Skip to main content

Chlorites

  • Chapter
Soil Components

Abstract

The chlorite group of minerals derives its name from the common green color of most varieties. The color is known to vary widely in different specimens, however, and to include different shades of green, black, brown, orange, red, pink, purple, blue, yellow, grey, and even white. The morphology is equally diverse. Pseudohexagonal platelets parallel to the basal pinacoid (001) occur in the best crystallized varieties. These plates range in width from less than a millimeter up to several inches. Occasionally, as in the chlorite in serpentine-chromite deposits from Erzincan, Turkey, and in Swiss Alpine veins, small prismatic and pyramidal faces may be developed as well. Scaly flakes, wedge-shaped aggregates of crystals, spherules, rosettes, and fine-grained earthy masses are of much more common occurrence than the well-formed crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albee, A. L., 1962. Relationships between the mineral association, chemical composition and physical properties of the chlorite series. Am. Mineral. 47:851–870.

    Google Scholar 

  • Alietti, A., 1958. Some interstratified clay minerals of the Taro Valley. Clay Min. Bull. 3:207–211.

    Article  Google Scholar 

  • Andrew, R. W., M. L. Jackson, and K. Wada, 1960. Intersaltation as a technique for differentiation of kaolinite from chlorite minerals by X-ray diffraction. Proc. Soil Sci. Soc. Am. 24:422–424.

    Article  Google Scholar 

  • Bailey, S. W., and B. E. Brown, 1962. Chlorite polytypism. I. Regular and semirandom one-layer structures. Am. Mineral. 47:819–850.

    Google Scholar 

  • —, and S. A. Tyler, 1960. Clay minerals associated with the Lake Superior iron ores. Econ. Geol. 55:150–175.

    Article  Google Scholar 

  • Bannister, F. A., and W. F. Whittard, 1945. A magnesian chamosite from the Wenlock Limestone of Wickwar, Gloucestershire. Mineral. Mag. 27:99–111.

    Article  Google Scholar 

  • Belov, N. V., 1950. Research in the field of structural mineralogy. Min. Sbornik. Lvov 4:21–34.

    Google Scholar 

  • Biscaye, P. E., 1964. Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction. Am. Mineral. 49:1281–1289.

    Google Scholar 

  • Bradley, W. F., 1954. X-ray diffraction criteria for the characterization of chloritic material in sediments. Clays Clay Min., Proc. 2nd Conf., Natl. Acad. Sci.—Natl. Res. Council Pub. 327:324–334.

    Google Scholar 

  • —, and C. E. Weaver, 1956. A regularly interstratified chlorite-vermiculite clay mineral. Am. Mineral. 41:497–504.

    Google Scholar 

  • Brammall, A., J. G. C. Leech, and F. A. Bannister, 1937. The paragenesis of cookeite and hydromuscovite associated with gold at Ogofau, Carmarthenshire. Mineral. Mag. 24:507–521.

    Article  Google Scholar 

  • Brindley, G. W., 1951. The crystal structure of some chamosite minerals. Mineral. Mag. 29:502–525.

    Article  Google Scholar 

  • —, 1961. Chlorite minerals. In The X-Ray Identification and Crystal Structures of Clay Minerals. Ch. 6. London: Mineral. Soc., pp. 242–296.

    Google Scholar 

  • —, and F. H. Gillery, 1954. A mixed-layer kaolin-chlorite structure. Clays Clay Min. Proc. 2nd Conf., Natl. Acad. Sci.—Natl. Res. Council Pub. 327:349–353.

    Google Scholar 

  • —, and F. H. Gillery, 1956. X-ray identification of chlorite species. Am. Mineral. 41:169–186.

    Google Scholar 

  • —, and D. M. C. MacEwan, 1953. Structural mineralogy of clays. In CeramicsA Symposium. Stoke-on-Trent: Brit. Ceramic Soc., pp. 15–59.

    Google Scholar 

  • —, Beryl M. Oughton, and K. Robinson, 1950. Polymorphism of the chlorites. I. Ordered structures. Acta Cryst. 3:408–416.

    Article  Google Scholar 

  • —, and R. F. Youell, 1951. A chemical determination of “tetrahedral” and “octahedral” aluminum ions in a silicate. Acta Cryst. 4:495–496.

    Article  Google Scholar 

  • Brown, B. E., and S. W. Bailey, 1963. Chlorite polytypism. II. Crystal Structural of a one-layer Cr-chlorite. Am. Mineral. 48:42–61.

    Google Scholar 

  • Brown, G., 1955. The effect of isomorphous substitutions on the intensities of (00/) reflections of mica- and chlorite-type structures. Mineral. Mag. 30:657–665.

    Article  Google Scholar 

  • Brydon, J. E., J. S. Clark, and V. Osborne, 1961. Dioctahedral chlorite. Can. Mineral. 6:595–609.

    Google Scholar 

  • Caillère, Simonne, and S. Hénin, 1949. Experimental formation of chlorites from montmorillonite. Mineral. Mag. 28:612–620.

    Article  Google Scholar 

  • —, and S. Hénin, 1950. Mecanisme d’evolution des mineraux phylliteux. Trans. 4th Int. Cong. Soil Sci. 1:96.

    Google Scholar 

  • —, S. Hénin, and Thérèse Pobeguin, 1962. Presence d’un nouveau type de chlorite dans les “bauxites” de Saint-Paul-de-Fenouillet (Pyrenees-Orientales). Comptes rendus Acad. Sci. (Paris) 254:1657–1658.

    Google Scholar 

  • Carter, D. L., M. E. Harward, and J. L. Young, 1963. Variation in exchangeable K and relation to intergrade layer silicate minerals. Proc. Soil Sci. Soc. Am. 27:283–287.

    Article  Google Scholar 

  • Cerny, Petr, 1970. Compositional variations in cookeite. Can. Mineral. 10:636–647.

    Google Scholar 

  • Cerny, Petr, P. Povondra, and J. Stanek, 1971. Two cookeites from Czechoslovakia: a boron-rich variety and a 116 polytype. Lithos 4:7–15.

    Article  Google Scholar 

  • Clarke, F. W., 1893. Tschermak’s theory of the chlorite group and its alternative. U.S. Geol Surv. Bull. 113:12–21.

    Google Scholar 

  • —, 1914. The constitution of the natural silicates. U.S. Geol. Surv. Bull. 588:5–128.

    Google Scholar 

  • Crowley, M. S., and R. Roy, 1960. The effect of formation pressures on sheet structures—a possible case of Al-Si ordering. Geochim. et Cosmochim. Acta 18:94–100.

    Article  Google Scholar 

  • Dalmer, K., 1898. Ueber die Beziehungen des Thuringit zum Chlorit und über die chemische Constitution der Chloritgruppe. Neues Jahrb. f. Mineral 1, 165–168.

    Google Scholar 

  • —, 1901. Beiträge zur Kenntnis der Chloritgruppe. Centralblatt f. Mineral. 627–632.

    Google Scholar 

  • Dixon, J. B., and M. L. Jackson, 1960. Mineralogical analysis of soil clays involving vermiculitechlorite-kaolinite differentiation. Clays Clay Min., Proc. 8th Conf. New York: Pergamon Press, pp. 274–286.

    Google Scholar 

  • Drits, V. A., 1966. X-ray investigation of some rare polytypes of layer silicates. Acta Cryst. 21:A172.

    Google Scholar 

  • —, and Yu. V. Karavan, 1969. Polytypes of the two-packet chlorites. Acta Cryst. B25:632–639.

    Google Scholar 

  • Dschang, G. L., 1931. Die Beziehung zwischen chemischer Zusammensetzung und den physikalischoptischen Eigenschaften in der Chloritgruppe. Chemie der Erde 6:416–439.

    Google Scholar 

  • Earley, J. W., G. W. Brindley, W. J. McVeagh, and R. C. Vanden Heuvel, 1956. A regularly inter-stratified montmorillonite-chlorite. Am. Mineral. 41:258–267.

    Google Scholar 

  • —, and I. H. Milne, 1956. Regularly interstratified montmorillonite-chlorite in basalt. Clays Clay Min., Proc. 4th Conf., Natl. Acad. Sci.—Natl. Res. Council Pub. 456:381–384.

    Google Scholar 

  • Eggleton, R. A., and S. W. Bailey, 1967. Structural aspects of dioctahedral chlorite. Am. Mineral. 52: 673–689.

    Google Scholar 

  • Fawcett, J. J., and H. S. Yoder, Jr., 1966. Phase relationships of chlorites in the system MgO-Al2O3-SiO2-H2O. Am. Mineral. 51:353–380.

    Google Scholar 

  • Foster, Margaret D., 1962. Interpretation of the composition and a classification of the chlorites. U.S. Geol. Surv. Prof. Paper 414-A:1–33.

    Google Scholar 

  • —, 1964. Water content of micas and chlorites. U.S. Geol. Surv. Prof. Paper 474-F:1–15.

    Google Scholar 

  • Frank-Kamenetsky, V. A., 1960. A crystallochemical classification of simple and interstratified clay minerals. Clay Min. Bull. 4:161–172.

    Article  Google Scholar 

  • —, N. V. Logvinenko, and V. A. Drits, 1965. Tosudite—A new mineral forming the mixed-layer phase in alushtite. Proc. Int. Clay Conf. (Stockholm, 1963) 11:181–186.

    Google Scholar 

  • Frenzel, G., and F. W. Schembra, 1965. Ein dioktaedrischer chlorit vom Kaiserbachtal (Südpfalz). Neues Jahrb. f. Mineral., Monatshefte 108–114.

    Google Scholar 

  • Gallitelli, P., 1955. Clay minerals of the argille scagliose of the Modenese Appennines. Clay Min. Bull. 2:275–280.

    Article  Google Scholar 

  • —, 1956. Chlorite-vermiculite. Rend. Accad. Naz. Lincei 21:146–154.

    Google Scholar 

  • Garrido, J., 1949. Structure cristalline d’une chlorite chromifere. Bull. Soc. Franc. Mineral 72:549–570.

    Google Scholar 

  • Gillery, F. H., 1959. The X-ray study of synthetic Mg-Al serpentines and chlorites. Am. Mineral 44:143–152.

    Google Scholar 

  • Ginzburg, A. I., 1953. Concerning lithium chlorite—cookeite. (In Russian.) Doklady Akad. Nauk S.S.S.R. 90:871–874.

    Google Scholar 

  • Gossner, B., 1921–1924. Zur chemischen Konstitution von Silikaten. Centralblatt f. Mineral 513–525 (1921); 129–139 (1922); 97–106, 129–140, 257–267 (1924).

    Google Scholar 

  • Grim, R. E., J. B., Droste, and W. F. Bradley, 1960. A mixed-layer clay mineral associated with an evaporite. Clays Clay Min., Proc. 8th Conf. New York: Pergamon Press pp. 228–236.

    Google Scholar 

  • Hallimond, A. F., 1939. On the relation of chamosite and daphnite to the chlorite group. Mineral. Mag. 25:441–465.

    Article  Google Scholar 

  • Hayashi, H. and K. Oinuma, 1963. X-ray and infrared studies on the behaviours of clay minerals on heating. Clay Sci. 1:8–28.

    Google Scholar 

  • —, and K. Oinuma, 1964. Aluminian chlorite from Kamikita mine, Japan. Clay Sci. 2:22–30.

    Google Scholar 

  • —, and K. Oinuma, 1965. Relationship between infrared absorption spectra in the region of 450–900 cm-1 and chemical composition of chlorite. Am. Mineral. 50:476–483.

    Google Scholar 

  • Hayashi, H., and K. Oinuma, 1967. Si-O absorption band near 1000 cm-1 and OH absorption bands of chlorite. Am. Mineral. 52:1206–1210.

    Google Scholar 

  • Hayes, John B., 1970. Polytypism of chlorite in sedimentary rocks. Clays Clay Min. 18:285–306.

    Article  Google Scholar 

  • Hey, M. H., 1954. A new review of the chlorites. Min. Mag. 30:277–292.

    Article  Google Scholar 

  • Heystek, H., 1956. Vermiculite as a member in mixed-layer minerals. Clays Clay Min., Proc. 4th Conf., Natl. Acad. Sci.—Natl. Res. Council Pub. 456:429–434.

    Google Scholar 

  • Hödl, A., 1941. Über chlorite der Ostalpen; Ein Beitrag zur Systematik der Chlorite. Neues Jahrb. f. Mineral. Beil.-Bd. A77:1–77.

    Google Scholar 

  • Honeyborne, D. B., 1951. The clay minerals in the Keuper Marls. Clay Min. Bull. 1:150–157.

    Article  Google Scholar 

  • Hsu, P. H., and C.I. Rich, 1960. Aluminum fixation in a synthetic cation exchanger. Proc. Soil Sci. Soc. Am. 24:21–25.

    Article  Google Scholar 

  • Iskyul, V., 1917. Experimental investigations in the province of the chemical constitution of the silicates. The chlorites. (In Russian.) 310 p. Petrograd. (Also Mineral. Abstr. 2:207–215.)

    Google Scholar 

  • Ivanova, V. P., 1949. “Chlorites.” (In Russian.) Trudy Inst. Geol. Akad. Nauk. S.S.S.R. 120.

    Google Scholar 

  • Jackson, M. L., 1960. Structural role of hydronium in layer silicates during soil genesis. Trans. 7th Int. Congr. Soil Sci. 2:445–455.

    Google Scholar 

  • Johnson, L. J., 1964. Occurrence of regularly interstratified chlorite-vermiculite as a weathering product of chlorite in a soil. Am. Mineral. 49:556–572.

    Google Scholar 

  • Kepezhinskas, K.B., 1965. Composition of chlorites as determined from their physical properties. Dokl. Akad. Nauk S.S.S.R., Earth Sci. Sect. 164 (Eng. trans.): 126–129.

    Google Scholar 

  • Kodama, H., and K. Oinuma, 1963. Identification of kaolin minerals in the presence of chlorite by X-ray diffraction and infrared absorption spectra. Clays Clay Min., Proc. 11th Conf. New York: Pergamon Press, pp. 236–249.

    Google Scholar 

  • Koizumi, M., and R. Roy, 1959. Synthetic montmorillonoids with variable exchange capacity. Am. Mineral. 44:788–805.

    Google Scholar 

  • Kovalev, G. A., 1956. “The X-ray study of iron-magnesium chlorites.” (In Russian.) Cristallographia 5:259–268.

    Google Scholar 

  • Lapham, D. M., 1958. Structural and chemical variation in chromium chlorite. Am. Mineral. 43: 921–956.

    Google Scholar 

  • Lippmann, F., 1954. Keuper clay from Zaisersweiher. Heidelberg Beitrage. Min. 4:130–134.

    Article  Google Scholar 

  • Lister, Judith S., 1966. The crystal structure of two chlorites. Unpubl. Ph.D. thesis, Univ. of Wisconsin.

    Google Scholar 

  • —, and S. W. Bailey, 1967. Chlorite polytypism. IV. Regular two-layer structures. Am. Mineral. 52:1614–1631.

    Google Scholar 

  • Longuet-Escard, J., 1950. Fixation des hydroxides par la montmorillonite. Trans. 4th Int. Cong. Soil Sci. 3:40.

    Google Scholar 

  • MacEwan, D. M. C., A. Ruiz Amil, and G. Brown, 1961. Interstratified clay minerals. In The X-Ray Identification and Crystal Structures of Clay Minerals. Ch. 11. London: Mineral. Soc., pp. 393–445.

    Google Scholar 

  • Martin Vivaldi, J. L., and D. M. C. MacEwan, 1957. Triassic chlorites from the Jura and the Catalan coastal range. Clay Min. Bull. 3:177–183.

    Google Scholar 

  • —, 1960. Corrensite and swelling chlorite. Clay Min. Bull. 4:173–181.

    Article  Google Scholar 

  • Mathieson, A. McL., and G. F. Walker, 1954. Crystal structure of magnesium-vermiculite. Am. Mineral. 39:231–255.

    Google Scholar 

  • Mauguin, C., 1928. Etude des chlorites au moyen des rayons X. Comptes rendus Acad. Sci. (Paris) 186:1852–1855.

    Google Scholar 

  • —, 1930. La maille cristalline des chlorites. Bull Soc. Franc. Mineral. 53:279–300.

    Google Scholar 

  • McMurchy, R. C., 1934. The crystal structure of the chlorite minerals. Z. Krist. 88:420–432.

    Google Scholar 

  • Mèlon, J., 1938. Description des chlorites et clintonites belges. Acad. royale Belgique. Mem. 8, v. 17:73.

    Google Scholar 

  • Müller, G., 1961. Vorläufige Mitteilung über ein neues dioktaedrisches Phyllosilikat der Chlorit-Gruppe. Neues Jahrb. f. Mineral, Monatshefte 5:112–120.

    Google Scholar 

  • —, 1963. Zur Kenntnis di-oktaedrischer Vierschicht-Phyllosilikate (Sudoit-Reihe der Sudoit-Chlorit-Gruppe). Proc. Int. Clay Conf. (Stockholm) 121–130.

    Google Scholar 

  • —, 1967. Sudoit (“dioktaedrischer Chlorit,” “Al-Chlorit”) im Cornberger Sandstein von Cornberg/Hessen. Contr. Mineral, and Petrol. 14:176–189.

    Article  Google Scholar 

  • Nelson, B. W., and R. Roy, 1954. New data on the composition and identification of chlorites. Clays Clay Min., Proc. 2nd Conf., Natl. Acad. Sci.—Natl. Res. Council Pub. 327:335–348.

    Google Scholar 

  • —, and R. Roy, 1958. Synthesis of the chlorites and their structural and chemical constitution. Am. Mineral. 43:707–725.

    Google Scholar 

  • Ogniben, G., and S. Quareni, 1964. Studi sul clinocloro di Val Devero: un politipo monoclino a due strati. Ric. Sci. 34:469–476.

    Google Scholar 

  • Oinuma, K., S. Shimoda, and T. Sudo, 1972. Triangular diagrams in use of a survey of crystal chemistry of chlorites. Int. Clay Conf. (Madrid) Preprints I, 161–171.

    Google Scholar 

  • Orcel, J., 1927. Recherches sur la composition chimique des chlorites. Bull. Soc. Franc. Mineral. 50:75–456.

    Google Scholar 

  • —, Simonne Caillère, and S. Hénin, 1950. Nouvel essai de classification des chlorites. Mineral. Mag. 29:329–340.

    Article  Google Scholar 

  • Osthaus, B. B., 1954. Chemical determination of tetrahedral ions in nontronite and montmorillonite. Clays Clay Min., Proc. 2nd Conf., Natl. Acad. Sci.—Natl. Res. Council Publ. 327:404–417.

    Google Scholar 

  • —, 1956. Kinetic studies on montmorillonites and nontronite by the acid-dissolution technique. Clays Clay Min., Proc. 4th Conf., Natl. Acad. Sci.—Nat. Res. Council Pub. 456:301–321.

    Google Scholar 

  • Pauling, L., 1930. The structure of the chlorites. Proc. Nat. Acad. Sci. 16:578–582.

    Article  Google Scholar 

  • Pavlovitch, S., 1930. Sur deux chlorites (grochauites) de roches a corindon. Bull Soc. Franc. Mineral 53:335–538.

    Google Scholar 

  • Pedro, G., 1970. Report of the AIPEA Nomenclature Committee. AIPEA Newsletter No. 4, 3–4.

    Google Scholar 

  • Peterson, M. N. A., 1961. Expandable chloritic clay minerals from carbonate rocks. Am. Mineral. 46:1245–1269.

    Google Scholar 

  • Petruk, W., 1964. Determination of the heavy atom content in chlorite by means of the X-ray diffractometer. Am. Mineral. 49:61–71.

    Google Scholar 

  • Phillips, W. R., 1964. A numerical system of classification for chlorites and septechlorites. Min. Mag. 33:1114–1124.

    Article  Google Scholar 

  • Radoslovich, E. W., 1962. The cell dimensions and symmetry of layer-latice silicates. II. Regression relations. Am. Mineral. 47:617–636.

    Google Scholar 

  • —, and K. Norrish, 1962. The cell dimensions and symmetry of layer-lattice silicates. I. Some structural considerations. Am. Mineral 47:599–616.

    Google Scholar 

  • Rich, C. I., 1960. Aluminum in interlayers of vermiculite. Proc. Soil Sci. Soc. Am. 24:26–32.

    Article  Google Scholar 

  • Robinson, K., and G. W. Brindley, 1949. A note on the crystal structure of the chlorite minerals. Proc. Leeds Phil. Soc. 5:102–108.

    Google Scholar 

  • Rondolino, R., 1936. I minerali di Piampaludo nel “Gruppo di Voltri”. Periodico Mineral. 7:193–206.

    Google Scholar 

  • Ross, C. S., 1929. Is chromite always a magmatic segregation product? Econ. Geol. 24:641–645.

    Article  Google Scholar 

  • —, and E. V. Shannon, 1924. Mordenite and associated minerals from near Challis, Custer County, Idaho. U.S. Nat. Museum Proc. 64:19.

    Google Scholar 

  • Ross, G. J., 1967. Kinetics of acid dissolution of an orthochlorite mineral. Can. J. Chem. 45:3031–3034

    Article  Google Scholar 

  • —, 1968. Structural decomposition of an orthochlorite during its acid dissolution. Can. Mineral. 9:522–530.

    Google Scholar 

  • —, 1969. Acid dissolution of chlorites: release of magnesium, iron and aluminum and mode of acid attack. Clays Clay Min. 17:347–354.

    Article  Google Scholar 

  • Roy, R., and E. F. Osborn, 1954. The system Al2O3-SiO2-H2O. Am. Mineral 39:853–885.

    Google Scholar 

  • Roy, D. M., and R. Roy, 1955. Synthesis and stability of minerals in the system MgOAl2O3-SiO2-H2O. Am. Mineral 40:147–178.

    Google Scholar 

  • Schoen, R., 1962. Semiquantitative analysis of chlorites by X ray diffraction. Am. Mineral 47:1384–1392.

    Google Scholar 

  • Schultz, L. G., 1963. Clay minerals in Triassic rocks of the Colorado Plateau. U.S. Geol. Surv. Bull 1147-C:71.

    Google Scholar 

  • Segnit, E. R., 1963. Synthesis of clinochlore at high pressures. Am. Mineral. 48:1080–1089.

    Google Scholar 

  • Serdyuchenko, D. P., 1953. “Chlorites, their chemical constitution and classification.” (In Russian.) Trudy Inst. Geol. Akad. Nauk S.S.S.R. 140:340.

    Google Scholar 

  • Shannon, E. V., 1920. Analyses and optical properties of amesite and corundophilite from Chester, Massachusetts, and of chromium-bearing chlorites from California and Wyoming. U.S. Nat. Museum Proc. 58:371–379.

    Article  Google Scholar 

  • Shen, M. J., and C. I. Rich, 1962. Aluminum fixation in montmorillonite. Proc. Soil Sci. Soc. Am. 26:33–36.

    Article  Google Scholar 

  • Shirozu, H., 1955. Iron-rich chlorite from Shogase, Kochi Prefecture, Japan. Mineral. J. 1:224–232.

    Google Scholar 

  • —, 1958. X-ray powder patterns and cell dimensions of some chlorites in Japan, with a note on their interference colors. Mineral. J. 2:209–223.

    Google Scholar 

  • —, 1960. Ionic substitution in iron-magnesium chlorites. Mem. Faculty Sci. (Kyushu Univ.) D9:183–186.

    Google Scholar 

  • —, 1963. Structural changes of some chlorites by grinding. Mineral. J. 4:1–11.

    Google Scholar 

  • —, and S. W. Bailey, 1965. Chlorite polytypism. III. Crystal structure of an orthohexagonal iron chlorite. Am. Mineral. 50:868–885.

    Google Scholar 

  • —, and S. W. Bailey, 1966. Crystal structure of a two-layer Mg-vermiculite. Am. Mineral. 51:1124–1143.

    Google Scholar 

  • Slaughter, M., and I. H. Milne, 1960. The formation of chloritelike structures from montmorillonite. Clays Clay Min., Proc. 7th Nat. Conf. New York: Pergamon Press, pp. 114–124.

    Google Scholar 

  • Smith, J. V., and S. W. Bailey, 1963. Second review of Al-O and Si-O tetrahedral distances. Acta Cryst. 16:801–811.

    Article  Google Scholar 

  • Smith, W. C., F. A. Bannister, and M. H. Hey, 1946. Pennantite, a new manganese-rich chlorite from Benallt mine, Rhiw, Caernarvonshire. Mineral. Mag. 27:217–220.

    Article  Google Scholar 

  • Smith, W. W., 1960. Some interstratified clay minerals from basic igneous rocks. Clay Min. Bull. 4:182–190.

    Article  Google Scholar 

  • Steinfink, H., 1958a. The crystal structure of chlorite. I. A. monoclinic polymorph. Acta Cryst. 11:191–195.

    Article  Google Scholar 

  • —, 1958b. The crystal structure of chlorite. II. A triclinic polymorph. Acta Cryst. 11:195–198.

    Article  Google Scholar 

  • —, 1961. Accuracy in structure analysis of layer silicates: some further comments on the structure of prochlorite. Acta Cryst. 14:198–199.

    Article  Google Scholar 

  • Stephen, I., and D. M. C. MacEwan, 1951. Some chloritic clay minerals of unusual type. Clay Min. Bull. 1:157–162.

    Article  Google Scholar 

  • Stubican, V., and R. Roy, 1961. Isomorphous substitution and infrared spectra of the layer lattice silicates. Am. Mineral. 46:32–51.

    Google Scholar 

  • Sudo, T., 1959. Mineralogical Study on Clays of Japan. Tokyo: Maruzen.

    Google Scholar 

  • —, and H, Kodama, 1957. An aluminian mixed-layer mineral of montmorillonite-chlorite. Z. Krist. 109:379–387.

    Article  Google Scholar 

  • Tschermak, G., 1890. Die Chloritgruppe. Sitzungsber. d. k. Akad. Wiss. Wien, Abt. I, 99:174–266.

    Google Scholar 

  • —, 1891. Die Chloritgruppe. Sitzungsber. d. k. Akad. Wiss. Wien, Abt. I, 100:29–107.

    Google Scholar 

  • Tuddenham, W. M., and R. J. P. Lyon, 1959. Relation of infrared spectra and chemical analysis for some chlorites and related minerals. Anal. Chem. 31:377–380.

    Article  Google Scholar 

  • Turnock, A. C., 1960. The stability of iron chlorites. Ann. Report Dir. Geophys. Lab., Carnegie Inst. Wash., 98–103.

    Google Scholar 

  • Veitch, L. G., and E. W. Radoslovich, 1963. The cell dimensions and symmetry of layer-lattice silicates. III. Octahedral ordering. Am. Mineral. 48:62–75.

    Google Scholar 

  • Von Engelhardt, W., 1942. Die Strukturen von Thuringit, Bavalit und Chamosit und ihre Stellung in der Chloritgruppe. Z. Krist. 104:142–159.

    Google Scholar 

  • —, G. Müller, and H. Kromer, 1962. Dioktaedrischer Chlorit (“Sudoit”) in Sedimenten des Mittleren Keupers von Württemberg. Naturwiss. 49:205–206.

    Article  Google Scholar 

  • Warshaw, Charlotte M., 1960. Experimental studies of illite. Clays Clay Min., Proc. 7th Conf. New York: Pergamon Press, pp. 303–316.

    Google Scholar 

  • Whitehouse, U. G., and R. S. McCarter, 1958. Diagenetic modification of clay mineral types in artificial sea water. Clays Clay Min., Proc. 5th Conf., Natl. Acad. Sci.—Natl. Res. Council Pub. 566:81–119.

    Google Scholar 

  • Winchell, A. N., 1926. Chlorite as a polycomponent system. Am. J. Sci. 5th Ser. 11:283–300.

    Article  Google Scholar 

  • —, 1928. Additional notes on chlorite. Am. Mineral. 13:161–170.

    Google Scholar 

  • —, 1936. A third study of chlorite. Am. Mineral. 21:642–651.

    Google Scholar 

  • Yoder, H. S., 1952. The MgO-Al2O3-SiO2-H2O system and the related metamorphic facies. Am. J. Sci., Bowen Volume, 569–627.

    Google Scholar 

  • Youell, R. F., 1960. An electrolytic method for producing chloritelike substances from montmorillonite. Clay Min. Bull. 4:191–195.

    Article  Google Scholar 

  • Zalinsky, E. R., 1904. Untersuchungen über Thuringit und Chamosit aus Thüringen und Umgebung. Neues Jahrb. Mineral. Beil.-Bd. 19:40–84.

    Google Scholar 

  • Zvyagin, B. B., 1963. Theory of the polymorphism of chlorites. Soviet Phys.—Crystallogr. 8 (Eng. trans.):23–27.

    Google Scholar 

  • —, and K. S. Mishchenko, 1966. Identification of single-packet semidisordered polymorphic modifications of chlorites. Soviet Phys.Crystallogr. 10 (Eng. trans.):463–465.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Bailey, S.W. (1975). Chlorites. In: Gieseking, J.E. (eds) Soil Components. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65917-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65917-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65919-5

  • Online ISBN: 978-3-642-65917-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics