Continuum Electric Probes

  • Paul M. Chung
  • Lawrence Talbot
  • Kenell J. Touryan
Part of the Applied Physics and Engineering book series (APPLIED PHYS, volume 11)


The effects of collisions in the sheath formed around an electrostatic probe were discussed in some detail in Chapter II. In this chapter, we will study continuum electrostatic probes, which represent the limit of “many collisions” within the sheath. As outlined in Chapter I, one can identify two regimes of continuum probe operation and one hybrid case, depending on the relative magnitude of the smallest mean free path λ and the Debye length λD. They are
  1. (a)

    L ≫ λD ≫ λ: collisional thin sheath

  2. (b)

    λD ≫ L ≫ λ: collisional thick sheath

  3. (c)

    L ≫ λ ≫ λD: collisionless thin sheath (hybrid dense case)


Here L is a characteristic length of the plasma retion affected by the particular continuum probe, which will be defined more precisely in the course of subsequend discussions. When the Probe consists of an entire body immersed in the plasma, which is the case we shall be mostly dealing with, then L is the characteristic dimension of the body. However, when the probe consists of an element embedded in the surface of a larger body, both the characteristic length of the body and the probe enter the problem. Also, the above thin-sheath criteria (a) and (c) are based on the premise that |χ p | = O(1) at most. As will be discussed subsequently, χ p must be included in more general definitions of thin and thick sheath criteria.


Probe Surface Flowing Plasma Damkohler Number Electric Probe Sheath Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barad, M. S. and Cohen, I. M., Univ. of Pennsylvania Rep. 2281/10, (1973) Philadelphia, Pennsylvania. See also Phys. Fluids, 17, April 1974.Google Scholar
  2. Baum, E. and Chapkis, R. L. (1970), AIAA J., 8, 1073.ADSCrossRefGoogle Scholar
  3. Baum, E. and Denison, M. R. (1970), TRW Rep. 06488–64556-R0–00, September 1970.Google Scholar
  4. Baum, E. and Denison, M. R. (1971), TRW Rep. 06488–6526-R0–00, September 1971.Google Scholar
  5. Bienkowski, G. K. (1967), Phys. Fluids, 10, 381.ADSCrossRefGoogle Scholar
  6. Boyd, R. L. F. (1951), Proc. Phys. Soc. (London), B64, 795.ADSGoogle Scholar
  7. Boyer, D. W. and Touryan, K. J. (1972), AIAA J., 12, 1667.ADSCrossRefGoogle Scholar
  8. Brundin, C. L. and Talbot, L. (1964), AGARD Rep. 478. AGARD meeting on Arc Heaters and MHD Accelerators for Aerodynamic Use. Rhode-St. Géniese, Belgium.Google Scholar
  9. Burke, A. F. (1968), AIAA Paper No. 68–166, 6th Aerospace Sciences Meeting, New York, 1968.Google Scholar
  10. Burke, A. F. and Lam, S. H. (1967), AIAA Paper No. 67–100. 5th Aerospace Sciences Meeting, New York, 1967.Google Scholar
  11. See also Burke, A. F., Cornell Aeronautical Laboratory Rep. No. AN-2101-Y-1 May 1967.Google Scholar
  12. Bush, W. B. and Fendell F. E. (1970), J. Plasma Phys., 4, 317.ADSCrossRefGoogle Scholar
  13. Carrier, G. F. and Fendell, F. E. (1970), Phys. Fluids, 13, 2966.ADSCrossRefGoogle Scholar
  14. Chapkis, L. R. and Baum, E. (1971), AIAA J., 9, 1963.ADSCrossRefGoogle Scholar
  15. Chung, P. M. (1962), TDR-169 (3230–12) TN-2, Aerospace Corporation, San Bernardino, California.Google Scholar
  16. Chung, P. M. (1964), Phys, Fluids, 7, 110.ADSMATHCrossRefGoogle Scholar
  17. Chung, P. M. (1965a), AIAA J., 3, 8817.Google Scholar
  18. Chung, P. M. (1965b), Advances in Heat Transfer, Volume 2, Chap. 2, Academic Press, New York.Google Scholar
  19. Chung, P. M. (1967), J. Spacecraft Rockets, 4, 1105.ADSCrossRefGoogle Scholar
  20. Chung, P. M. (1969), Phys. Fluids, 12, 1623.ADSCrossRefGoogle Scholar
  21. Chung, P. M. and Blankenship, V. D. (1966a), AIAA J., 4, 442.CrossRefGoogle Scholar
  22. Chung, P. M. and Blankenship, V. D. (1966b), J. Spacecraft Rockets, 3, 1715.ADSCrossRefGoogle Scholar
  23. Chung, P. M. and Mullen, J. F. (1963), AIAA Paper No. 63–161, 1st Aerospace Sciences Meeting, New York, 1963.Google Scholar
  24. Cicerone, R. and Bowhill, S. (1967), Univ. of Illinois, Rep. AR-21, Urbana, Illinois.Google Scholar
  25. Cobine, J. D. (1958), Gaseous Conductors, Dover, New York.MATHGoogle Scholar
  26. Cohen, I. M. (1963), Phys. Fluids, 6, 1492.ADSCrossRefGoogle Scholar
  27. Cohen, I. M. (1967), AIAA J., 5, 63.ADSMATHCrossRefGoogle Scholar
  28. Cohen, I. M. (1970), Phys. Fluids, 13, 889.ADSCrossRefGoogle Scholar
  29. Cohen, I. M. and Schweitzer, S. (1968), AIAA J., 6, 298.ADSCrossRefGoogle Scholar
  30. David, T. S. (1971), Ph.D. Thesis, 1971, Cornell University, Ithaca, New York.Google Scholar
  31. deBoer, P. C. T. and Johnson, R. A. (1968), Phys. Fluids, 11, 909.ADSCrossRefGoogle Scholar
  32. Denison, M. R. (1967), TRW Rep. 06488–06065-R0–00, Redondo Beach, California.Google Scholar
  33. Dix, D. M. (1964), Aerospace Corporation Rep. ATN-64-(9232)-l, El Segundo, California.Google Scholar
  34. Dukowicz, J. K. (1969), CAL Rep. No. RA-2641-Y-1, Buffalo, New York.Google Scholar
  35. Dukowicz, J. K. (1970), CAL Rep. No. AN-2755-Y-1, Buffalo, New York.Google Scholar
  36. French, I. P., Hayami, R. A., Arnold, T. E., Steinberg, M., Appleton, J. P., and Sonin, A. A. (1970), AIAA J., 8, 2207.ADSCrossRefGoogle Scholar
  37. Hammitt, A. G. (1970), TRW Rep. 06488–6433-R0–00, Redondo Beach, California.Google Scholar
  38. Hayes, D. T. and Rotman, W. (1973), AIAA J., 11, 675.ADSCrossRefGoogle Scholar
  39. Hinnov, E. and Hirshberg, J. C. (1962), Phys. Rev., 125, 795.ADSCrossRefGoogle Scholar
  40. Hoppmann, R. F. (1966), Renselaer Polytechnic Inst. Rep. TRAE 6605, Albany, New York.Google Scholar
  41. Hoult, D. P. (1965), J. Geophys. Res., 70, 3183.ADSCrossRefGoogle Scholar
  42. Huggins, R. W. (1972), AIAA Paper No. 72–691, AIAA Fluid and Plasma Dynamics Conference, Boston, Massachusetts, June 1972.Google Scholar
  43. Inutake, M. and Kuriki, K. (1972), 8th Rarefied Gas Dynamics Symposium, Stanford University, California.Google Scholar
  44. Johnson, R. A. and deBoer, P. C. T. (1972), AIAA J., 10, 664.ADSCrossRefGoogle Scholar
  45. Jou, W. H. and Cheng, S. I. (1971), Phys. Fluids, 14, 2144.ADSCrossRefGoogle Scholar
  46. Kiel, R. E. (1969), J. Appl. Phys. 40, 3668.ADSCrossRefGoogle Scholar
  47. Kulgein, N. G. (1968), AIAA J., 6, 151.ADSCrossRefGoogle Scholar
  48. Lam, S. H. (1964), AIAA J., 2, 256.CrossRefGoogle Scholar
  49. Lam, S. H. (1965), AIAA Paper No. 65–543, San Francisco, September 1965.Google Scholar
  50. Lam, S. H. (1968), Proc. 8th Int. Conf. Phenomena of Ionized Gases, Vienna, Austria, August 1967, p. 545.Google Scholar
  51. Lederman, S. and Avidor, J. (1971), Israeli. Tech., 9, 19.Google Scholar
  52. Little, R. G. and Waymouth, J. F. (1966), Phys. Fluids, 9, 801.ADSCrossRefGoogle Scholar
  53. McAssey, E. V., Jr. and Yeh, H. (1970), J. Heat Transfer, 92, 447.CrossRefGoogle Scholar
  54. Persson, K. B. (1962), Phys. Fluids, 5, 1625.ADSCrossRefGoogle Scholar
  55. Russo, A. J. (1972), Sandia Laboratories Rep. No. SC-RR-72–0111, Albuquerque, New Mexico.Google Scholar
  56. Russo, A. J. and Touryan, K. J. (1972), AIAA J., 12, 1675.ADSCrossRefGoogle Scholar
  57. Seharfman, W. E. and Bredfeldt, H. R. (1967), Standard Research Institute Final Rep. Project 6138, Menlo Park, California.Google Scholar
  58. Scharfman W. E. and Bredfeldt, H. R. (1970), AIAA J., 8, 662.ADSCrossRefGoogle Scholar
  59. Scharfman, W. E. and Hammitt, A. G. (1972), AIAA J., 10, 434.ADSCrossRefGoogle Scholar
  60. Seharfman, W. E. and Taylor, W. C. (1971), Standard Research Institute Rep. Project No. 7712, Menlo Park, California.Google Scholar
  61. Seemann, G. R. and Thornton, J. A. (1969), AIAA Paper No. 69–700, 2nd Fluid and Plasma Dynamics Conference, June 1969.Google Scholar
  62. Sonin, A. A. (1967), J. Geophys. Res., 72, 4547.ADSCrossRefGoogle Scholar
  63. Stahl, N. and Su, C. H. (1971), Phys. Fluids, 14, 1366.ADSCrossRefGoogle Scholar
  64. Su, C. H. (1965), AIAA J., 3, 842.CrossRefGoogle Scholar
  65. Su, C. H. and Kiel, R. E. (1966), J. Appl. Phys., 37, 4907.ADSCrossRefGoogle Scholar
  66. Su, C. H. and Lam, S. H. (1963), Phys. Fluids, 6, 1479.ADSCrossRefGoogle Scholar
  67. Talbot, L. (1960), Phys. Fluids, 3, 289.MathSciNetADSCrossRefGoogle Scholar
  68. Tanaka, T. and Hirao, K. (1972), Report of Ionospheric and Space Research in Japan, 26, p 121.Google Scholar
  69. Thomas, D. L. (1969), Phys. Fluids, 12, 356.ADSCrossRefGoogle Scholar
  70. Thompson, W. P. (1967), Aerospace Corporation Rep. No. TR-0158(340–20)-4, San Bernardino, California.Google Scholar
  71. Toba, K. and Sayano, S. (1967), J. Plasma Phys., 1, 407.ADSCrossRefGoogle Scholar
  72. Touryan, K. J. and Boyer, D. W. (1972), Proc. IUTAM Symposium on Dynamics of Ionized Gases, Tokyo, Japan, September 1971.Google Scholar
  73. Tseng, R. C. and Talbot, L. (1971), AIAA J., 9, 1365.ADSCrossRefGoogle Scholar
  74. Whitman, A. M. and Chien, C. J. (1971), Phys. Fluids, 14, 1115.ADSCrossRefGoogle Scholar
  75. Zakharova, V. M., Kagan, Y. M., Mustafin, K. S., and Penel, V. I. (1960), Zh. Tekhn, Fiz., 30, 442.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • Paul M. Chung
    • 1
  • Lawrence Talbot
    • 2
  • Kenell J. Touryan
    • 3
  1. 1.University of ChicagoUSA
  2. 2.University of CaliforniaBerkeleyUSA
  3. 3.Sandia LaboratoriesAlbuquerqueUSA

Personalised recommendations