Advertisement

Ēthrane pp 28-38 | Cite as

Stoffwechselwirkungen von Ēthrane und Halothan in der isolierten perfundierten Rattenleber

  • E. Götz
  • R. Scholz
Conference paper
Part of the Anaesthesiology and Resuscitation / Anaesthesiologie und Wiederbelebung / Anesthésiologie et Réanimation book series (A+I, volume 84)

Zusammenfassung

An der isolierten perfundierten Rattenleber wurden die Folgen einer Hemmung der mitochondrialen Atmungskette durch Ēthrane und Halothan gezeigt: der Sauerstoffverbrauch war vermindert; die Redoxindikatoren Lactat/Pyruvat und ʲ-Hydroxybutyrat/A cetoacetat zeigten einen Anstau von reduzierten Äquivalenten; die eingeschränkte Bereitstellung von energiereichem Phosphat führte zu einer Hemmung der Gluconeogenese aus Alanin, Lactat und Dihydroxyaceton. Bei gleicher Konzentration der in der wässrigen Phase gelösten Narkosegase waren die Wirkungen von Ēthrane und Halothan qualitativ und quantitativ gleich.

Summary

The results of inhibition of the mitochondrial respiratory chain by Ēthrane and Halothane were studied in isolated perfused rat liver. Oxygen uptake was diminished; the substrate pairs lactate/pyruvate and ß-hydroxybutyrate/acetoacetate indicated a more reduced state of the cellular NADH-systems, due to a diminished supply of energy-rich phosphates; and gluconeogenesis from lactate, alanine and dihydroxyacetone was inhibited. The effects of Ēthrane and Halothane on the basis of concentrations in the aqueous phase were identical.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Biebuyck, J. F., Lund, P., Krebs, H. A.: The effects of Halothane on glycolysis and biosynthetic processes of isolated perfused rat liver. Biochem. J. 128, 711–720 (1972)PubMedGoogle Scholar
  2. 2.
    Bücher, T., Klingenberg, M.: Wege des Wasserstoffs in der lebendigen Organisation. Angew. Chemie 70, 552–570 (1958)CrossRefGoogle Scholar
  3. 3.
    Cohen, P. J., Marshall, B. E.: Effects of Halothane on respiratory control and oxygen consumption of rat liver mitochondria. In: Toxicity of Anesthetics (ed. Fink, B. R.) p. 24, Baltimore: The Williams and Wilkins Company 1968Google Scholar
  4. 4.
    Cohen, P. J., McIntyre, R.: The effects of general anesthesia on respiratory control and oxygen consumption of rat liver mitochondria. In: Cellular Biology and Toxicity of Anesthetics (ed. Fink, B. R.) p. 109–116, Baltimore: The Williams and Wilkins Company 1972Google Scholar
  5. 5.
    Dobkin, A. B., Heinrich, R. G., Israel, J. S., Levy, A.A., Neville, J. F., Ounkasem, K.: Clinical and laboratory evaluation of a new inhalation agent: compound 347. Anesthesiology 29, 275–287 (1968)PubMedCrossRefGoogle Scholar
  6. 6.
    Krebs, H. A., Henseleit, K.: Untersuchungen über die Harnstoffbildung im Tierkörper. Hoppe-Seylers Z. physiol. Chem. 210, 33–66 (1932)CrossRefGoogle Scholar
  7. 7.
    Rutledge, C. O., Seifen, E., Alper, M. H., Flacke, W.: Analysis of Halothane in Gas and Blood by Gas Chromatography. Anesthesiology 24, 862–867 (1963)PubMedCrossRefGoogle Scholar
  8. 8.
    Scholz, R., Schwarz, F., Bücher, T.: Z. klin. Chem. 1, 179 (1966)Google Scholar
  9. 9.
    Scholz, R., Hansen, W., Thurman, R. G.: Interaction of MixedFunction Oxidation with Biosynthetic Processes. 1. Inhibition of Gluconeogenesis by Aminopyrine in Perfused Rat Liver. Europ. J. Biochem. 38, 64–72 (1973)PubMedCrossRefGoogle Scholar
  10. 10.
    Steward, A., Allolt, P. R., Cowles, A. L., Mapleson, W. W.: Solubility coefficients for inhalated anaesthetic for water, oil and biological media. Brit. J. Anaesth. 45, 282–293 (1973)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • E. Götz
  • R. Scholz

There are no affiliations available

Personalised recommendations