Advertisement

Carbohydrate Metabolism and Related Enzymes

  • T. Yanagisawa

Abstract

Based on 20th century biochemical research, an explanation has been found for that once-mysterious phenomenon — glycolysis. Yeast fermentation, characterized by “boiling” and spirit formation, is the result of the vigorous evolution of CO2 bubbles and the production of ethanol as an end product of the anaerobic breakdown of starch. Lactate formation in muscle tissues during their “movement” is also a result of that carbohydrate catabolism via glycolysis (a process almost identical to that of fermentation) that accompanies the production of energy for muscle contraction.

Keywords

G6PDH Activity Cytochrome Oxidase Activity Paracentrotus Lividus Pentose Phosphate Shunt Pluteus Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AKETA, K., 1957. Quantitative analyses of lactic acid and related compounds in sea urchin eggs at the time of fertilization. Embryologia 3, 267–278.CrossRefGoogle Scholar
  2. AKETA, K., 1961a. Studies on the production of the fertilization acid in sea urchin eggs. I. Acid production at fertilization and activation, and the effect of some metabolic inhibitors. Embryologia 5, 397–405.CrossRefGoogle Scholar
  3. AKETA, K., 1961b. Studies on the production of the fertilization acid in sea urchin eggs. II. Experimental analysis of the production mechanism. Embryologia 5, 406–412.Google Scholar
  4. AKETA, K., 1962. Studies on the production of the fertilization acid in sea urchin eggs. III. Cytochemical examination on the possible role of acid mucopolysaccharide components in the acid production. Embryologia 7, 223–227.CrossRefGoogle Scholar
  5. AKETA, K., 1963. Studies on the acid production at fertilization of sea urchin eggs. Exp. Cell Res. 30, 93–97.PubMedCrossRefGoogle Scholar
  6. AKETA, K., 1964. Some comparative remarks on the transient change in lactic acid content in sea urchin eggs following fertilization. Exp. Cell Res. 34, 192–194.PubMedCrossRefGoogle Scholar
  7. AKETA, K., BIANCHETTI, R., MARRE, E., MONROY, A., 1964. Hexose monophosphate level as a limiting factor for respiration in unfertilized sea urchin eggs. Biochim. Biophys. Acta 86, 211–215.PubMedGoogle Scholar
  8. ASHBEL, R., 1930. Sul quoziente respiratorio delle uova fecondate e non fecondate dei ricci di mare (Arbacia pustulosa). Boll. soc. ital. biol. sper. 5, 72–74.Google Scholar
  9. BäCKSTRöM, S., 1959. Activity of glucose-6-phosphate dehydrogenase in sea urchin embryos of different developmental trends. Exp. Cell Res. 18, 347–356.PubMedCrossRefGoogle Scholar
  10. BäCKSTRöM, S., 1963. 6-Phosphogluconate dehydrogenase in sea urchin embryos. Exp. Cell Res. 32, 566–569.CrossRefGoogle Scholar
  11. BäCKSTRöM, S., HULTIN, K., HULTIN, T., 1960. Pathways of glucose metabolism in early sea urchin development. Exp. Cell Res. 19, 634–636.PubMedCrossRefGoogle Scholar
  12. BALL, E.G., MEYERHOFF, B., 1940. On the occurrence of iron-porphyrin compounds and succinic dehydrogenase in marine organisms possessing the copper blood pigment hemocyanine. J. Biol. Chem. 134, 483–493.Google Scholar
  13. BALLENTINE, R., 1940. Analysis of the changes in respiratory activity accompanying the fertilization of marine eggs. J. Cell. Comp. Physiol. 15, 217–232.CrossRefGoogle Scholar
  14. BARNETT, R.C., 1953. Cell division inhibition of Arbacia and Chaetopterus eggs and its reversal by KREBS cycle intermediates and certain phosphate compounds. Biol. Bull. 104, 263–274.CrossRefGoogle Scholar
  15. BARNETT, R.C., DOWNEY, M., 1955. Phosphorus content and 32P uptake of marine eggs during cell division. Fed. Proc. 14, 9.Google Scholar
  16. BARRON, E.S.G., 1932. Studies on cell metabolism. I. The oxygen consumption of Nereis eggs before and after fertilization. Biol. Bull. 62, 42–45.CrossRefGoogle Scholar
  17. BARRON, E.S.G., GOLDINGER, J.M., 1941. Intermediary carbohydrate metabolism of eggs and sperm of Arbacia punctulata before and after fertilization. Biol. Bull. 81, 289.Google Scholar
  18. BERGAMI, M., MANSOUR, T.E., Scarano, E., 1968. Properties of glycogen Phosphorylase before and after fertilization in the sea urchin eggs. Exp. Cell Res. 49, 650–655.PubMedCrossRefGoogle Scholar
  19. BILLIAR, R.B., BRUNGARD, J.C., VILLEE, C.A., 1964. D-malate: Effects on activity of L-malate dehydrogenase in developing sea urchin embryos. Science 146, 1464–1465.PubMedCrossRefGoogle Scholar
  20. BILLIAR, R.B., ZELEWSKI, L., VILLEE, C.A., 1966. L-malate dehydrogenase activity and protein synthesis in sea urchin embryos. Develop. Biol. 13, 282–295.PubMedCrossRefGoogle Scholar
  21. BLACK, R.E., TYLER, A., 1959a. The oxidation of C13-labelled carbon monoxide by embryos of Urechis caupo and Strongylocentrotus purpuratus. Anat. Rec. 134, 535.Google Scholar
  22. BLACK, R.E., TYLER, A., 1959b. Effects of fertilization and development on the oxidation of carbon monoxide by eggs of Strongylocentrotus and Urechis as determined by use of 13C. Biol. Bull. 117, 443–453.CrossRefGoogle Scholar
  23. BLACK, R.E., TYLER, A., 1959c. Cytochrome oxidase and oxidation of CO in eggs of sea urchin Strongylocentrotus purpuratus. Biol. Bull. 117, 454–457.CrossRefGoogle Scholar
  24. BLANCHARD, K.C., 1935. The nucleic acid of the eggs of Arbacia punctulata. J. Biol. Chem. 108, 251–256.Google Scholar
  25. BLOMQUIST, C.H., 1969. Reversible inactivation of nicotinamide adenine dinucleotide kinase in extracts of unfertilized sea urchin eggs. Exp. Cell Res. 56, 172–174.PubMedCrossRefGoogle Scholar
  26. BOLST, A.L., WHITELEY, A.H., 1957. Studies of the metabolism of phosphorus in the development of the sea urchin, Strongylocentrotus pur-puratus. Biol. Bull. 112, 276–287.CrossRefGoogle Scholar
  27. BOREI, H., 1933. Beiträge zur Kenntnis der Vorgänge bei der Befruchtung des Echinodermeneies. Z. Physiol. 20, 258–266.Google Scholar
  28. BOREI, H., 1948. Respiration of oocytes, unfertilized eggs and fertilized eggs from Psammechinus and Asterias. Biol. Bull. 95, 124–150.PubMedCrossRefGoogle Scholar
  29. BOREI, H., 1949. Independence of post-fertilization respiration in the sea urchin egg from the level of respiration before fertilization. Biol. Bull. 96, 117–122.PubMedCrossRefGoogle Scholar
  30. BOREI, H., 1950. Cytochrome c in sea-urchin eggs. Acta Chem. Scand. 4, 1607–1608.CrossRefGoogle Scholar
  31. BOREI, H., LYBING, S., 1949. Temperature coefficients of respiration in Psammechinus eggs. Biol. Bull. 96, 107–116.PubMedCrossRefGoogle Scholar
  32. BOYD, M., 1928. A comparison of the oxygen consumption of unfertilized and fertilized eggs of Fundulus heterocritus. Biol. Bull. 55, 92–100.CrossRefGoogle Scholar
  33. BRACHET, J., 1934. Étude du métabolisme de l’oeuf de Grenouille (Rana fusca) au cours du développement. 1-La respiration et la glycolyse, de la segmentation à l’éclosion. Arch. Biol. 45, 611–727.Google Scholar
  34. BROCK, N., DRUCKREY, H., HERKEN, H., 1938. Der Stoffwechsel des geschädigten Gewebes. III. Arch. exp. Pathol. Pharmark. 188, 451–464.CrossRefGoogle Scholar
  35. CASTANEDA, M., TYLER, A., 1968. Adenyl cyclase in plasma membrane preparations of sea urchin eggs and its increase in activity after fertilization. Biochem. Biophys. Res. Comm. 33, 782–787.PubMedCrossRefGoogle Scholar
  36. CHAIGNE, M., 1934. Sur la surcharge en glycogène des organes reproducteurs de quelques invertébrés au moment de la ponte. Compt. rend. soc. biol. 115, 174–176.Google Scholar
  37. CHAMBERS, E.L., MENDE, T.J., 1953a. The adenosine triphosphate content of the unfertilized and fertilized eggs of Asterias forbesii and Strongylocentrotus droebachiensis. Arch. Biochem. Biophys. 44, 46–56.PubMedCrossRefGoogle Scholar
  38. CHAMBERS, E.L., MENDE, T.J., 1953b. Alterations of the inorganic phosphate and arginine phosphate content in sea urchin eggs following fertilization. Exp. Cell Res. 5, 508–519.PubMedCrossRefGoogle Scholar
  39. CHAMBERS, E.L., WHITE, W.E., 1949. The accumulation of phosphate and evidence for synthesis of adenosinetriphosphate in the fertilized sea urchin egg. Biol. Bull. 97, 225–226.Google Scholar
  40. CHAMBERS, E.L., WHITE, W.E., JEUNG, N., BROOKS, S.C., 1948. Penetration and effects of low Temperature and cyanide on penetration of radioactive potassium into the eggs of Strongylocentrotus purpuratus and Arbacia punctulata. Biol. Bull. 95, 252–253.PubMedGoogle Scholar
  41. CLELAND, K.W., 1950a. Respiration and cell division in developing oyster eggs. Proc. Linn. Soc. N.S.W. 75, 282–295.Google Scholar
  42. CLELAND, K.W., 1950b. Intermediary metabolism of unfertilized oyster eggs. Proc. Linn. Soc. N.S.W. 75, 296–319.Google Scholar
  43. CLELAND, K.W., ROTHSCHILD, LORD, 1952a. The metabolism of the sea-urchin egg. Anaerobic breakdown of carbohydrate. J. Exp. Biol. 29, 285–294.Google Scholar
  44. CLELAND, K.W., ROTHSCHILD, LORD, 1952b. The metabolism of the sea urchin egg. Oxidation of carbohydrate. J. Exp. Biol. 29, 416–428.Google Scholar
  45. CLOWES, G.H.A., KRAHL, M.E., 1936. Studies on cell metabolism and cell division. I. On the relation between molecular structures, chemical properties, and biological activities of nitrophenols. J. Gen. Physiol. 20, 145–171.PubMedCrossRefGoogle Scholar
  46. CLOWES, G.H.A., KRAHL, M.E., 1940. Studies on cell metabolism and cell division. III. Oxygen consumption and cell division of fertilized sea urchin eggs in the presence of respiratory inhibitors. J. Gen. Physiol. 23, 401–411.PubMedCrossRefGoogle Scholar
  47. CONNORS, W.M., SCHEER, B.T., 1947. Adenosine triphosphatase in the sea urchin egg. J. Cell. Comp. Physiol. 30, 271–283.CrossRefGoogle Scholar
  48. CRANE, R.K., 1947. The distribution of phosphorus in the unfertilized egg of Arbacia punctulata. Biol. Bull. 93, 192–193.PubMedGoogle Scholar
  49. CRANE, R.K., KELTCH, A.K., 1949. Dinitrocresol and phosphate stimulation of the oxygen consumption of a cell-free oxidative system obtained from sea-urchin eggs. J. Gen. Physiol. 32, 503–509.PubMedCrossRefGoogle Scholar
  50. DEUTSCH, H.F., GUSTAFSON, T., 1952. The changes in catalase and cytochrome oxidase activity in developing sea-urchin eggs. Arkiv Kemi 4, 221–231.Google Scholar
  51. DE VINCENTIIS, M., HöRSTADIUS, S., RUNNSTRöM, J., 1966. Studies on controlled and released respiration in animal and vegetal halves of the embryo of the sea urchin, Paracentrotus lividus. Exp. Cell Res. 41, 535–544.PubMedCrossRefGoogle Scholar
  52. DE VINCENTIIS, M., RUNNSTRöM, J., 1967. Studies on controlled and released respiration in animalized and vegetalized embryos of the sea urchin Paracentrotus lividus. Exp. Cell Res. 45, 681–689.PubMedCrossRefGoogle Scholar
  53. DICKENS, F., SIMER, F., 1930. Carbohydrate metabolism of normal and tumor tissue. I. A method for the measurement of the respiratory quotient. Biochem. J. 24, 905–913.PubMedGoogle Scholar
  54. EPEL, D., 1963. The effects of carbon monoxide inhibition on ATP level and the rate of mitosis in the sea urchin egg. J. Cell Biol. 17, 315–319.PubMedCrossRefGoogle Scholar
  55. EPEL, D., 1964a. A primary metabolic change of fertilization: Inter-conversion of pyridine nucleotides. Biochem. Biophys. Res. Comm. 17, 62–68.CrossRefGoogle Scholar
  56. EPEL, D., 1964b. Simultaneous measurement of TPNH formation and respiration following fertilization of the sea-urchin egg. Biochem. Biophys. Res. Comm. 17, 69–73.CrossRefGoogle Scholar
  57. EPEL, D., 1965. Some aspects of metabolic control in the fertilization transition of sea urchin eggs. In: Control of Energy Metabolism (B. Chance, R.W. Estabrook, J.R. Williamson, eds.), pp. 267–272. New York: Academic Press.Google Scholar
  58. EPEL, D., 1969. Does ADP regulate respiration following fertilization of sea urchin eggs? Exp. Cell Res. 58, 312–319.PubMedCrossRefGoogle Scholar
  59. EPEL, D., WEAVER, A.M., MUCHIMORE, A., SCHIMKE, R.T., 1969. β-1,3-glucanase of sea urchin eggs: release from particles at fertilization. Science 163, 294–296.PubMedCrossRefGoogle Scholar
  60. EPHRUSSI, B., 1933. Contribution à l’analyse des premiers stades du développement de l’oeuf. Action de la température. Arch. Biol. 44, 1–147.Google Scholar
  61. EPHRUSSI, B., RAPKINE, L., 1928. Composition chimique de l’oeuf d’Oursin Paracentrotus lividus LK. et ses variations au cours du développement, Ann. Physiol. Physicochem. Biol. 4, 386–398.Google Scholar
  62. ESTABROOK, R.W., MAITRA, P.K., 1962. A fluorimetric method for the quantitative microanalysis of adenine and pyridine nucleotides. Anal. Biochem. 3, 369–382.PubMedCrossRefGoogle Scholar
  63. FAURE-FREMIET, E., 1922. Echanges respiratoires des oeufs de Sabellaria alveolata L. au cours de la segmentation et de la cytolyse. C.R. soc. Biol. 86, 20–23.Google Scholar
  64. FUJII, T., OHNISHI, T., 1962. Inhibition of acid production by nicotinamide and other inhibitors of DPNase in the sea urchin. J. Fac. Sci., Univ. Tokyo, Sect. IV 9, 333–348.Google Scholar
  65. GERARD, R.W., Rubenstein, B.B., 1934. A note on the respiration of Arbacia eggs. J. Gen. Physiol. 17, 375–381.PubMedCrossRefGoogle Scholar
  66. GHIRETTI, F., D’AMELIO, V., 1956. The metabolism of pentose phosphate in sea urchin sperm and eggs. Exp. Cell Res. 10, 734–737.CrossRefGoogle Scholar
  67. GOLDINGER, J.M., BARRON, E.S.G., 1946. The pyruvate metabolism of sea urchin eggs during the process of cell division. J. Gen. Physiol. 30, 73–82.PubMedCrossRefGoogle Scholar
  68. GONSE, P.H., 1960. Respiratory levels in mature sea urchin eggs. J. Embryol. Exp. Morphol. 8, 7 3–93.Google Scholar
  69. GRAY, J., 1925. The mechanism of cell-division. II. Oxygen consumption during cleavage. Proc. Camb. Phil. Soc. (Biol. Sci.) 1, 225–236.Google Scholar
  70. GRAY, J., 1927. The mechanism of cell-division. III. The relationship between cell-division and growth in segmenting eggs. J. Exp. Biol. 4, 313–321.Google Scholar
  71. GRIFFITHS, W.M., WHITELEY, A.H., 1964. A study of the mechanism of phosphate transport in sea urchin eggs by ion exchange analysis of rapidly labeled compounds. Biol. Bull. 126, 69–82.CrossRefGoogle Scholar
  72. GUSTAFSON, T., HASSELBERG, I., 1951. Studies on enzymes in the developing sea urchin egg. Exp. Cell Res. 11, 642–672.CrossRefGoogle Scholar
  73. HARVEY, E.N., 1932. Physical and chemical constants of the egg of the sea urchin, Arbacia punctulata. Biol. Bull. 74, 267–277.Google Scholar
  74. HERK, A.W.H. VAN, 1933. The metabolism of the eggs of the sea urchin. I. The influence on respiration and lactic acid formation through dyestuffs. Arch. Neerl. Physiol. 18, 578–602.Google Scholar
  75. HIRAMOTO, Y., 1959a. Changes in electric properties upon fertilization in the sea urchin egg. Exp. Cell Res. 16, 421–424.PubMedCrossRefGoogle Scholar
  76. HIRAMOTO, Y., 1959b. Electric properties of echinoderm eggs. Embryologia 4, 219–235.CrossRefGoogle Scholar
  77. HOLTER, H., ZEUTHEN, E., 1944. The respiration of the egg and embryos of the ascidian, Ciona intestinalis L. C.R. Trav. Lab. Carlsberg, Sér. Chim. 25, 33–65.Google Scholar
  78. HORWITZ, B.A., 1965. Rates of oxygen consumption of fertilized and unfertilized Asterias, Arbacia and Spisula eggs. Exp. Cell Res. 38, 620–625.PubMedCrossRefGoogle Scholar
  79. HULTIN, T., 1949. The effect of calcium on respiration and acid formation in homogenates of sea-urchin eggs. Ark. Kemi, Mineral. Geol. 26A (27), 1–10.Google Scholar
  80. HULTIN, T., 1950a. On the oxygen uptake of Paracentrotus lividus egg homogenates after the addition of calcium. Exp. Cell Res. 1, 159–168.CrossRefGoogle Scholar
  81. HULTIN, T., 1950b. On the acid formation, breakdown of cytoplasmic inclusions, and increased viscosity in Paracentrotus egg homogenates after the addition of calcium. Exp. Cell Res. 1, 272–283.CrossRefGoogle Scholar
  82. HULTIN, T., 1953. Incorporation of C14-labeled carbonate and acetate into sea urchin embryos. Ark. Kemi 6, 19 5–200.Google Scholar
  83. HULTIN, T., 1957. Acid-soluble nucleotides in the early development of Psammechinus miliaris. Exp. Cell Res. 12, 413–415.PubMedCrossRefGoogle Scholar
  84. HULTIN, T., WESSEL, G., 1952. Incorporation of C14-labeled carbon dioxide into the proteins of developing sea urchin eggs. Exp. Cell Res. 3, 613–616.CrossRefGoogle Scholar
  85. HUTCHENS, J.O., KELTCH, A.K., KRAHL, M.E., CLOWES, G.H.A., 1942a. Studies on cell metabolism and cell division. VI. Observations on the glycogen content, carbohydrate consumption, lactic acid production, and ammonia production of eggs of Arbacia punctulata. J. Gen. Physiol. 25, 717–731.PubMedCrossRefGoogle Scholar
  86. HUTCHENS, J.O., KRAHL, M.E., CLOWES, G.H.A., 1939. Physiological effects of nitro- and halo-substituted phenols on Arbacia eggs in the presence of ammonia. J. Cell. Comp. Physiol. 14, 313–325.CrossRefGoogle Scholar
  87. HUTCHENS, J.O., KOPAC, M.J., KRAHL, M.E., 1942b. The cytochrome oxidase content of centrifugally separated fractions of unfertilized Arbacia eggs. J. Cell. Comp. Physiol. 20, 113–116.CrossRefGoogle Scholar
  88. IMMERS, J., 1952. Carbohydrate components in unfertilized sea urchin eggs. Arkiv Zool. 3, 367–371.Google Scholar
  89. IMMERS, J., 1956. Changes in acid mucopolysaccharides attending the fertilization and development of the sea urchin. Arkiv Zool. 9, 367–375.Google Scholar
  90. IMMERS, J., 1960. Studies on cytoplasmic components of sea urchin eggs stratified by centrifugation. Exp. Cell Res. 19, 499–514.PubMedCrossRefGoogle Scholar
  91. IMMERS, J., RUNNSTRöM, J., 1960. Release of respiratory control by 2,4-dinitrophenol in different stages of sea urchin development. Develop. Biol. 2, 90–104.PubMedCrossRefGoogle Scholar
  92. ISHIHARA, K., 1957. Release and activation of aldolase at fertilization in sea urchin eggs. J. Fac. Sci., Tokyo Univ., Sect. IV 8, 71–93.Google Scholar
  93. ISHIHARA, K., 1958a. Activation of glycolytic process at the time of fertilization in sea urchin eggs. Annot. Zool. Japon. 31, 1–5.Google Scholar
  94. ISHIHARA, K., 1958b. Compensatory respiration and pentose formation in sea urchin eggs by the treatment with monoiodoacetate. Sci. Rep. Saitama Univ., Ser. B 3, 1–10.Google Scholar
  95. ISHIHARA, K., 1958c. Effect of butyric acid on aldolase complex in sea urchin eggs. Sci. Rep. Saitama Univ., Ser. B 3, 11–20.Google Scholar
  96. ISHIHARA, K., 1958d. Enhanced respiration of sea urchin eggs induced by mechanical stimulation. Sci. Rep. Saitama Univ., Ser. B 3, 21–32.Google Scholar
  97. ISHIHARA, K., 1968a. Chemical analysis of glycoproteins in the egg surface of the sea urchin, Arbacia punctulata. Biol. Bull. 134, 425–433.PubMedCrossRefGoogle Scholar
  98. ISHIHARA, K., 1968b. An analysis of acid polysaccharides produced at fertilization of sea urchin. Exp. Cell Res. 51, 473–484.PubMedCrossRefGoogle Scholar
  99. ISHIKAWA, M., 1954. Relation between the breakdown of the cortical granules and permeability to water in the sea urchin egg. Embryologia 2, 57–62.CrossRefGoogle Scholar
  100. ISONO, N., 1962. Carbohydrate metabolism in sea urchin eggs. II. Pentose phosphate cycle in developing eggs. J. Fac. Sci., Univ. Tokyo, Sect. IV 9, 369–377.Google Scholar
  101. ISONO, N., 1963a. Carbohydrate metabolism in sea urchin eggs. III. Changes in respiratory quotient during early embryonic development. Annot. Zool. Japon. 36, 12.6–132.Google Scholar
  102. ISONO, N., 1963b. Carbohydrate metabolism in sea urchin eggs. IV. Intracellular localization of enzymes of pentose phosphate cycle in unfertilized and fertilized eggs. J. Fac. Sci., Univ. Tokyo, Sect. IV 10, 37–53.Google Scholar
  103. ISONO, N., 1963c. Studies on glucose-6-phosphate dehydrogenase in sea urchin eggs. II. J. Fac. Sci,, Univ. Tokyo, Sect. IV, 10, 67–74.Google Scholar
  104. ISONO, N., 1967a. Release of glucose-6-phosphate dehydrogenase of unfertilized sea urchin eggs, in vitro (preliminary report) (in Japanese with English summary). Zool. Mag. 76, 57–59.Google Scholar
  105. ISONO, N., 1967b. Increase in respiratory rate following fertilization of sea urchin eggs (in Japanese with English summary). Zool. Mag. 76, 207–215.Google Scholar
  106. ISONO, N., 1969. Release of glucose-6-phosphate dehydrogenase following fertilization of sea urchin eggs (preliminary report with English summary). Zool. Mag. 78, 305–306.Google Scholar
  107. ISONO, N., ISHIDA, J., 1962. Carbohydrate metabolism in sea urchin eggs. I. Pentose phosphate cycle in unfertilized sea urchin eggs. J. Fac. Sci., Univ. Tokyo, Sect. IV 9, 357–367.Google Scholar
  108. ISONO, N., YANAGISAWA, T., 1966. Acid-soluble nucleotides in the sea urchin egg. II. Uridine diphosphate sugars. Embryologia 9, 184–195.PubMedCrossRefGoogle Scholar
  109. ISONO, N., YASUMASU, I., 1966. Carbohydrate metabolism in sea urchin embryos (preliminary report with English summary). Zool. Mag. 75, 276–279.Google Scholar
  110. ISONO, N., YASUMASU, I., 1968. Pathways of carbohydrate breakdown in sea urchin eggs. Exp. Cell Res. 50, 616–626.PubMedCrossRefGoogle Scholar
  111. ISONO, N., TSUSAKA, A., NAKANO, E., 1963. Studies on glucose-6-phos-phate dehydrogenase in sea urchin eggs. I. J. Fac. Sci., Univ. Tokyo, Sect. IV 10, 55–66.Google Scholar
  112. JANDORF, B.J., KRAHL, M.E., 1942. Studies on cell metabolism and cell division. VIII. The diphosphopyridine nucleotide (cozymase) content of eggs of Arbacia punctulata. J. Gen. Physiol. 25, 749–754.PubMedCrossRefGoogle Scholar
  113. KELTCH, A.K., KRAHL, M.E., CLOWES, G.H.A., 1956. Alteration by dini-trocresol of pathways for glucose oxidation in eggs of Arbacia punctulata. J. Gen. Physiol. 40, 27–35.PubMedCrossRefGoogle Scholar
  114. KELTCH, A.K., Strittmater, C.F., Walters, C.P., Clowes, G.H.A., 1949. Oxidative phosphorylation by a cell-free particulate enzyme system from unfertilized Arbacia eggs. Biol. Bull. 97, 242–243.Google Scholar
  115. KELTCH, A.K., STRITTMATER, CF., WALTERS, C.P., CLOWES, G.H.A., 1950. Oxidative phosphorylation by a cell-free particulate system from unfertilized Arbacia eggs. J. Gen. Physiol. 33, 547–553.PubMedCrossRefGoogle Scholar
  116. KORR, I.M., 1937. Respiratory mechanisms in the unfertilized and fertilized sea urchin egg. A temperature analysis. J. Cell. Comp. Physiol. 10, 461–485.CrossRefGoogle Scholar
  117. KORR, I.M., 1939. Oxidation-reductions in heterogeneous systems. Cold Spring Harb. Symp. 7, 74–93.Google Scholar
  118. KRAHL, M.E., 1950. Metabolic activities and cleavage of egg of the sea urchin, Arbacia punctulata. A review, 1932–1949. Biol. Bull. 98, 175–217.CrossRefGoogle Scholar
  119. KRAHL, M.E., 1956. Oxidative pathways for glucose in eggs of the sea urchin. Biochim. Biophys. Acta 20, 27–32.PubMedCrossRefGoogle Scholar
  120. KRAHL, M.E., Clowes, G.H.A., 1936. Studies on cell metabolism and cell division. II. Stimulation of cellular oxidation and reversible inhibition of cell division by dihalo- and trihalophenols. J. Gen. Physiol. 20, 173–184.PubMedCrossRefGoogle Scholar
  121. KRAHL, M.E., CLOWES, G.H.A., 1938a. Physiological effects of nitro-and halo-substituted phenols in relation to extracellular and intracellular hydrogen ion concentration. I. Dissociation constants and theory. J. Cell Comp. Physiol. 11, 1–20.CrossRefGoogle Scholar
  122. KRAHL, M.E., Clowes, G.H.A., 1938b. Physiological effects of nitro-and halo-substituted phenols in relation to extracellular and intracellular hydrogen ion concentration. II. Experiments with Arbacia eggs. J. Cell. Comp. Physiol. 11, 21–39.CrossRefGoogle Scholar
  123. KRAHL, M.E., Clowes, G.H.A., 1940. Studies on cell metabolism and cell division. IV. Combined action of substituted phenols, cyanide, carbon monoxide, and other respiratory inhibitors on respiration and cell division. J. Gen. Physiol. 23, 413–428.PubMedCrossRefGoogle Scholar
  124. KRAHL, M.E., JANDORF, B.J., CLOWES, G.H.A., 1942. Studies on cell metabolism and cell division. VII. Observations on the amount and possible function of diphosphothiamine (cocarboxylase) in eggs of Arbacia punctulata. J. Gen. Physiol. 25, 733–747.PubMedCrossRefGoogle Scholar
  125. KRAHL, M.E., KELTCH, A.K., CLOWES, G.H.A., 1939. Oxygen consumption and cell Division of fertilized Arbacia eggs in the presence of respiratory inhibitors. Biol. Bull. 77, 318–319.Google Scholar
  126. KRAHL, M.E., KELTCH, A.K., CLOWES, G.H.A., 1940. Flavin-dinucleotide in eggs of the sea urchin, Arbacia punctulata. Proc. soc. Exp. Biol. Med. 45, 719–721.Google Scholar
  127. KRAHL, M.E., KELTCH, A.K., NEUBECK, CE., CLOWES, G.H.A., 1941. Studies on cell metabolism and cell division. V. Cytochrome oxidase activity in the eggs of Arbacia punctulata. J. Gen. Physiol. 24, 597–617.PubMedCrossRefGoogle Scholar
  128. KRAHL, M.E., KELTCH, A.K., WALTERS, C.P., CLOWES, G.H.A., 1953. Hexo-kinase and isomerase activity in eggs of the sea urchin, Arbacia punctulata, and other marine forms. Biol. Bull. 105, 377.Google Scholar
  129. KRAHL, M.E., KELTCH, A.K., WALTERS, C.P., CLOWES, G.H.A., 1954a. Activity of glucose-6-phosphate and 6-phosphogluconate dehydrogenase in relation to glycolytic enzymes of Arbacia eggs. Biol. Bull. 107, 315–316.Google Scholar
  130. KRAHL, M.E., KELTCH, A.K., WALTERS, C.P., CLOWES, G.H.A., 1954b. Hexokinase activity from eggs of the sea urchin, Arbacia punctulata. J. Gen. Physiol. 38, 31–39.PubMedCrossRefGoogle Scholar
  131. KRAHL, M.E., KELTCH, A.K., WALTERS, C.P., CLOWES, G.H.A., 1955. Glucose-6-phosphate and 6-phosphogluconate dehydrogenase from eggs of the sea urchin, Arbacia punctulata. J. Gen. Physiol. 38, 431–439.PubMedCrossRefGoogle Scholar
  132. KRANE, S.M., CRANE, R.K., 1958. Changes in the levels of triphospho-pyridine nucleotide in the eggs of Arbacia punctulata subsequent of fertilization: presence of pyridine nucleotide transhydrogenase and diphosphopyridine nucleotide kinase. Biol. Bull. 115, 355.Google Scholar
  133. KRANE, S.M., CRANE, R.K., 1960. Changes in levels of triphosphopyridine nucleotide in marine eggs subsequent to fertilization. Biochim. Biophys. Acta 43, 369–373.PubMedCrossRefGoogle Scholar
  134. KRISZAT, G., 1954. Die Wirkung von Purinen, Nucleosiden, Nucleotiden und Adenosintriphosphat auf die Teilung und Entwicklung des Seeigeleies bei Anwendung von Dinitrophenol. Exp. Cell Res. 6, 425–439.PubMedCrossRefGoogle Scholar
  135. KUN, E., ABOOD, L.G., 1949. Colorimetric estimation of succinic dehydrogenase by triphenyltetrazoliumchloride. Science 109, 144–146.PubMedCrossRefGoogle Scholar
  136. LANDAU, J.V., MARSLAND, D., ZIMMERMAN, A., 1955. The energetics of cell division: Effects of adenosine triphosphate and related substances on the furrowing capacity of marine eggs (Arbacia and Chaetopterus). J. Cell. Comp. Physiol. 45, 309–329.CrossRefGoogle Scholar
  137. LARDY, H.A., WELLMAN, H., 1952. Oxidative phosphorylations: role of inorganic phosphate and acceptor systems in control of metabolic rates. J. Biol. Chem. 195, 215–224.PubMedGoogle Scholar
  138. LASER, H., ROTHSCHILD, LORD, 1939. The metabolism of the eggs of Psammechinus miliaris during the fertilization reaction. Proc. Roy. Soc. London B 126, 539–557.CrossRefGoogle Scholar
  139. LENTINI, R., 1961. The oxygen uptake of Ciona intestinalis eggs during development in normal and in experimental conditions. Acta Embryol. Morphol. Exp. 4, 209–218.Google Scholar
  140. LILLIE, R.S., 1916. Increase of permeability of water following normal and artificial activation in the sea urchin eggs. Am. J. Physiol. 40, 249–266.Google Scholar
  141. LINDAHL, P.E., 1936. Zur Kenntnis der physiologischen Grundlagen der Determination im Seeigelkeim. Acta Zool. 17, 179–365.CrossRefGoogle Scholar
  142. LINDAHL, P.E., 1939a. Über die biologische Sauerstoffaktivierung nach Versuchen mit Kohlenmonoxyd an Seeigeleiern und Keimen. Z. Physiol. 27, 136–168.Google Scholar
  143. LINDAHL, P.E., 1939b. Zur Kenntnis der Entwicklungsphysiologie des Seeigeleies. Z. Physiol. 27, 233–250.Google Scholar
  144. LINDAHL, P.E., 1940. Über die CN-resistente Atmung des Seeigeleies. Arkiv Kemi, Mineral. Geol. 14 A (12), 1–31.Google Scholar
  145. LINDAHL, P.E., HOLTER, H., 1941. Über die Atmung der Ovozyten erster Ordnung von Paracentrotus lividus und ihre Veränderung während der Reifung. Comp. Rend. Trav. Lab. Carlsberg, Ser. Chim. 24, 49–57.Google Scholar
  146. LINDAHL, P.E., ÖHMAN, L.O., 1938. Weitere Studien über Stoffwechsel und Determination im Seeigelkeim. Biol. Zentralblatt 58, 179–218.Google Scholar
  147. LINDBERG, O., 1943. Studien über das Problem des Kohlenhydratabbaus und der Säurebildung bei der Befruchtung des Seeigeleies. Arkiv Kemi, Mineral. Geol. 16 A (15), 1–15.Google Scholar
  148. LINDBERG, O., 1945. On the metabolism of glycogen in the fertilization of the sea urchin egg. Arkiv Kemi, Mineral. Geol. 20 B (1), 1–8.Google Scholar
  149. LINDBERG, O., 1946. On the occurrence of propanediol phosphate and its effect on the carbohydrate metabolism in animal tissues. Arkiv Kemi, Mineral. Geol. 23 A (2), 1–45.Google Scholar
  150. LINDBERG, O., 1949. On the turnover of adenosine triphosphate in the sea urchin egg. Arkiv Kemi, Mineral. Geol. 26 B (13), 1–4.Google Scholar
  151. LINDBERG, O., Ernster, L., 1948. On carbohydrate metabolism in homogenized sea urchin eggs. Biochim. Biophys. Acta 2, 471–477.CrossRefGoogle Scholar
  152. LITCHFIELD, J.B., WHITELEY, A.H., 1959. Studies on the mechanism of phosphate accumulation by sea urchin embryos. Biol. Bull. 117, 133–149.CrossRefGoogle Scholar
  153. LOEB, J., 1896. Untersuchungen über die physiologischen Wirkungen des Sauerstoffmangels. Pflüger’s Arch. Physiol. 62, 249–295.CrossRefGoogle Scholar
  154. LOEB, J., 1906a. Versuche über den chemischen Charakter des Befruchtungsvorganges. Biochem. Z. 1, 183–206.Google Scholar
  155. LOEB, J., 1906b. Über die Hemmung der toxischen Wirkung hypertonischer Lösungen auf das Seeigelei durch Sauerstoffmangel und Cyankalium. Pflüger’s Arch. Physiol. 113, 487–511.CrossRefGoogle Scholar
  156. LOEB, J., WASTENEYS, H., 1911. Sind die Oxydationsvorgänge die unabhängige Variable in den Lebenserscheinungen? Biochem. Z. 36, 345–356.Google Scholar
  157. LOEB, J., WASTENEYS, H., 1913. The influence of hypertonic solution upon the rate of oxidations in fertilized and unfertilized eggs. J. Biol. Chem. 14, 469–480.Google Scholar
  158. LøVTRUP, S., IVERSON, R.M., 1969. Respiratory phases during early sea urchin development, measured with the automatic diver balance. Exp. Cell Res. 55, 25–32.PubMedCrossRefGoogle Scholar
  159. MACKINTOSH, F.R., BELL, E., 1969. Labelling of nucleotide pools in sea urchin eggs. Exp. Cell Res. 57, 71–73.PubMedCrossRefGoogle Scholar
  160. MAGGIO, R., 1957. Mitochondrial and cytoplasmic protease activity in sea urchin eggs. J. Cell. Comp. Physiol. 50, 135–144.CrossRefGoogle Scholar
  161. MAGGIO, R., 1959. Cytochrome oxidase activity in the mitochondria of unfertilized and fertilized sea urchin eggs. Exp. Cell Res. 16, 272–278.PubMedCrossRefGoogle Scholar
  162. MAGGIO, R., AJELLO, F., MONROY, A., 1960. Inhibitor of the cytochrome oxidase of unfertilized sea urchin eggs. Nature 188, 1195–1196.PubMedCrossRefGoogle Scholar
  163. MAGGIO, R., GHIRETTI-MAGALDI, A., 1958. The cytochrome system in mitochondria of unfertilized sea urchin eggs. Exp. Cell Res. 15, 95–102.PubMedCrossRefGoogle Scholar
  164. MAGGIO, R., MONROY, A., 1959. An inhibitor of cytochrome oxidase activity in the sea urchin egg. Nature 184, 68–69.PubMedGoogle Scholar
  165. MAGGIO, R., VITTORELLI, M.L., RINALDI, A.M., MONROY, A., 1964. In vitro incorporation of amino acids into protein stimulated by RNA from unfertilized sea urchin eggs. Biochem. Biophys. Res. Comm. 15, 436–441.PubMedCrossRefGoogle Scholar
  166. MATSUNAGA, Y., YANAGISAWA, T., 1970. Glucose metabolism during the early development of sea urchin eggs (abstract in Japanese). Zool. Mag. 79, 356–357.Google Scholar
  167. MAZIA, D., 1937. The release of calcium in Arbacia eggs on fertilization. J. Cell. Comp. Physiol. 10, 291–304.CrossRefGoogle Scholar
  168. MAZIA, D., 1961. Mitosis and the physiology of cell division. In: The Cell (J. Brachet, A.E. Mirsky, eds.), vol. 3, pp. 77–412. New York: Academic Press.Google Scholar
  169. MAZIA, D., 1963. Synthetic activities leading to mitosis. J. Cell. Comp. Physiol. 62, 123–140.CrossRefGoogle Scholar
  170. MAZIA, D., PRESCOTT, D.M., 1954. Nuclear function and mitosis. Science 120, 120–122.PubMedCrossRefGoogle Scholar
  171. MEHL, J.W., SWANN, M.M., 1961. Acid and base production at fertilization in the sea urchin. Exp. Cell Res. 22, 233–245.PubMedCrossRefGoogle Scholar
  172. MENDE, J.M., CHAMBERS, E.L., 1953. The occurrence of arginine phosphate in echinoderm eggs. Arch. Biochem. Biophys. 45, 105–116.PubMedCrossRefGoogle Scholar
  173. MEYERHOF, O., 1911. Untersuchungen über die Wärmetönung der vitalen Oxydationsvorgänge in Eiern. I-III. Biochem. Z. 35, 246–328.Google Scholar
  174. MINGANTI, A., 1957. Experiments on the respiration of Phallusia eggs and embryos (ascidians). Acta Embryol. Morphol. Exp. 1, 150–163.Google Scholar
  175. MONNE, L., HåRDE, S., 1951. On the cortical granules of the sea urchin egg. Arkiv Zool. 1, 487–498.Google Scholar
  176. MONROY, A., 1957a. Swelling properties of the mitochondria of unfertilized and newly fertilized sea urchin eggs. Experientia 13, 398–399.CrossRefGoogle Scholar
  177. MONROY, A., 1957b. Adenosinetriphosphatase in the mitochondria of unfertilized and newly fertilized sea-urchin eggs. J. Cell. Comp. Physiol. 50, 73–82.CrossRefGoogle Scholar
  178. MONROY, A., 1965. Chemistry and physiology of fertilization. New York: Holt Rinehart and Winston, Inc.Google Scholar
  179. MONROY, A., VITTORELLI, M.L., 1960. On a glycoprotein of the sea urchin eggs and its changes following fertilization. Experientia 16, 56–59.PubMedCrossRefGoogle Scholar
  180. MONROY, A., VITTORELLI, M.L., 1962. Utilization of 14C-glucose for amino acids and protein synthesis by the sea urchin embryo. J. Cell. Comp. Physiol. 60, 285–287.PubMedCrossRefGoogle Scholar
  181. MOORE, R.O., VILLEE, C.A., 1962. Malic dehydrogenases in sea urchin eggs. Science 138, 508–509.PubMedCrossRefGoogle Scholar
  182. MOORE, R.O., VILLEE, CA., 1963a. Multiple molecular forms of malate dehydrogenase in echinoderm embryos. Comp. Biochem. Physiol. 9, 81–94.CrossRefGoogle Scholar
  183. MOORE, R.O., VILLEE, CA., 1963b. Malate dehydrogenase: Multiple forms in separated blastomeres of sea urchin embryos. Science 142, 389–390.PubMedCrossRefGoogle Scholar
  184. MUCHMORE, A.V., EPEL, D., WEAVER, A.M., SCHIMKE, R.T., 1969. Purification and properties of an exo-3-D-1,3-glucanase from sea urchin eggs. Biochim. Biophys. Acta 178, 551–560.PubMedGoogle Scholar
  185. NAKANO, E., 1953. Respiration during maturation and at fertilization of fish eggs. Embryologia 2, 21–30.CrossRefGoogle Scholar
  186. NAKANO, E., MONROY, A., 1958. Incorporation of 35S-methionine in the cell fractions of sea urchin eggs and embryos. Exp. Cell Res. 14, 236–244.PubMedCrossRefGoogle Scholar
  187. NEEDHAM, J., NEEDHAM, D.M., 1926. The hydrogen-ion concentration and oxidation-reduction potential of the cell-interior before and after fertilization and cleavage: A micro-injection study on marine eggs. Proc. Roy. Soc. London, B 99, 173–199.CrossRefGoogle Scholar
  188. NEEDHAM, J., NEEDHAM, D.M., 1930. On phosphorus metabolism in embryonic life. I. Invertebrate eggs. J. Exp. Biol. 7, 317–348.Google Scholar
  189. NEEDHAM, D.M., NEEDHAM, J., BALDWIN, E., YUDKIN, J., 1932. A comparative study of the Phosphagens, with some remarks on the origin of vertebrates. Proc. Roy. Soc. London, B 110, 260–294.CrossRefGoogle Scholar
  190. NEMOTO, S., 1970. Changes in the content of arginine phosphate during cell cycle of sea urchin eggs (abstract in Japanese). Zool. Mag. 79, 342–343.Google Scholar
  191. NEMOTO, S., YANAGISAWA, T., 1969. Arginine Phosphokinase and creatine Phosphokinase in echinoderms. IX. From when the content of arginine phosphate begins to increase in fertilized eggs? (Abstract in Japanese), Zool. Mag. 78, 378–379.Google Scholar
  192. NILSSON, R., 1959. Acid-soluble nucleotides in the unfertilized eggs of the sea-urchin Paracentrotus lividus. Acta Chem. Scand. 13, 395–408.CrossRefGoogle Scholar
  193. NILSSON, R., 1961. Acid-soluble nucleotides during early embryonic development of the sea-urchin Paracentrotus lividus. Acta Chem. Scand. 15, 583–591.CrossRefGoogle Scholar
  194. ÖHMAN, L.O., 1940. Über die Veränderung des respiratorischen Quotienten während der Frühentwicklung des Seeigeleies. Arkiv Zool. 32 A (15), 1–9.Google Scholar
  195. OHNISHI, T., 1961. Changes in diphosphopyridine nucleotide contents of sea-urchin eggs after fertilization and during mitotic phases, with special reference to the effect of nicotinamide. J. Fac. Sci., Univ. Tokyo, Sect. IV, 9, 205–211.Google Scholar
  196. OHNISHI, T., SUGIYAMA, 1963. Polarographic studies of oxygen uptake of sea-urchin eggs. Embryologia 8, 79–88.CrossRefGoogle Scholar
  197. ÖRSTRöM, A., 1932. Zur Analyse der Atmungssteigerung bei der Befruchtung des Seeigeleies auf der Grundlage von Versuchen über Oxydation und Reduktion von Dimethylparaphenylendiamin in der Eizelle. Protoplasma 15, 566–589.CrossRefGoogle Scholar
  198. ÖRSTRöM, Å., Lindberg, O., 1940. Über den Kohlenhydratstoffwechsel bei der befruchtung des Seeigeleies. Enzymologia 8, 367–383.Google Scholar
  199. OZAKI, H., WHITELEY, A.H., 1967. L-malate dehydrogenase of the sea-urchin Strongylocentrotus purpuratus. Biochim. Biophys. Acta 146, 587–590.PubMedGoogle Scholar
  200. OZAKI, H., WHITELEY, A.H., 1970. L-malate dehydrogenase in the development of the sea urchin Strongylocentrotus purpuratus. Develop. Biol. 21, 196–215.PubMedCrossRefGoogle Scholar
  201. PANDIT, C.G., CHAMBERS, R., 1932. Intracellular hydrion-concentration studies. IX. The pH of the egg of the sea-urchin, Arbacia punctulata. J. Cell. Comp. Physiol. 2, 243–249.CrossRefGoogle Scholar
  202. PATTON, G.W., JR., METS, L., VILLEE, C.A., 1967. Malic dehydrogenase isozymes: distribution in developing nucleate and anucleate halves of sea urchin eggs. Science 156, 400–401.PubMedCrossRefGoogle Scholar
  203. PERLZWEIG, W.A., BARRON, E.S.G., 1928. Lactic acid and carbohydrate in sea urchin eggs under aerobic and anaerobic conditions. J. Biol. Chem. 79, 19–26.Google Scholar
  204. PHILIPS, F.S., 1940. Oxygen consumption and its inhibition in the development of Fundulus and various pelagic eggs. Biol. Bull. 78, 256–274.CrossRefGoogle Scholar
  205. RAPOPORT, S., HOFMANN, E.C.G., GHIRETTI-MAGALDI, A., 1958. Über die Atmungsenzyme des Seeigeleies. Experientia 14, 169–170.CrossRefGoogle Scholar
  206. ROBBIE, W.A., 1946a. The quantitative control of cyanide in mano-metric experimentation. J. Cell. Comp. Physiol. 27, 181–209.CrossRefGoogle Scholar
  207. ROBBIE, W.A., 1946b. The effect of cyanide on the oxygen consumption and cleavage of the sea urchin egg. J. Cell. Comp. Physiol. 28, 305–324.CrossRefGoogle Scholar
  208. ROTHSCHILD, LORD, 1939. The effect of phlorizin on the metabolism of cytolyzing sea-urchin eggs. J. Exp. Biol. 16, 49–55.Google Scholar
  209. ROTHSCHILD, LORD, 1949. The metabolism of fertilized and unfertilized sea-urchin eggs. The action of light and carbon monoxide. J. Exp. Biol. 26, 100–111.PubMedGoogle Scholar
  210. ROTHSCHILD, LORD, 1951. Sperm-egg interacting substances and metabolic changes associated with fertilization. Biochem. Soc. Symp. 7, 40–51.Google Scholar
  211. ROTHSCHILD, LORD, 1956. Fertilization. London: Methuen.Google Scholar
  212. ROTHSCHILD, LORD, 1958. Acid production after fertilization of sea-urchin eggs. A re-examination of the lactic acid hypothesis. J. Exp. Biol. 15, 843–849.Google Scholar
  213. ROTHSCHILD, LORD, BARNES, H., 1953. The inorganic constituents of the sea-urchin egg. J. Exp. Biol. 30, 534–544.Google Scholar
  214. RUBENSTEIN, B.B., GERARD, R.W., 1934. Fertilization and the temperature coefficients of oxygen consumption in eggs of Arbacia punctulata. J. Gen. Physiol. 17, 677–685.PubMedCrossRefGoogle Scholar
  215. RUDNEY, H., 1954. The synthesis of dl-propanediol-1-phosphate and C14-labeled propanediol and their isolation from liver tissue. J. Biol. Chem. 210, 353–360.PubMedGoogle Scholar
  216. RUNNSTRöM, J., 1930a. Atmungsmechanismus und Entwicklungserregung bei dem Seeigelei. Protoplasma 10, 106–173.CrossRefGoogle Scholar
  217. RUNNSTRöM, J., 1930b. Spaltung und Atmung bei der Entwicklungserregung des Seeigeleies. Arkiv Zool. 21B (8), 1–5.Google Scholar
  218. RUNNSTRöM, J., 1932. Über den Mechanismus der Entwicklungserregung bei dem Seestern- und Seeigelkeim. Protoplasma 15, 448–452.CrossRefGoogle Scholar
  219. RUNNSTRöM, J., 1933. Zur Kenntnis der Stoffwechselvorgänge bei der Entwicklungserregung des Seeigeleies. Biochem. Z. 258, 257–279.Google Scholar
  220. RUNNSTRöM, J., 1935a. On the influence of pyocyanine on the respiration of the sea-urchin egg. Biol. Bull. 68, 327–334.CrossRefGoogle Scholar
  221. RUNNSTRöM, J., 1935b. Acid formation in frozen and thawed Arbacia punctulata eggs and its possible bearing on the problem of activation. Biol. Bull. 69, 345–350.CrossRefGoogle Scholar
  222. RUNNSTRöM, J., 1935c. Influence of iodoacetate on activation and development of the eggs of Arbacia punctulata. Biol. Bull. 69, 351–355.CrossRefGoogle Scholar
  223. RUNNSTRöM, J., 1949. The mechanism of fertilization in metazoa. Adv. Enzymol. 9, 241–327.Google Scholar
  224. RUNNSTRöM, J., 1956a. Some considerations on metabolic changes occurring at fertilization and during early development of the sea-urchin egg. Pubbl. Sta. Zool. Napoli 28, 315–340.Google Scholar
  225. RUNNSTRöM, J., 1956b. Some aspects of the initiating processes in the fertilization of the sea urchin egg. Zool. Anz. 156, 91–101.Google Scholar
  226. RUNNSTRöM, J., BOTTE, L., DE VINCENTIIS, M., 1970. Experiments and considerations on the state of respiratory chains before and after fertilization and in the early development of the sea urchin egg. Rendiconti di Istituto Lombardo di Scienze e Lettere 104, 20–32.Google Scholar
  227. RUNNSTRöM, J., HAGSTRöM, B.E., PERLMAN, P., 1959. Fertilization. In: The Cell (J. Brächet, A.E. Mirsky, eds.), vol. 1, pp. 327–397. New York, London: Academic Press.Google Scholar
  228. RUNNSTRöM, J., IMMERS, J., 1956. The role of mucopolysaccharides in the fertilization of the sea-urchin eggs. Exp. Cell Res. 10, 354–363.PubMedCrossRefGoogle Scholar
  229. SACKS, J., 1949. A fractionation procedure for the acid-soluble phosphorus compounds of liver. J. Biol. Chem. 181, 655–666.PubMedGoogle Scholar
  230. SCHMIDT, G., HECHT, L., THANNHAUSER, S.J., 1948. The behavior of the nucleic acids during the early development of the sea urchin egg (Arbacia). J. Gen. Physiol. 31, 203–207.PubMedCrossRefGoogle Scholar
  231. SCHMIDT, G., THANNHAUSER, S.J., 1945. A method for the determination of deoxyribonucleic acid, ribonucleic acid, and phosphoproteins in animal tissues. J. Biol. Chem. 161, 83–89.PubMedGoogle Scholar
  232. SCHOLANDER, P.F., CLAFF, C.L., SVEINSSON, S.L., 1952a. Respiratory studies of single cells. I. Methods. Biol. Bull. 102, 157–177.CrossRefGoogle Scholar
  233. SCHOLANDER, P.F., CLAFF, C.L., SVEINSSON, S.L., SCHOLANDER, S.I., 1952b. Respiratory studies of single cells. III. Oxygen consumption during cell division. Biol. Bull. 102, 185–199.CrossRefGoogle Scholar
  234. SCHOLANDER, P.F., LEIVESTAD, H., SUNDNES, G., 1958. Cycling in the oxygen consumption of cleaving eggs. Exp. Cell Res. 15, 505–511.PubMedCrossRefGoogle Scholar
  235. SHAPIRO, H., 1935. The respiration of fragments obtained by centri-fuging the egg of the sea urchin, Arbacia punctulata. J. Cell. Comp. Physiol. 6, 101–116.CrossRefGoogle Scholar
  236. SHEARER, C., 1922a. On the oxidation processes of the echinoderm egg during fertilization. Proc. Roy. Soc. London B 93, 213–229.CrossRefGoogle Scholar
  237. SHEARER, C., 1922b. On the heat production and oxidation processes of the echinoderm egg during fertilization and early development. Proc. Roy. Soc. London B 93, 410–425.CrossRefGoogle Scholar
  238. SIBLEY, J.A., LEHNINGER, A.L., 1949. Determination of aldolase in animal tissues. J. Biol. Chem. 177, 859–872.PubMedGoogle Scholar
  239. STEFANELLI, A., 1938. Il metabolismo dell’uovo e dell’embrione studiato negli Anfibi Anuri. II. L’assunzione di ossigeno. Arch. Sc. Biol. 24, 411–441.Google Scholar
  240. STOTT, F.C., 1931. The spawning of Echinus esculentus and some changes in gonad composition. J. Exp. Biol. 8, 133–150.CrossRefGoogle Scholar
  241. SUGINO, Y., 1960. Studies on deoxynucleosidic compounds. II. Deoxycytidine diphosphate choline in sea urchin eggs. Biochim. Biophys. Acta 40, 425–434.PubMedCrossRefGoogle Scholar
  242. SUGINO, Y., SUGINO, N., OKAZAKI, R., OKAZAKI, T., 1957. Deoxyribosidic compounds of sea urchin eggs. Biochim. Biophys. Acta 26, 453–454.PubMedCrossRefGoogle Scholar
  243. SUGINO, Y., SUGINO, N., OKAZAKI, R., OKAZAKI, T., 1960. Studies on deoxynucleosidic compounds. I. A modified microbioassay method and its application to sea urchin eggs and several other materials. Biochim. Biophys. Acta 40, 417–424.PubMedCrossRefGoogle Scholar
  244. SWANN, M.M., 1953. The mechanism of cell division. A study with carbon monoxide on the sea-urchin egg. Quart. J. Micro. Sci. 94, 369–379.Google Scholar
  245. SWANN, M.M., 1954. The mechanism of cell division. Experiments with ether on the sea-urchin egg. Exp. Cell Res. 7, 505–517.PubMedCrossRefGoogle Scholar
  246. SWANN, M.M., 1957. The control of cell division: A review. I. General mechanisms. Cancer Res. 17, 727–757.PubMedGoogle Scholar
  247. SWANN, M.M., 1958. The control of cell division: A review. II. Special mechanisms. Cancer Res. 18, 1118–1160.PubMedGoogle Scholar
  248. TAGUCHI, S., 1962. Changes in the content of adenosine nucleotides during early development of sea urchins, Pseudocentrotus depressus and Hemicentrotus pulcherrimus. Annot. Zool. Japon. 35, 183–187.Google Scholar
  249. TANG, P.S., 1931a. The oxygen tension-oxygen consumption curve of unfertilized Arbacia eggs. Biol. Bull. 60, 242–244.CrossRefGoogle Scholar
  250. TANG, P.S., 1931b. The rate of oxygen consumption of Asterias eggs before and after fertilization. Biol. Bull. 61, 468–471.CrossRefGoogle Scholar
  251. TANG, P.S., 1948. Rhythmic respiration in the sea urchin. Nature 162, 189.PubMedCrossRefGoogle Scholar
  252. TANG, P.S., Gerard, R.W., 1932. The oxygen tension-oxygen consumption curve of fertilized Arbacia eggs. J. Cell. Comp. Physiol. 1, 503–513.CrossRefGoogle Scholar
  253. TYLER, A., Humason, W.D., 1937. On the energetics of differentiation. VI. Comparison of temperature coefficients of the respiratory rates of unfertilized and of fertilized eggs. Biol. Bull. 73, 261–279.CrossRefGoogle Scholar
  254. TYLER, A., Monroy, A., 1959. Changes in rate of transfer of potassium across the membrane upon fertilization of eggs of Arbacia punctulata. J. Exp. Zool. 142, 675–690.PubMedCrossRefGoogle Scholar
  255. TYLER, A., RICCI, N., HOROWITZ, N.H., 1938. The respiration and fertilizable life of Arbacia eggs under sterile and non-sterile conditions. J. Exp. Zool. 79, 129–143.CrossRefGoogle Scholar
  256. TYLER, A., MONROY, A., KAO, C.Y., GRUNDFERT, H., 1956. Membrane potential and resistance of the starfish egg before and after fertilization. Biol. Bull. 111, 153–177.CrossRefGoogle Scholar
  257. WARBURG, O., 1908. Beobachtungen über die Oxidationsprozesse im Seeigelei. Z. physiol. Chem. 57, 1–16.CrossRefGoogle Scholar
  258. WARBURG, O., 1915. Notizen zur Entwicklungsphysiologie des Seeigeleies. Pflüger’s Arch. Physiol. 160, 324–332.CrossRefGoogle Scholar
  259. WHITAKER, D.M., 1931a. On the rate of oxygen consumption by fertilized and unfertilized eggs. I. Fucus vesiculosus. J. Gen. Physiol. 15, 167–182.Google Scholar
  260. WHITAKER, D.M., 1931b. On the rate of oxygen consumption by fertilized and unfertilized eggs. II. Cumingia tellinoides. J. Gen. Physiol. 15, 183–190.PubMedCrossRefGoogle Scholar
  261. WHITAKER, D.M., 1931c. On the rate of oxygen consumption by fertilized and unfertilized eggs. III. Nereis limbata. J. Gen. Physiol. 15, 191–200.PubMedCrossRefGoogle Scholar
  262. WHITAKER, D.M., 1933a. On the rate of oxygen consumption by fertilized and unfertilized eggs. IV. Chaetopterus and Arbacia punctulata. J. Gen. Physiol. 16, 475–495.PubMedCrossRefGoogle Scholar
  263. WHITAKER, D.M., 1933b. On the rate of oxygen consumption by fertilized and unfertilized eggs. V. Comparisons and interpretation. J. Gen. Physiol. 16, 497–528.PubMedCrossRefGoogle Scholar
  264. WHITELEY, A.H., 1949. The phosphorus compounds of sea-urchin eggs and the uptake of radio-phosphate upon fertilization. Amer. Nat. 83, 249–267.CrossRefGoogle Scholar
  265. WHITELEY, A.H., BALTZER, F., 1958. Development, respiratory rate and content of desoxyribonucleic acid in the hybrid Paracentrotus ♀ × Arbacia ♂. Pubbl. Sta. Zool. Napoli 30, 402–457.Google Scholar
  266. WHITELEY, A.H., CHAMBERS, E.L., 1966. Phosphate transport in fertilized sea urchin eggs. II. Effects of metabolic inhibitors and studies on differentiation. J. Cell Physiol. 68, 309–324.CrossRefGoogle Scholar
  267. WIERCINSKI, F.J., 1944. An experimental study of protoplasmic pH determination. I. Amoebae and Arbacia punctulata. Biol. Bull. 86, 98–112.CrossRefGoogle Scholar
  268. WINTERS, R.W., 1962. Intracellular pH in Arbacia eggs. Biol. Bull. 123, 519–520.Google Scholar
  269. YANAGISAWA, T., 1959a. Studies on echinoderm Phosphagens. I. Occurrence and nature of Phosphagens in sea-urchin eggs and spermatozoa. J. Fac. Sci., Univ. Tokyo, Sect. IV, 8, 473–479.Google Scholar
  270. YANAGISAWA, T., 1959b. Studies on guanidine phosphoryltransferases. I. Occurrence in spermatozoa and eggs of sea-urchins. J. Fac. Sci., Univ. Tokyo, Sect. IV, 8, 481–486.Google Scholar
  271. YANAGISAWA, T., 1968. Studies on echinoderm Phosphagens. IV. Changes in the content of arginine phosphate in the sea-urchin egg after fertilization and the effect of some metabolic inhibitors. Exp. Cell Res. 53, 525–536.CrossRefGoogle Scholar
  272. YANAGISAWA, T., 1969a. Cell division and energy metabolism (in se). (Japanese). Prot. Nuc. Acid Enzyme 14, 677–687.Google Scholar
  273. YANAGISAWA, T., 1969b. Nucleic acid metabolism during the early development of sea-urchin eggs (in Japanese). Jap. J. Develop. Biol. 23, 138–139.Google Scholar
  274. YANAGISAWA, T., ISONO, N., 1966. Acid-soluble nucleotides in the sea-urchin egg. I. Ion-exchange chromatographic separation and characterization. Embryologia 9, 170–183.PubMedCrossRefGoogle Scholar
  275. YASUMASU, I., NAKANO, E., 1963. Respiratory level of sea-urchin eggs before and after fertilization. Biol. Bull. 125, 182–187.CrossRefGoogle Scholar
  276. YASUMASU, I., ASAMI, K., SHOGER, R., FUJIWARA, A., 1973. Glycolysis in sea-urchin eggs. Rate-limiting steps and activation at fertilization. Exp. CellRes. 80, 361–371.CrossRefGoogle Scholar
  277. YCAS, M., 1954. The respiration and glycolytic enzymes of sea-urchin eggs. J. Exp. Biol. 31, 208–217.Google Scholar
  278. ZEUTHEN, E., 1944. Oxygen uptake during mitosis. Experiments on the eggs of the frog (Rana platyrrhina). C.R. Trav. Lab. Carlsberg, Sér. Chim. 25, 191–228.Google Scholar
  279. ZEUTHEN, E., 1947. Respiration and cell division in eggs of the sea urchin, Psammechinus miliaris. Nature 160, 577–578.PubMedCrossRefGoogle Scholar
  280. ZEUTHEN, E., 1950a. Cartesian diver respirometer. Biol. Bull. 98, 139–143.PubMedCrossRefGoogle Scholar
  281. ZEUTHEN, E., 1950b. Respiration during cell division in the egg of the sea urchin Psammechinus miliaris. Biol. Bull. 98, 144–151.PubMedCrossRefGoogle Scholar
  282. ZEUTHEN, E., 1950c. Respiration and cell division in the egg of Urechis caupo. Biol. Bull. 98, 152–160.PubMedCrossRefGoogle Scholar
  283. ZEUTHEN, E., 1951. Segmentation, nuclear growth and cytoplasmic stage in eggs of echinoderms and amphibia. Pubbl. Sta. Zool. Napoli 13, 47–69.Google Scholar
  284. ZEUTHEN, E., 1953. Biochemistry and metabolism of cleavage in the sea urchin egg, as resolved into its mitotic steps. Arch. Neer. Zool. 10, Suppl., 31–58.Google Scholar
  285. ZEUTHEN, E., 1955. Mitotic respiratory rhythms in single eggs of Psammechinus miliaris and of Ciona intestinalis. Biol. Bull. 108, 366–385.CrossRefGoogle Scholar
  286. ZIELIńSKI, M.A., 1939. Carbohydrate metabolism and phosphorus compounds in the fertilized eggs of the sea urchin (Paracentrotus lividus Lm.). Acta Biol. exp., Varsovie 13, 35–48.Google Scholar
  287. ZOTIN, A.I., 1967. Rate of glucose oxidation in sea urchin eggs. Nature 213, 529–530.CrossRefGoogle Scholar
  288. ZOTIN, A.I., FAUSTOV, V.S., RADZINSKAJA, L.I., Ozernyuk, N.D., 1967. ATP level and respiration of embryos. J. Embryol. Exp. Morphol. 18, 1–12.PubMedGoogle Scholar
  289. ZOTIN, A.I., MILMAN, L.S., Faustov, V.S., 1965. ATP level and cleavage of sea-urchin eggs Strongylocentrotus droebachiensis (O.F. Müller). Exp. Cell Res. 39, 567–576.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • T. Yanagisawa

There are no affiliations available

Personalised recommendations