The present review attempts to analyze the available experimental evidence for the immunological commitment of the antigen-sensitive precursors of B lymphocytes.


Antibody Response Precursor Cell Spleen Cell Peritoneal Cell Irradiate Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


B lymphocyte (or B cell)

bone marrow-derived lymphocyte


burro red cells


bovine serum albumin


chicken red cells



Fab-anti MIg

monovalent Fab fragments of rabbit antimouse-Ig antibody


fowl gamma globulin


fluorescein (isothiocyanate)

G anti RIg

goat anti-rabbit-Ig antibody


goat red cells


horse red cells


human serum albumin






keyhole limpet hemocyanin


lymph node




4-hydroxy- 5-iodo-3-nitrophenacetyl






plaque-forming cells

(Phe, G)-Pro-L

poly-l-(Phe, Glu)-poly-l-Pro-poly-l-Lvs


polymerized flagellin



R anti-POL

rabbit-anti-POL antibody

R anti-MIg

rabbit anti-mouse-Ig antibody


tetramethylrhodamine (isothiocyanate)


rosette-forming cells


Salmonella adelaide (heat-killed)


sheep red cells

T lymphocyte (or T cell)

thymus-derived lymphocyte




thoracic duct lymphocytes


poly-l-(Tyr, Glu)-poly-dl-Ala-poly-l-Lys

(T, G)-Pro-L

poly-l-(Tyr, Glu)-poly-l-Pro-poly-l-Lys



T × BM mice

adult thymectomized, irradiated mice protected with bone marrow cells


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ada, G. L.: Antigen binding cells in tolerance and immunity. Transplant. Rev. 5, 105–129 (1970).PubMedGoogle Scholar
  2. Ada, G. L., Byrt, P.: Specific inactivation of antigen-reactive cells with 125I-labelled antigen. Nature (Lond.) 222, 1291–1292 (1969).Google Scholar
  3. Adler, F. L.: Competition of antigens. Progr. Allergy 8, 41–57 (1964).Google Scholar
  4. Adler, F. L., Fishman, M., Dray, S.: Antibody formation initiated in vitro. III. Antibody formation and allotypic specificity directed by ribonucleic acid from peritoneal exudate cells. J. Immunol. 97, 554–558 (1966).PubMedGoogle Scholar
  5. Andersson, J., Sjöberg, O., Möller, G.: Induction of immunoglobulin and antibody synthesis in vitro by lipopolysaccharides. Europ. J. Immunol. 2, 349–353 (1972).Google Scholar
  6. Ashman, R. F.: Lymphocyte receptor movement induced by sheep erythrocyte binding. J. Immunol. 111, 212–220 (1973).PubMedGoogle Scholar
  7. Askonas, B. A., Davies, A. J. S., Jacobson, E. B., Leuchars, E., Roelants, G. E.: Thymus dependence of the antibody response to Maia squinado hemocyanin in mice. Immunology 23, 791–794 (1972).PubMedGoogle Scholar
  8. Askonas, B. A., Rhodes, J. M.: Immunogenicity of antigen-containing ribonucleic acid preparations from macrophages. Nature (Lond.) 205, 470–474 (1965).Google Scholar
  9. Bach, J. F., Reyes, F., Dardenne, M., Fournier, C., Muller, J. Y.: Rosette formation, a model for antigen recognition. In: Cell interactions and receptor antibodies in immune responses (O. Mäkelä, A. Cross, T. U. Kosunen, Eds.), p. 111–122. London and New York: Academic Press 1971.Google Scholar
  10. Basten, A., Miller, J. F. A. P., Warner, N. L., Pye, J.: Specific inactivation of thymus-derived (T) and non-thymus-derived (B) lymphocytes by 125I-labelled antigen. Nature (Lond.) New Biol. 231, 104–106 (1971).Google Scholar
  11. Bell, C., Dray, S.: Conversion of non-immune spleen cells by ribonucleic acid of lymphoid cells from an immunized rabbit to produce γM antibody of foreign light chain allotype. J. Immunol. 103, 1196–1211 (1969).PubMedGoogle Scholar
  12. Bell, C., Dray, S.: Conversion of non-immune rabbit spleen cells by ribonucleic acid of lymphoid cells from an immunized rabbit to produce IgG antibody of foreign light chain allotype. J. Immunol. 105, 541–556 (1970).PubMedGoogle Scholar
  13. Bell, C., Dray, S.: Expression of allelic immunoglobulin in homozygous rabbits injected with RNA extract. Science 171, 199–201 (1971a).PubMedGoogle Scholar
  14. Bell, C., Dray, S.: Conversion of non-immune rabbit spleen cells by ribonucleic acid of lymphoid cells from an immunized rabbit to produce IgM and Ig G antibody of foreign heavy-chain allotype. J. Immunol. 107, 83–95 (1971 b).PubMedGoogle Scholar
  15. Bell, C., Dray, S.: Conversion of homozygous lymphoid cells to produce IgM antibodies and Ig G immunoglobulins of allelic light-chain allotype by injection of rabbits with RNA extracts. Cell. Immunol. 5, 52–65 (1972).PubMedGoogle Scholar
  16. Bell, C., Dray, S.: RNA conversion of lymphoid cells to synthesize allogeneic immunoglobulins in vivo. Cell. Immunol. 6, 375–393 (1973).PubMedGoogle Scholar
  17. Bernoco, D., Cullen, S., Scudeller, G., Trinchieri, G., Ceppellini, R.: HL-A molecules at the cell surface. In: Histocompatibility testing 1972 (J. Dausset, J. Colombani, Eds) 527–537. Copenhagen: Munksgaard 1972.Google Scholar
  18. Biozzi, G., Stiffel, C., Mouton, D., Liacopoulos-Briot, M., Decreusefond, C., Bouthiller, Y.: Etude du phenomene de l’immunocyto-adherence au cours de l’immunisation. Ann. Inst. Pasteur 110, 7–32 (1966).Google Scholar
  19. Boris, S., Bussard, A. E., Deutsch, S., Nossal, G. J. V.: In vitro stimulation of antibody formation by peritoneal cells. III. Effect of active immunization on the subsequent in vitro performance of peritoneal and spleen cells. Immunology 19, 743–757 (1970).PubMedGoogle Scholar
  20. Bosma, M. J., Perkins, E. H., Makinodan, T.: Further characterization of the lymphoid cell transfer system for the study of antigen sensitive progenitor cells. J. Immunol. 101, 963–972 (1968).PubMedGoogle Scholar
  21. Bosma, M., Weiler, E.: The clonal nature of antibody formation. J. Immunol. 104, 203–214 (1970).PubMedGoogle Scholar
  22. Brain, P., Gordon, J., Willets, W. A.: Rosette formation by peripheral lymphocytes. Clin. exp. Immunol. 6, 681–688 (1970).PubMedGoogle Scholar
  23. Brain, P., Marston, R. H.: Rosette formation by human T and B lymphocytes. Europ. J. Immunol. 3, 6–9 (1973).Google Scholar
  24. Brody, T.: Identification of two cell populations required for mouse immunocompetence. J. Immunol. 105, 126–138 (1970).PubMedGoogle Scholar
  25. Brown, R. A., Makinodan, T., Albright, J. F.: Significance of a single-hit event in the initiation of antibody response. Nature (Lond.) 210, 1383–1384 (1966).Google Scholar
  26. Burnet, F. M.: A modification of J erne’s theory of antibody production using the concept of clonal selection. Aust. J. Sci. 20, 67–68 (1957).Google Scholar
  27. Bussard, A. E., Lurie, M.: Primary antibody response in vitro in peritoneal cells. J. exp. Med. 125, 873–891 (1967).PubMedGoogle Scholar
  28. Bussard, A. E., Nossal, G. J. V., Mazie, J. C., Lewis, H.: In vitro stimulation of antibody formation by peritoneal cells. II. Cell interactions and effects of immunochemical or metabolic inhibitors. J. exp. Med. 131, 917–935 (1970).PubMedGoogle Scholar
  29. Byrt, P.,Ada, G. L.: An in vitro reaction between labelled flagellin or haemocyanin and lymphocyte-like cells from normal animals. Immunology 17, 503–516 (1969).PubMedGoogle Scholar
  30. Campbell, P. A.: Heterogeneity of antibodies produced by single hemolytic foci. Cell Immunol. 2, 250–258 (1971).PubMedGoogle Scholar
  31. Celada, F., Wigzell, H.: Immune responses in spleen colonies. II. Clonal assortment of 19S and 7S-producing cells in mice reacting against two antigens. Immunology 11, 453–466 (1966).PubMedGoogle Scholar
  32. Ching, Y. C., Wedgwood, R. J.: Immunologic responses in the Axolotl, Siredon Mexicanum. J. Immunol. 99, 191–200 (1967).PubMedGoogle Scholar
  33. Cooper, E. L., Pinkerton, W., Hildemann, W. H.: Serum antibody synthesis in larvae of the bullfrog Rana catesbiana. Biol. Bull. 127, 232–238 (1964).Google Scholar
  34. Cosenza, H., Leserman, L. D., Rowley, D. A.: The third cell type required for the immune response of spleen cells in vitro. J. Immunol. 107, 414–421 (1971).PubMedGoogle Scholar
  35. Cudkowicz, G., Shearer, G. M., Ito, T.: Cellular differentiation of the immune system of mice. VI. Strain differences in class differentiation and other properties of marrow cells. J. exp. Med. 132, 623–635 (1970).PubMedGoogle Scholar
  36. Cudkowicz, G., Shearer, G. M., Priore, R. L.: Cellular differentiation of the immune system of mice. V. Class differentiation in marrow precursors of plaque-forming cells. J. exp. Med. 130, 481–491 (1969).PubMedGoogle Scholar
  37. Cunningham, A. J.: The development of clones of antibody-forming cells in the spleens of irradiated mice. II. Some properties of plaque-forming cell colonies and evidence for their clonal nature. Aust. J. exp. Biol. med. Sci. 47, 493–503 (1969).PubMedGoogle Scholar
  38. Cunningham, A. J.: The development of clones of antibody-forming cells in the spleens of irradiated mice. I. Detection of plaque-forming cell colonies and their relationship to haemolytic foci. Aust. J. exp. Biol. med. Sci. 47, 485–492 (1969).PubMedGoogle Scholar
  39. Decreusefond, C., Mouton, D., Binet, J. L., Pavlovsky, S., Stiffel, C., Bouthillier, Y., Biozzi, G.: Etude de la réponse immunologique au niveau cellulaire. II. Étude dynamique des différents types cellulaires formant des rossettes au cours de la réponse immunologique. Ann. Inst. Pasteur 119, 76–86 (1970).Google Scholar
  40. Diener, E., Paetkau, V. H.: Antigen recognition: Early surface receptor phenomena induced by binding of tritium labeled antigen. Proc. nat. Acad. Sci. (Wash.) 69, 2364–2368 (1972).Google Scholar
  41. Dresser, D. W., Wortis, H. H., Anderson, H. R.: The effect of pertussis vaccine on the immune response of mice to sheep red blood cells. Clin. exp. Immunol. 7, 817–831 (1970).PubMedGoogle Scholar
  42. Du Pasquier, L.: Les réactions immunitaires chez le têtard d’Alytes obstetricans. II Caractérisation des immunocytes. C. R. Soc. Biol. (Paris) 161, 1974–1977 (1967).Google Scholar
  43. Du Pasquier, L.: Aspects cellulaires et humoraux de la synthèse d’anticorps hémolytiques chez la larve et l’adulte d’Amphibiens anoures. C. R. Soc. Biol. (Paris) 163, 1379–1382 (1969).Google Scholar
  44. Du Pasquier, L.: Ontogeny of the immune response in animals having less than one million lymphocytes: the larvae of the toad Alytes obstetricans. Immunology 19, 353–362 (1970).PubMedGoogle Scholar
  45. Du Pasquier, L.: Ontogeny of the immune response in cold-blooded vertebrates. Curr. Top. Microbiol. Immunol. 61, 37–88 (1973).PubMedGoogle Scholar
  46. Dutton, R. W., Mishell, R. I.: Cell populations and cell proliferation in the in vitro response of normal mouse spleens to heterologous erythrocytes. J. exp. Med. 126, 443–454 (1967).PubMedGoogle Scholar
  47. Dwyer, J. M., Mackay, LR.: Antigen binding lymphocytes in human blood. Lancet 1970 I, 164–167.Google Scholar
  48. Dwyer, J. M., R.: Antigen binding lymphocytes in congenitally athymic (nude) mice. Nature (Lond.) New Biol. 234, 252–253 (1971).Google Scholar
  49. Edelman, G. M., Rutishauser, U., Millette, CF.: Cell fractionation and arrangement on fibers, beads and surfaces. Proc. nat. Acad. Sci. (Wash.) 68, 2153–2157 (1971).Google Scholar
  50. Edwards, G. E., Miller, R. G., Phillips, R. A.: Differentiation of rosette-forming cells from myeloid stem cells. J. Immunol. 105, 719–729 (1970).PubMedGoogle Scholar
  51. Eidinger, D., Khan, S.A., Millar, K. G.: The effect of antigenic competition on various manifestations of humoral antibody formation and cellular immunity. J. exp. Med. 128, 1183–1200 (1968).PubMedGoogle Scholar
  52. Fishman, M., Adler, F. L.: Antibody formation initiated in vitro. II. Antibody synthesis in X-irradiated recipients of diffusion chambers containing nucleic acid derived from macrophages incubated with antigen. J. exp. Med. 117, 595–602 (1963).PubMedGoogle Scholar
  53. Golstein, P., Wigzell, H., Blomgren, H., Svedmyr, E. A. J.: Cells mediating specific in vitro cytotoxicity. II. Probable autonomy of thymus processed lymphocytes (T cells) for the killing of allogeneic target cells. J. exp. Med. 135, 890–906 (1972).PubMedGoogle Scholar
  54. Gorczynski, R. M., Miller, R. G., Phillips, R. A.: Identification by density separation of antigen-specific surface receptors on the progenitors of antibody-producing cells. Immunology 20, 693–705 (1971).PubMedGoogle Scholar
  55. Graeves, M. F.: Activation of lymphocytes: Significance of events at the cell surface. FEBS-Meeting 26, 17–30 (1972).Google Scholar
  56. Graeves, M. F., Hogg, N. M.: Antigen binding sites on mouse lymphoid cells. In: Cell interactions and receptor antibodies in immune responses (O. Mäkelä, A. Cross, T. U. Konsunen, Eds.), p. 145–155- London and New York: Academic Press 1971.Google Scholar
  57. Gregory, C. J.: Analysis of immunological memory in terms of increased PFC responsiveness and increased focus-forming capacity. Immunology 20, 241–245 (1971).PubMedGoogle Scholar
  58. Gregory, C. J., Lajtha, L. G.: Kinetic study of the production of antibody orming cells from their precursors. Nature (Lond.) 218, 1079–1081 (1968).Google Scholar
  59. Groves, D. L., Lever, W. E., Makinodan, T.: Stochastic model for the production of antibody forming cells. Nature (Lond.) 222, 95–97 (1969).Google Scholar
  60. Haimovich, J., Du Pasquier, L.: Specificity of antibodies in amphibian larvae possessing a small number of lymphocytes. Proc. nat. Acad. Sci. (Wash.) 70, 1898–1902(1973).Google Scholar
  61. Haskill, J. S., Axelrad, M. A.: Altered antigen binding by immunocompetent cells as a reflexion of immunological history. Nature (Lond.) New Biol. 231, 219–220 (1971).Google Scholar
  62. Henry, C., Kimura, J., Wofsy, L.: Cell separation on affinity columns: The isolation of immunospecific precursor cells from unimmunized mice. Proc. nat. Acad. Sci. (Wash.) 69, 34–36 (1972).Google Scholar
  63. Hullett, H. R., Bonner, W. A., Barett, J., Herzenberg, L. A.: Cell sorting: Automated separation of mammalian cells as a function of intracellular fluorescence. Science 166, 747–749 (1969).Google Scholar
  64. Humphrey, J. H., Keller, H. U.: Some evidence for specific interaction between immunologically competent cells and antigens. In: Developmental aspects of antibody formation and structure (J. Sterzl, I. Riha, Eds.), p. 485–502. Prague: Publ. House of the Czechoslovak Acad. Sci. 1970.Google Scholar
  65. Jerne, N. K.: The natural selection theory of antibody formation. Proc. nat. Acad. Sci. (Wash.) 41, 849–857 (1955).Google Scholar
  66. Jerne, N. K.: Summary: Waiting for the end. Cold. Spr. Harb. Symp. quant. Biol. 32, 591–603 (1967).Google Scholar
  67. Jerne, N. K.: What precedes clonal selection? In: Ontogeny of acquired immunity. Ciba Foundation Symposium November 1971, p. 1–15- Amsterdam: Associated Scientific Publishers 1972.Google Scholar
  68. Julius, M. H., Masuda, T., Herzenberg, L. A.: Demonstration that antigen-binding cells are precursors of antibody producing cells after purification with a fluorescence-activated cell sorter. Proc. nat. Acad. Sci. (Wash.) 69, 1934–1938 (1972).Google Scholar
  69. Kennedy, J. C., Siminovitch, L., Till, J. E., McCulloch, E. A.: A transplantation assay for mouse cells responsive to antigenic stimulation by sheep erythrocytes. Proc. Soc. exp. Biol. (N.Y.) 120, 868–873 (1965).Google Scholar
  70. Kennedy, J. C., Till, J. E., Siminovitch, L., McCulloch, E. A.: The proliferative capacity of antigen-sensitive precursors of hemolytic plaque-forming cells. J. Immunol. 96, 973–980 (1966).PubMedGoogle Scholar
  71. Kettman, J., Yin, E., Dutton, R. W.: Precursor cell division during the immune response in vitro: antigen induced and “spontaneous” antibody forming cells. Europ. J. Immunol., 3: 655–656 (1973).Google Scholar
  72. Kiefer, H.: Binding and release of lymphocytes by hapten-derivatized nylon fibers. Europ. J. Immunol. 3, 181–183 (1973).Google Scholar
  73. Kind, P., Campbell, P. A.: Differentiation of antibody forming cells. I. Ratio of precursor cells to antibody forming cells in the mouse spleen. J. Immunol. 100, 55–60(1968).PubMedGoogle Scholar
  74. Klinman, N. R.: Antibody with homogeneous antigen binding produced by splenic foci in organ culture. Immunochemistry 6, 757–759 (1969).PubMedGoogle Scholar
  75. Klinman, N. R., Aschinazi, G.: The stimulation of splenic foci in vitro. J. Immunol. 106, 1338–1344 (1971).PubMedGoogle Scholar
  76. Kourilsky, F. M., Silvestre, D., Neauport-Sautes, C., Loosfelt, Y., Dausset, J.: Antibody-induced redistribution of HL-A antigens at the cell surface. Europ. J. Immunol. 2, 249–257 (1972).Google Scholar
  77. Laskov, R.: Rosette forming cells in non-immunized mice. Nature (Lond.) 219, 973–975 (1968).Google Scholar
  78. Lefkovits, I.: Induction of antibody-forming cell clones in microcultures. Europ. J. Immunol. 2, 360–365 (1972).Google Scholar
  79. Lefkovits, I., Kamber, O.: A replicator for handling and sampling microcultures in tissue culture trays. Europ. J. Immunol. 2, 365–366 (1972).Google Scholar
  80. Loor, F., Forni, L., Pernis, B.: The dynamic state of the lymphocyte membrane. Factors affecting the distribution and turnover of surface immunoglobulins. Europ. J. Immunol. 2, 203–212 (1972).Google Scholar
  81. Luzzati, A. L., Tosi, R. M., Carbonara, A. O.: Electrophoretically homogeneous antibody synthesized by spleen foci of irradiated repopulated mice. J. exp. Med. 132, 199–210 (1970).PubMedGoogle Scholar
  82. Makinodan, T., Kastenbaum, M. A., Peterson, W. J.: Radiosensitivity of spleen cells from normal and preimmunized mice and its significance to intact animals. J. Immunol. 88, 31–37 (1962).PubMedGoogle Scholar
  83. Mandel, T., Byrt, P., Ada, G. L.: A morphological examination of antigen reactive cells from mouse spleen and peritoneal cavity. Exp. Cell Res. 58, 179–182 (1970).Google Scholar
  84. Marbrook, J.: Primary immune response in cultures of spleen cells. Lancet 1967 II, 1279–1281.Google Scholar
  85. Melchers, F., Lafleur, L., Andersson, J.: Immunoglobulin M synthesis in resting (G0) and in mitogen-activated B lymphocytes. In: Cold Spring Harbor monograph. Control of proliferation in animal cells. In press 1973.Google Scholar
  86. Miller, H. C., Cudkowicz, G.: Antigen-specific cells in mouse bone marrow. I. Lasting effects of priming on immunocyte production by transferred marrow. J. exp. Med. 132, 1122–1137 (1970).PubMedGoogle Scholar
  87. Miller, J. F. A. P., Mitchell, G. F., Weiss, N. S.: Cellular basis of the immunological defects in thymectomized mice. Nature (Lond.) 214, 992–997 (1967).Google Scholar
  88. Miller, R. G., Phillips, R. A.: Separation of cells by velocity sedimentation. J. cell. Physiol. 73, 191–202 (1969).PubMedGoogle Scholar
  89. Miller, R. G., Phillips, R. A.: Sedimentation analysis of the cells in mice required to initiate an in vivo immune response to sheep erythrocytes. Proc. Soc. exp. Biol. (N.Y.) 135, 63–67 (1970).Google Scholar
  90. Mishell, R. I., Dutton, R. W.: Immunization of dissociated spleen cell cultures from normal mice. J. exp. Med. 126, 423–442 (1967).PubMedGoogle Scholar
  91. Möller, G., Michael, G.: Frequency of antigen sensitive cells to thymus independent antigens. Cell. Immunol. 2, 309–316 (1971).PubMedGoogle Scholar
  92. Möller, G., Sjöberg, O.: Studies on the mechanism of antigenic competition. In: Cell interactions and receptor antibodies in immune responses (O. Mäkelä, A. Cross, T. U. Kosunen, Eds.), p. 419–432. London and New York: Academic Press 1971.Google Scholar
  93. Mozes, E., Shearer, G. M., Sela, M.: Cellular basis of the genetic control of immune responses to synthetic polypeptides. I. Differences in frequency of splenic precursor cells specific for a synthetic polypeptide derived from multichain polyproline ({T,G}-Pro—L) in high and low responder inbred mouse strains. J. exp. Med. 132, 613–622 (1970).PubMedGoogle Scholar
  94. Naor, D., Sulitzeanu, D.: Binding of radioiodinated bovine serum albumin to mouse spleen cells. Nature (Lond.) 214, 687–688 (1967).Google Scholar
  95. Naor, D., Sulitzeanu, D.: Affinity of radioiodinated bovine serum albumin from lymphoid cells. Binding of 125I-BSA to lymphoid cells of immune mice. Israel J. med. Sci. 5, 217–229 (1969).PubMedGoogle Scholar
  96. Neauport-Sautes, C., Lilly, F., Silvestre, D., Kourilsky, F. M.: Independence of H-2K and H-2D antigenic determinants on the surface of mouse lymphocytes. J. exp. Med. 137, 511–526 (1973).PubMedGoogle Scholar
  97. Nossal, G. J. V., Bussard, A. E., Lewis, H., Mazie, J.C.: In vitro stimulation of antibody formation by peritoneal cells. I. Plaque technique of high sensitivity enabling access to the cells. J. exp. Med. 131, 894–916 (1970).PubMedGoogle Scholar
  98. Nota, N. R., Liacopoulos-Briot, M., Stiffel, C., Biozzi, G.: L’immuno-cyto-adhérence: une méthode simple et quantitative pour l’étude in vitro des cellules productrices d’anticorps. C. R. Acad. Sci. (Paris) 259, 1277–1280 (1964).Google Scholar
  99. Osoba, D.: Specificity of the in vitro response of antigen-sensitive units to two antigens. Transplant. Proc. 1, 567–570 (1969 a).PubMedGoogle Scholar
  100. Osoba, D.: Restriction of the capacity to respond to two antigens by single precursors of antibody-producing cells in culture. J. exp. Med. 129, 141–152 (1969 b).PubMedGoogle Scholar
  101. Osoba, D.: Some physical and radiobiological properties of immunologically reactive mouse spleen cells. J. exp. Med. 132, 368–383 (1970).PubMedGoogle Scholar
  102. Phillips, B., Roitt, I. M.: Evidence for transformation of human B lymphocytes by PHA. Nature (Lond.) New Biol. 241, 254–256 (1973).Google Scholar
  103. Playfair, J. H. L., Papermaster, B.W., Cole, L. J.: Focal antibody production by transferred spleen cells in irradiated mice. Science 149, 998–1000 (1965).PubMedGoogle Scholar
  104. Plotz, P. H., Talal, N.: Fractionation of splenic antibody-forming cells on glass bead columns. J. Immunol. 99, 1236–1242 (1967).PubMedGoogle Scholar
  105. Preud’homme, J. L., Neauport-Sautes, C., Piat, S., Silvestre, D., Kourilsky, F. M.: Indepence of HL-A antigens and immunoglobulin determinants on the surface of human lymphoid cells. Europ. J. Immunol. 2, 297–300 (1972).Google Scholar
  106. Quintans, J., Lefkovits, I.: Precursor cells specific to sheep red cells in nude mice. Estimation of frequency in the microculture system. Europ. J. Immunol. 3, 392–397 (1973).Google Scholar
  107. Rabellino, E., Colon, S., Grey, H. M., Unanue, E. R.: Immunoglobulins on the surface of lymphocytes. J. exp. Med. 133, 156–167 (1971).PubMedGoogle Scholar
  108. Rabinowitz, Y.: Separation of lymphocytes, polymorphonuclear leukocytes and monocytes on glass columns, including tissue culture observation. Blood 23, 811–828 (1964).PubMedGoogle Scholar
  109. Radovich, J., Talmage, D.W.: Antigenic competition: Cellular or humoral. Science 158, 512–514 (1967).PubMedGoogle Scholar
  110. Raff, M. C., De Petris, S.: Movement of lymphocyte surface antigens and receptors: The fluid nature of the lymphocyte plasma membrane and its immunological significance. Fed. Proc. 32, 48–54 (1973).PubMedGoogle Scholar
  111. Raff, M. C., Feldman, M., De Petris, S.: Monospecificity of bone marrow-derived lymphocytes. J. exp. Med. 137, 1024–1030 (1973).PubMedGoogle Scholar
  112. Roelants, G. E., Askonas, B. A.: Cell cooperation in antibody induction. The susceptibility of helper cells to specific lethal radioactive antigen. Europ. J. Immunol. 1, 151–157 (1971).Google Scholar
  113. Roelants, G., Forni, L., Pernis, B.: Blocking and redistribution (“capping”) of antigen receptors on T and B lymphocytes by anti-immunoglobulin antibody. J. exp. Med. 137, 1060–1077 (1973).PubMedGoogle Scholar
  114. Roseman, J.: X-ray resistant cell required for the induction of in vitro antibody formation. Science 165, 1125–1127 (1969).PubMedGoogle Scholar
  115. Rowley, D. A., Gowans, J. L., Atkins, R. C., Ford, W. L., Smith, M. E.: The specific selection of recirculating lymphocytes by antigen in normal and preimmunized rats. J. exp. Med. 136, 499–513 (1972).PubMedGoogle Scholar
  116. Rubin, B., Wigzell, H.: The immune response against hapten-autologous protein conjugates in the mouse. III. Specificity of cooperating non-thymus-processed (B) and thymus-processed (T) lymphocytes. J. exp. Med. 137, 911–931 (1972).Google Scholar
  117. Rutishauser, U., Millette, C. F., Edelman, G. M.: Specific fractionation of immune cell populations. Proc. nat. Acad. Sci. (Wash.) 69, 1596–1600 (1972).Google Scholar
  118. Salmon, S. E., Krakauer, R. S., Whitmore, W. F.: Lymphocyte stimulation: selective destruction of cells during blastogenic response to transplantation antigens. Science 172, 490–492 (1971).PubMedGoogle Scholar
  119. Schlossman, S. F., Hudson, L.: Specific purification of lymphocyte populations on a digestible immunoabsorbent. J. Immunol. 110, 313–315 (1973).PubMedGoogle Scholar
  120. Sercarz, E., Decker, J., De Luca, D., Evans, R., Miller, A., Modabber, F.: Betagalactosidase binding by thymus and marrow cells: relationship to the immune response. In: Cell interactions and receptor antibodies in immune response (O. Mäkelä, A. Cross, T. U. Kosunen, Eds.), p. 157–169. London and New York: Academic Press 1971.Google Scholar
  121. Shearer, G. M., Cudkowicz, G.: Cellular differentiation of the immune system of mice. III. Separate antigen-sensitive units for different types of anti-sheep immunocytes formed by marrow-thymus cell mixtures. J. exp. Med. 129, 935–951 (1969).PubMedGoogle Scholar
  122. Shearer, G. M., Cudkowitz, G., Connell, M. S. J., Priore, R. L.: Cellular differentiation of the immune system of mice. I. Separate splenic antigen sensitive units for different types of anti sheep antibody-forming cells. J. exp. Med. 128, 437–457 (1968).PubMedGoogle Scholar
  123. Shearer, G. M., Cudkowicz, G., Priore, R. L.: Cellular differentiation of the immune system of mice. II. Frequency of unipotent splenic antigen sensitive units after immunization with sheep erythocytes. J. exp. Med. 129, 185–199 (1969).PubMedGoogle Scholar
  124. Shearer, G. M., Mozes, E., Sela, M.: Cellular basis of the genetic control of immune responses to synthetic polypeptides. II. Frequency of immunocompetent precursors specific for two distinct regions within (Phe, G)-Pro—L, a synthetic polypeptide derived from multichain polyproline, in inbred mouse strains. J. exp. Med. 133, 216–230 (1971).PubMedGoogle Scholar
  125. Shortman, K.: The separation of different cell classes from lymphoid organs. I. The use of glass bead columns to separate small lymphocytes, remove damaged cells and fractionate cell suspensions. Aust. J. exp. Biol. med. Sci. 44, 271–286 (1966).PubMedGoogle Scholar
  126. Sprent, J.: Circulating T and B lymphocytes of the mouse. I. Migratory properties. Cell. Immunol. 7, 10–39(1973).PubMedGoogle Scholar
  127. Sprent, J., Miller, J. F. A. P., Mitchell, G. F.: Antigen-induced selective recruitment of circulating lymphocytes. Cell. Immunol. 2, 171–181 (1971).PubMedGoogle Scholar
  128. Sprent, J., Miller, J. F. A. P.: Effect of recent antigen priming on adoptive immune responses. II. Specific unresponsiveness of recirculating lymphocytes from mice primed with heterologous erythrocytes. J. exp. Med., 139, 1–12 (1974).PubMedGoogle Scholar
  129. Sprent, J., Miller, J. F. A. P.: Effect of recent antigen priming on adoptive immune responses. I. Specific unresponsiveness of cells from lymphoid organs of mice primed with heterologous erythrocytes. J. exp. Med. 138, 143–162 (1973).PubMedGoogle Scholar
  130. Stevens, R. H., Williamson, A. R.: Specific IgG mRNA molecules from myeloma cells in heterogeneous nuclear and cytoplasmic RNA containing Poly-A. Nature (Lond.) 239, 143–146 (1972).Google Scholar
  131. Sulitzeanu, D., Naor, D.: The affinity of radioiodinated BSA for lymphoid cells. II. Binding of 125I-BSA to lymphoid cells of normal mice. Int. Arch. Allergy 35, 564–578 (1969).PubMedGoogle Scholar
  132. Talmage, D.W., Radovich, J., Hemmingsen, H.: The immunocompetence of the radiated spleen repopulated with bone marrow. In: Cellular interactions in the immune response. 2nd Int. Convoc. Immunol. Buffalo, N.Y. 1970 (S. Cohen, G. Cudkowicz, R. T. McClusky, Eds.) p. 56–65. Basel: Karger 1971.Google Scholar
  133. Taussig, M.: Antigenic competition. Current Top. Microbiol. Immunol. 60, 125–174 (1973).Google Scholar
  134. Taylor, R.B., Duffus, W. P.H., Raff, M. C., De Pétris, S.: Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by antiimmunoglobulin antibody. Nature (Lond.) New Biology 233, 225–229 (1971).Google Scholar
  135. Trowbridge, I. S.: The enhancement of a primary in vitro anti-hapten response by carrier priming. Europ. J. Immunol. 2, 558–565 (1972).Google Scholar
  136. Unanue, E. R.: Antigen binding cells. II. Effect of highly radioactive antigen on the immunologic function of bone marrow cells. J. Immunol. 107, 1663–1665 (1971).PubMedGoogle Scholar
  137. Vann, D. C., Campbell, P. A.: Plaque-forming cells of two different origins in single hemolytic foci. J. Immunol. 105, 1584–1586 (1970).PubMedGoogle Scholar
  138. Waterston, R. H.: Antigen competition: A paradox. Science 170, 1108–1110 (1970).PubMedGoogle Scholar
  139. Wigzell, H.: Specific fractionation of immunocompetent cells. Transplant. Rev. 5, 76–104 (1970).PubMedGoogle Scholar
  140. Wigzell, H., Andersson, B.: Cell separation on antigen-coated columns. Elimination of high rate antibody-forming cells and immunological memory cells. J. exp. Med. 129, 23–36 (1969).PubMedGoogle Scholar
  141. Wigzell, H., Andersson, B., Mäkelä, O., Walters, C. S.: Characteristics of surface-attached antibodies as analyzed by fractionation through antigen-coated columns. In: Cell interactions and receptor antibodies in immune responses (O. Mäkelä, A. Cross, T. U. Kosunen, Eds.), p. 231–242. London and New York: Academic Press 1971.Google Scholar
  142. Wigzell, H., Mäkelä, O.: Separation of normal and immune lymphoid cells by antigen-coated columns. Antigen binding characteristics of membrane antibodies as analyzed by hapten-protein antigens. J. exp. Med. 132, 110–126 (1970).PubMedGoogle Scholar
  143. Wigzell, H., Sundquist, K. G., Yoshida, T. O.: Separation of cells according to surface antigens by the use of antibody-coated columns. Fractionation of cells carrying immunoglobulins and blood group antigen. Scand. J. Immunol. 1, 75–87 (1972).PubMedGoogle Scholar
  144. Wu, C.-Y., Cinader, B.: Antigenic promotion. Increase in hapten-specific plaque-forming cells after preinjection with structurally unrelated macromolecules. J. exp. Med. 134, 693–712 (1971).PubMedGoogle Scholar
  145. Zaalberg, O. B.: A simple method for detecting single antibody forming cells. Nature (Lond.) 202, 1231 incl. (1964).Google Scholar
  146. Zoschke, D. C., Bach, F. H.: Specificity of allogeneic cell recognition by human lymphocytes in vitro. Science 172, 1350–1352 (1971).PubMedGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1974

Authors and Affiliations

  • Ivan Lefkovits
    • 1
  1. 1.Basel Institute for ImmunologyBaselSwitzerland

Personalised recommendations