bull. 98, 144–151.

    Article  PubMed  CAS  Google Scholar 

  • ZEUTHEN, E., 1950c. Respiration and cell division in the egg of Urechis caupo. Biol. Bull. 98, 152–160.

    Article  PubMed  CAS  Google Scholar 

  • ZEUTHEN, E., 1951. Segmentation, nuclear growth and cytoplasmic stage in eggs of echinoderms and amphibia. Pubbl. Sta. Zool. Napoli 13, 47–69.

    Google Scholar 

  • ZEUTHEN, E., 1953. Biochemistry and metabolism of cleavage in the sea urchin egg, as resolved into its mitotic steps. Arch. Neer. Zool. 10, Suppl., 31–58.

    CAS  Google Scholar 

  • ZEUTHEN, E., 1955. Mitotic respiratory rhythms in single eggs of Psammechinus miliaris and of Ciona intestinalis. Biol. Bull. 108, 366–385.

    Article  Google Scholar 

  • ZIELIńSKI, M.A., 1939. Carbohydrate metabolism and phosphorus compounds in the fertilized eggs of the sea urchin (Paracentrotus lividus Lm.). Acta Biol. exp., Varsovie 13, 35–48.

    Google Scholar 

  • ZOTIN, A.I., 1967. Rate of glucose oxidation in sea urchin eggs. Nature 213, 529–530.

    Article  CAS  Google Scholar 

  • ZOTIN, A.I., FAUSTOV, V.S., RADZINSKAJA, L.I., Ozernyuk, N.D., 1967. ATP level and respiration of embryos. J. Embryol. Exp. Morphol. 18, 1–12.

    PubMed  CAS  Google Scholar 

  • ZOTIN, A.I., MILMAN, L.S., Faustov, V.S., 1965. ATP level and cleavage of sea-urchin eggs Strongylocentrotus droebachiensis (O.F. Müller). Exp. Cell Res. 39, 567–576.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Yanagisawa, T. (1975). Carbohydrate Metabolism and Related Enzymes. In: Czihak, G. (eds) The Sea Urchin Embryo. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65964-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65964-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65966-9

  • Online ISBN: 978-3-642-65964-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics