The Sedimentological Significance of Trace Fossils

  • James D. Howard

Synopsis

In sedimentologie and stratigraphie studies we should consider most trace fossils for what they are: sedimentary structures. Used in this context, trace fossils can furnish valuable information concerning (1) general depositional processes, (2) episodes of local deposition and erosion, and (3) characteristics of currents, substrate consistency, and in some instances, causes of sediment sorting. This information is important in and for itself, and it should also be utilized more fully by paleoecologists and others concerned with the reconstruction of ancient depositional environments.

Keywords

Shale Petrol Turbidity Jurassic Holocene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ager, D. V. and P. Wallace. 1970. The distribution and significance of trace fossils in the uppermost Jurassic rocks of the Boulonnais, France. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:1–18.Google Scholar
  2. Bandel, K. 1967. Isopod and limulid marks and trails in Tonganoxie Sandstone (Upper Pennsylvanian) of Kansas. Univ. Kansas Paleont. Contr., Paper 19:1–10.Google Scholar
  3. Birkenmajer, K. and D. L. Bruton. 1971. Some trilobite resting and crawling traces. Lethaia, 4:303–319.CrossRefGoogle Scholar
  4. Boyd, D. W. 1966. Lamination deformed by burrows in Flathead Sandstone (Middle Cambrian) of central Wyoming. Contr. to Geol., 5:45–54.Google Scholar
  5. Chamberlain, C. K. 1971. Bathymetry and paleo-ecology of Ouachita geosyncline of southeastern Oklahoma as determined from trace fossils. Amer. Assoc. Petrol. Geol., Bull., 55:34–50.Google Scholar
  6. Chisholm, J. I. 1970. Teichichnus and related trace fossils in the Lower Carboniferous, St. Monance, Scotland. Geol. Survey Great Britain, Bull. 32:21–51.Google Scholar
  7. Clifton, H. E. and R. E. Hunter. 1973. Bioturbation rates and effects in carbonate sand, St. John, Virgin Islands, U.S.A. Jour. Geol., 81:253–268.CrossRefGoogle Scholar
  8. Evans, G. 1965. Intertidal flat sediments and their environments of deposition in the Wash. Geol. Soc. London, Quart. Jour., 121:209–245.Google Scholar
  9. Ewing, M. and R. A. Davis. 1967. Lebensspuren photographed on the ocean floor. In J. B. Hersey (ed.), Deep sea photography. Johns Hopkins Oceanogr. Stud., 3:259–294.Google Scholar
  10. Fager, E. W. 1964. Marine sediments: effects of a tube building polychaete. Science, 143: 356–359.CrossRefGoogle Scholar
  11. Farrow, G. E. 1971. Back-reef and lagoonal environments of Aldabra Atoll distinguished by their crustacean burrows. Zool. Soc. London, Symp., 28:455–500.Google Scholar
  12. Frey, R. W. 1968. The lebensspuren of some common marine invertebrates near Beaufort, North Carolina. I. Pelecypod burrows. Jour. Paleont., 42:570–574.Google Scholar
  13. Frey, R. W. 1970a. The lebensspuren of some common marine invertebrates near Beaufort, North Carolina. II. Anemone burrows. Jour. Paleont., 44:308–311.Google Scholar
  14. Frey, R. W. 1970b. Trace fossils of Fort Hays Limestone Member of Niobrara Chalk (Upper Cretaceous), west-central Kansas. Univ. Kansas Paleont. Contr., Art. 53, 41 p.Google Scholar
  15. Frey, R. W. 1971. Ichnology—the study of fossil and recent lebensspuren. In B. F. Perkins (ed.), Trace fossils, a field guide. Louisiana State Univ., School Geosci., Misc. Publ. 71–1:91–125.Google Scholar
  16. Frey, R. W and J. D. Howard. 1969. A profile of biogenic sedimentary structures in a Holocene barrier island—salt marsh complex. Gulf Coast Assoc. Geol. Socs., Trans., 19: 427–444.Google Scholar
  17. Frey, R. W and J. D. Howard. 1970. Comparison of Upper Cretaceous ichnofaunas from siliceous sandstones and chalk, western interior region, U.S.A. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:141–166.Google Scholar
  18. Goldring, R. 1962. The trace fossils of the Baggy Beds (Upper Devonian) of North Devon, England. Palaont. Zeitschr., 36:232–251.Google Scholar
  19. Goldring, R. 1964. Trace fossils and the sedimentary surface in shallow water marine sediments. In L. M. J. U. van Straaten (ed.), Deltaic and shallow marine deposits. Developments in Sedimentology, 1:136–143.CrossRefGoogle Scholar
  20. Goldring, R and P. Bridges. 1973. Sublittoral sheet sandstones. Jour. Sed. Petrol., 43:736–747.Google Scholar
  21. Hallam, A. and K. Swett. 1966. Trace fossils from the Lower Cambrian Pipe Rock of the north-west Highlands. Scottish Jour. Geol., 2:101–106.Google Scholar
  22. Hanley, J. H. et al. 1971. Trace fossils from the Casper Sandstone (Permian), southeastern Laramie Basin, Wyoming and Colorado. Jour. Sed. Petrol., 41:1065–1069.Google Scholar
  23. Hanor, J. S. and N. F. Marshall. 1971. Mixing of sediment by organisms. In B. F. Perkins (ed.), Trace fossils, a field guide. Louisiana State Univ., School Geosci., Misc. Publ. 71–1:127–135.Google Scholar
  24. Heezen, B. C. and C. D. Hollister. 1971. The face of the deep. New York, Oxford Univ. Press, 659 p.Google Scholar
  25. Howard, J. D. 1966. Characteristic trace fossils in Upper Cretaceous sandstones of the Book Cliffs and Wasatch Plateau: Utah Geol. Mineral. Survey, Bull. 80:35–53.Google Scholar
  26. Howard, J. D. 1971. Comparison of the beach-to-offshore sequence in modern and ancient sediments. In J. D. Howard et al., Recent advances in paleoecology and ichnology. Short Course Lect. Notes, Amer. Geol. Inst., p. 148–183.Google Scholar
  27. Howard, J. D. 1971. Trace fossils as paleoecologic tools. In J. D. Howard et al., Recent advances in paleoecology and ichnology. Amer. Geol. Inst., Short Course Lect. Notes, p. 184–211.Google Scholar
  28. Howard, J. D 1972. Trace fossils as criteria for recognizing shorelines in stratigraphic record. In J. K. Rigby and W. K. Hamblin (eds.), Recognition of ancient sedimentary environments. Soc. Econ. Paleont. Mineral., Spec. Publ. 16:215–225.Google Scholar
  29. Howard, J. D and J. DÖrjes. 1972. Animal-sediment relationships in two beach-related tidal flats; Sapelo Island, Georgia. Jour. Sed. Petrol., 42:608–623.Google Scholar
  30. Howard, J. D and R. W. Frey. 1973. Characteristic physical and biogenic sedimentary structures in Georgia estuaries. Amer. Assoc. Petrol. Geol., Bull., 57:1169–1184.Google Scholar
  31. Howard, J. D and H.-E. Reineck. 1972. Georgia coastal region, Sapelo Island, U.S.A.: sedimentology and biology. IV. Physical and biogenic sedimentary structures of the nearshore shelf. Senckenbergiana Marit., 4:81–123.Google Scholar
  32. Howard, J. D et al. 1973. Physical and biogenic characteristics of sediments from the outer Georgia continental shelf (abs.). Amer. Assoc. Petrol. Geol., Bull., 57:784.Google Scholar
  33. Howell, B. F. 1953. A new terebellid worm from the Carboniferous of Texas. Wagner Free Inst. Sci., Bull., 28:1–4.Google Scholar
  34. Kennedy, W. J. and J. D. S. Maougall. 1969. Crustacean burrows in the Weald Clay (Lower Cretaceous) of south-eastern England and their environmental significance. Palaeontology, 12:459–471.Google Scholar
  35. Kranz, P. M. 1970. Bivalve escape behavior as an indication of sedimentary rates and environments (abs.). Geol. Soc. America, Abs. Prog., 2(7): 599.Google Scholar
  36. Książkiewicz, M. 1970. Observations on the ichnofauna of the Polish Carpathians. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:283–322.Google Scholar
  37. Kuenen, P. H. 1961. Some arched and spiral structures in sediments. Geol. en Mijnbouw, 40:71–74.Google Scholar
  38. Martinsson, A. 1970. Toponomy of trace fossils. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3: 323–330.Google Scholar
  39. Moore, D. G. and P. C. Scruton. 1957. Minor internal structures of some recent unconsolidated sediments. Amer. Assoc. Petrol. Geol., Bull., 41:2733–2751.Google Scholar
  40. Myers, A. C. 1970. Some palaeoichnological observations on the tube of Diopatra cuprea (Bosc): Polychaeta, Onuphidae. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:331–334.Google Scholar
  41. Piper, D. J. W. and N. F. Marshall. 1969. Bioturbation of Holocene sediments on La Jolla deep sea fan, California. Jour. Sed. Petrol., 39:601–606.Google Scholar
  42. Purdy, E. G. 1964. Sediments as substrates. In J. Imbrie and N. D. Newell (eds.), Approaches to paleoecology. New York, John Wiley, p. 238–271.Google Scholar
  43. Reineck, H.-E. 1967. Parameter von Schichtung und Bioturbation. Geol. Rundschau, 56: 420–438.CrossRefGoogle Scholar
  44. Reineck, H.-E (ed.). 1970. Das Watt, Ablagerungsund Lebensraum. Frankfurt, W. Kramer, 142 p.Google Scholar
  45. Reineck, H.-E and I. B. Singh. 1971. Der Golf von Gaeta (Tyrrhenisches Meer). III. Die Gefüge von Vorstrand und Schelfsedimenten. Senckenbergiana Marit., 3:185–201.Google Scholar
  46. Rhoads, D. C. 1967. Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, Massachusetts. Jour. Geol., 75:461–476.CrossRefGoogle Scholar
  47. Rhoads, D. C. 1970. Mass properties, stability and ecology of marine muds related to burrowing activity. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:391–406.Google Scholar
  48. Rhoads, D. C and D. J. Stanley. 1965. Biogenic graded bedding. Jour. Sed. Petrol., 35:956–963.Google Scholar
  49. Rhoads, D. C and D. K. Young. 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. Jour. Marine Res., 28:150–178.Google Scholar
  50. Roniewicz, P. 1970. Borings and burrows in the Eocene littoral deposits of the Tatra Mountains, Poland. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:439–446.Google Scholar
  51. Sanders, H. L. 1956. Oceanography of Long Island Sound, 1952–1954. X. The biology of marine bottom communities. Bingham Oceanogr. Coll., Bull., 15:345–414.Google Scholar
  52. Sanders, H. L. 1958. Benthic studies in Buzzards Bay.Animal-sediment relationships. Limnol. Oceanogr., 3:245–258.Google Scholar
  53. Schäfer, W. 1962. Aktuo-paläontologie nach Studien in der Nordsee. Frankfurt, W. Kramer, 666 p.Google Scholar
  54. Schäfer, W. 1972. Ecology and palaeoecology of marine environments. Edinburgh and Chicago, Oliver 8c Boyd and Univ. Chicago Press, 568 p.Google Scholar
  55. Seilacher, A. 1953. Der Brandungssand als Lebensraum in Vergangenheit und Vorzeit. Natur u. Volk, 83:263–272.Google Scholar
  56. Seilacher, A. 1955. Spuren und Lebensweise der Trilobiten; Spuren und Fazies im Unterkambrium. In O. H. Schindewolf and A. Seilacher, Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan). Akad. Wiss. u. Lit. Mainz, math.-naturw. Kl., 10:342–399.Google Scholar
  57. Seilacher, A. 1958. Zur ökologischen Charakteristik von Flysch und Molasse. Eclogae Geol. Helvetiae, 51:1062–1078.Google Scholar
  58. Seilacher, A. 1961. Krebse im Brandungssand.Natur, u. Volk, 91:257–264.Google Scholar
  59. Seilacher, A. 1962. Paleontological studies on turbidite sedimentation and erosion. Jour. Geol., 70:227–234.CrossRefGoogle Scholar
  60. Seilacher, A. 1964. Biogenic sedimentary structures.In J. Imbrie and N. D. Newell (eds.), Approaches to paleoecology. New York, John Wiley, p. 296–316.Google Scholar
  61. Shinn, E. A. 1968. Burrowing in recent lime sediments of Florida and the Bahamas. Jour. Paleont., 42:878–894.Google Scholar
  62. van Straaten, L. M. J. U. 1952. Biogenic textures and the formation of shell beds in the Dutch Wadden Sea. Koninkl. Nederl. Akad. Wetensch., Proc., 55:500–516.Google Scholar
  63. van Straaten, L. M. J. U. 1954. Composition and structure of recent marine sediments in the Netherlands. Leidse Geol. Meded., 19:1–110.Google Scholar
  64. van Straaten, L. M. J. U. 1956. Composition of shell beds formed in the tidal flat environment in the Netherlands and in the Bay of Arcachon (France). Geol. en Mijnbouw, 18:209–226.Google Scholar
  65. Warme, J. E. 1967. Graded bedding in the recent sediments of Mugu Lagoon, California. Jour. Sed. Petrol., 37:540–547.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • James D. Howard
    • 1
  1. 1.Skidaway Institute of OceanographySavannahUSA

Personalised recommendations