Skip to main content

Hearing in Invertebrates

  • Chapter
Auditory System

Part of the book series: Handbook of Sensory Physiology ((1534,volume 5 / 1))

Abstract

Among the invertebrates a sense of hearing is found only in the Arthropods, where it has evolved independently in several systematic groups and has reached different degrees of anatomical and functional complexity. The numbers of receptor cells in the ears vary from a single cell to several thousand. Arthropod ears operate over an intensity range from 0 dB to more than 100 dB (all dB values in this chapter are relative to 2 · 10-5 N/m2). The frequency range extends to more than 150 kHz. Most ears are unable to discriminate sound frequencies, but a fairly “accurate” frequency discrimination has been realized in one case. The development of the ears is mainly correlated with the presence of acoustic communication between conspecific animals or with the avoidance of predators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, L.-J.: Neurophysiologie des Höens und Bioakustik einer Feldheuschrecke (Locusta migratoria). Z. vergl. Physiol. 63, 227–289 (1969).

    Google Scholar 

  • Adams, W.B.: Receptor characteristics in the tympanic organ of the noctuid moth. Special report: Laboratory of Sensory Communications. New York: Syracuse University 1970.

    Google Scholar 

  • Adams, W.B.: Intensity characteristics of the noctuid acoustic receptor. J. gen. Physiol. 58, 562–579 (1971).

    PubMed  CAS  Google Scholar 

  • Alexander, R.D.: Acoustical communication in Arthropods. Ann. Rev. Entomol. 12, 495–526 (1967).

    Google Scholar 

  • Alexander, R.D., Moore, T.E.: The evolutionary relationships of 17-year and 13-year cicadas, and three new species (Homoptera, Cicadidae, Magicicada). Univ. Mich. Zool. Misc. Publ. No. 121, 1–59 (1962).

    Google Scholar 

  • Autrum, H: Phasische und tonische Antworten vom Tympanalorgan von Tettigonia viridissima. Acoustica 10, 339–348 (1960).

    Google Scholar 

  • Autrum, H.: Anatomy and physiology of sound receptors in invertebrates. In: Busnel, R.G. (Ed.): Acoustic behaviour of animals, 412–433. London: Elsevier 1963.

    Google Scholar 

  • Bailey, W.J., Robinson, D.: Song as a possible isolating mechanism in the genus Homorocoryphus (Tettigonioidea, Orthoptera). Anim. Behav. 19, 390–397 (1971).

    Google Scholar 

  • Bakth, F.: Ein einzelnes Spaltsinnesorgan auf dem Spinnentarsus: seine Erregung in Abhängigkeit von den Parametern des Luftschallreizes. Z. vergl. Physiol. 55, 407–449 (1967).

    Google Scholar 

  • Barth, F.: Der sensorische Apparat der Spaltsirmesorgane (Cupiennius salei Keys., Araneae). Z. Zellforsch. 112, 212–246 (1971).

    PubMed  CAS  Google Scholar 

  • Barth, F., Libera, W.: Ein Atlas der Spaltsinnesorgane von Cupiennius salei Keys. Chelicerata (Araneae). Z. Morph. Tiere 68, 343–369 (1970).

    Google Scholar 

  • Bennet-Clark, H.C: Acoustics of insect song. Nature (Lond.) 234, 255–259 (1971).

    Google Scholar 

  • Bennet-Clark,H.C, Ewing, A.W.: Stimuli provided by courtship of male Drosophila melanogaster. Nature (Lond.) 215, 669–671 (1967).

    Google Scholar 

  • Bennet-Clark, H.C, Ewing, A.W.: Pulse interval as a critical parameter in the courtship song of Drosophila melanogaster. Anim. Behav. 17, 755–759 (1969).

    Google Scholar 

  • Bullock, T.H., Horridge, G.A.: Structure and function in the nervous systems of invertebrates. Vol. I–II. San Francisco: Freeman 1965.

    Google Scholar 

  • Burnet, B., Connolly, K., Dennis, L.: The function and processing of auditory information in the courtship behaviour of Drosophila melanogaster. Anim. Behav. 19, 409–415 (1971).

    PubMed  CAS  Google Scholar 

  • Busnel, M.C., Burkhardt, D.: An electrophysiological study of the phonokinetic reaction in Locusta migratoria migratorioides (L.). Symp. Zool. Soc. Lond. 7, 13–44 (1962).

    Google Scholar 

  • Dagan, D., Parnas, I.: Function of giant axons in the escape response of the cockroach. Proc. XXV. Int. Congr. Physiol. 128 (1971).

    Google Scholar 

  • Dethier, V.G.: The physiology of insect senses. London: Methuen; New York: Wiley 1963.

    Google Scholar 

  • Dubrovin, N.N., Zhantiev, R.D.: Acoustic signals of katydids (Orthoptera, Tettigoniidae). Zool. J. (in Russian) 49, 1001–1014 (1970).

    Google Scholar 

  • Dumortier, B.: Ethological and physiological study of sound emissions in Arthropoda. In: Busnel, R.-G. (Ed.): Acoustic behaviour of animals, p. 583–654. London: Elsevier 1963.

    Google Scholar 

  • Enger, P.S., Aidley, D.J., Szabo, T.: Sound reception in the Brazilian cicada Fidicina rana Walk. J. exp. Biol. 51, 339–345 (1969).

    Google Scholar 

  • Ewing, A.W., Bennet-Clark, H.C: The courtship songs of Drosophila. Behaviour 31, 288–301 (1968).

    Google Scholar 

  • Frings, H., Frings, M.: Sound production and sound reception by insects: a bibliography. Pennsylvania: State University Press 1960.

    Google Scholar 

  • Gewecke, M., Schlegel, P.: Die Schwingungen der Antenne und ihre Bedeutung für die Flugsteuerung bei Calliphora erythrocephala. Z. vergl. Physiol. 67, 325–362 (1970).

    Google Scholar 

  • Ghiradella, H.: Fine structure of the noctuid moth ear. I. The transducer area and connections to the tympanic membrane in Feltia subgothica Howarth. J. Morph. 134, 21–46 (1971).

    PubMed  CAS  Google Scholar 

  • Gray, E.G.: The fine structure of the insect ear. Phil. Trans, roy. Soc. B 243, 75–94 (1960).

    Google Scholar 

  • Guthrie, D.M.: Sound production and reception in a cockroach. J. exp. Biol. 45, 321–328 (1966).

    Google Scholar 

  • Harris, C.L., Smyth, T.,Jr.: Delayed firing of giant axons in the American cockroach. J. Insect Physiol. 17, 1565–1577 (1971).

    Google Scholar 

  • Horridge, G.A.: Pitch discrimination in locusts. Proc. roy. Soc. B 155, 218–231 (1961).

    Google Scholar 

  • Howse, P.E.: The fine structure and functional organization of chordotonal organs. Symp. zool. Soc. Lond. 23, 167–198 (1968).

    Google Scholar 

  • Huber, F.: Lecture referred in Neurosci. Res. Bull. 10 (1), 1–119 (1972).

    Google Scholar 

  • Johnstone, B.M., Saunders, J.C, Johnstone, J.R.: Tympanic membrane response in the cricket. Nature (Lond.) 227, 625–626 (1970a).

    CAS  Google Scholar 

  • Johnstone, J.R., Saunders, J.C, Johnstone, M.-B.: Tympanic membrane vibration in the cricket. Proc. Aust. Physiol. Soc. 1, 56 (1970b).

    Google Scholar 

  • Kalmring, K.: Akustische Neuronen im Unterschlundganglion der Wanderheuschrecke Locusta migratoria. Z. vergl. Physiol. 72, 95–110 (1971).

    Google Scholar 

  • Kalmring, K., Rheinlaender, J., Rehbein, H.: Akustische Neuronen im Bauchmark der Wanderheuschrecke Locusta migratoria. Z. vergl. Physiol. 76, 314–332 (1972a).

    Google Scholar 

  • Kalmring, K., Rheinlaender, J., Römer, H.: Akustische Neuronen im Bauchmark von Locusta migratoria. Der Einfluß der Schallrichtung auf die Antwortmuster. J. comp. Physiol. 80, 325–352 (1972b).

    Google Scholar 

  • Katsuki, Y., Suga, N.: Neural mechanism of hearing in insects. J. exp. Biol. 37, 279–290 (1960).

    Google Scholar 

  • Keppler, E.: Über das Richtungshören von Stechmücken. Z. Naturforsch. 13b, 280–284 (1958).

    CAS  Google Scholar 

  • Kutsch, W.: Neuromuskuläre Aktivität bei verschiedenen Verhaltensweisen von drei Grillenarten. Z. vergl. Physiol. 63, 335–378 (1969).

    Google Scholar 

  • Loftus-Hills, J.J., Littlejohn, M.J., Hill, K.G.: Auditory sensitivity of the crickets Teleogryllus commodus and T. oceanicus. Nature (Lond.) New Biol. 223, 184–185 (1971).

    Google Scholar 

  • Lichtenberg, R.: Acoustic response of the B cell in noctuid moths. J. Insect Physiol. 17, 2395–2408 (1971).

    Google Scholar 

  • Legendre, R.: L’audition et l’émission de sons chez les Aranéides. Ann. Biol. 2, 371–390 (1963).

    Google Scholar 

  • Mason, J.B.: The tympanal organ of Acridomorpha (Orthoptera). EOS, Rev. Españ. Ent. 44, 267–355 (1969).

    Google Scholar 

  • Mckay, J.M.: The auditory system of Homorocoryphus (Tettigonioidea, Orthoptera). J. exp. Biol. 51, 787–802 (1969).

    Google Scholar 

  • Mckay, J.M.: Central control of an insect sensory interneuron. J. exp. Biol. 53, 137–145 (1970).

    PubMed  CAS  Google Scholar 

  • Michelsen, A.: Pitch discrimination in the locust ear: observations on single sense cells. J. Insect Physiol. 12, 1119–1131 (1966).

    PubMed  CAS  Google Scholar 

  • Michelsen, A.: Frequency discrimination in the locust ear by means of four groups of receptor cells. Nature (Lond.) 220, 585–586 (1968).

    CAS  Google Scholar 

  • Michelsen, A.: The physiology of the locust ear. I. Frequency sensitivity of single cells in the isolated ear. Z. vergl. Physiol. 71, 49–62 (1971a).

    Google Scholar 

  • Michelsen, A.: The physiology of the locust ear. II. Frequency discrimination based upon resonances in the tympanum. Z. vergl. Physiol. 71, 63–101 (1971b).

    Google Scholar 

  • Michelsen, A.: The physiology of the locust ear. III. Acoustical properties of the intact ear. Z. vergl. Physiol. 71, 102–128 (1971c).

    Google Scholar 

  • Michelsen, A.: The mechanics of the locust ear: an invertebrate frequency analyzer. In: Möller, A. (Ed.): Mechanisms in hearing. Academic Press 1973.

    Google Scholar 

  • Michelsen, A., Nocke, H.: Biophysical aspects of sound communication in insects. In: Treherne, J. E. (Ed.): Advances in insect physiology, Vol. 10. Academic Press 1974.

    Google Scholar 

  • Miller, L.A.: Structure of the green lacewing tympanal organ (Chrysopa carnea, Neuroptera). J. Morphol. 131, 359–382 (1970).

    Google Scholar 

  • Miller, L.A.: Physiological responses of green lacewings (Chrysopa, Neuroptera) to ultrasound. J. Insect Physiol. 17, 491–506 (1971).

    Google Scholar 

  • Miller, L.A.: The behavior of flying green lacewings (Chrysopa carnea, Neuroptera) in the presence of ultrasound. J. Insect Physiol. In Press.

    Google Scholar 

  • Murphey, R.K., Zaretsky, M.D.: Orientation to calling song by female crickets, Scapsipedus marginatus (Gryllidae). J. exp. Biol. 56, 335–352 (1972).

    PubMed  CAS  Google Scholar 

  • Murray, M.J.: Fibre groups in the auditory nerve of the locust. Nature (Lond.) 218, 95–96 (1968).

    CAS  Google Scholar 

  • Nocke, H.: Voruntersuchung zur Funktion des Hörorganes der Feldgrille (Gryllus campestris L.). Diplomarbeit, University of Köln 1970.

    Google Scholar 

  • Nooke, H.: Biophysik der Schallerzeugung durch die Vorderflügel der Grillen. Z. vergl. Physiol. 74, 272–314 (1971).

    Google Scholar 

  • Payne, R. S., Roeder, K.D., Wallman, J.: Directional sensitivity of the ears of noctuid moths. J. exp. Biol. 44, 17–31 (1966).

    PubMed  CAS  Google Scholar 

  • Popov, A.V.: Electrophysiological studies on peripheral auditory neurons in the locust. J. evol. Biochem. Physiol, (in Russian) 1, 239–250 (1965).

    Google Scholar 

  • Popov, A.V.: Synaptic transmission at the level of the first synapses of the auditory system in Locusta migratoria. In: Kreps, E.M. (Ed.): Evolutionary neurophysiology and neurochemistry (in Russian), pp. 54–67. Leningrad: Nauka 1967a.

    Google Scholar 

  • Popov, A.V.: Electrophysiological study of the functional properties of peripheral and central neurons in the auditory system of the locust, pp. 1–231. Dissertation (in Russian). Leningrad (1967b).

    Google Scholar 

  • Popov, A.V.: Comparative analysis of sound signals and some priciples of auditory system organization in cicadas and Orthoptera. In: Modern problems of structure and function of the nervous system of insects (in Russian), 182–221. Leningrad: Nauka 1969.

    Google Scholar 

  • Popov, A.V.: Synaptic transformation in the auditory system of insects. In: Sensory processes at the neuronal and behavioural level, pp. 301–320. New York: Academic Press 1971.

    Google Scholar 

  • Popov, A.V., Svetlogorskaya, I.D.: Ultrastructural organization of the auditory nerve in the locust Locusta migratoria (on the problem of interaction between the receptors). J. Evol. Biochem. Physiol, (in Russian) 7, 516–521 (1971).

    Google Scholar 

  • Pringle, J.W.S.: A physiological analysis of cicada song. J. exp. Biol. 31, 525–560 (1954).

    Google Scholar 

  • Rheinlaender, J., Kalmring, K., Römer, H.: Akustische Neuronen mit T-Struktur im Bauchmark von Tettigoniiden. Z. vergl. Physiol. 77, 208–224 (1972).

    Google Scholar 

  • Risler, H.: Das Gehörorgan der Männchen von Culex pipiens L., Aedes aegypti L. und Anopheles stephensi Liston, eine vergleichend morphologische Untersuchung. Zool. Jahrb., Abt. Anat. u. Ontog. Tiere 74, 478–490 (1955).

    Google Scholar 

  • Risler, H., Schmidt, K.: Der Feinbau der Scolopidien im Johnstonschen Organ von Aedes aegypti L.Z. Naturforsch. 22 b, 759–762 (1967).

    CAS  Google Scholar 

  • Roeder, K.D.: Organization of the ascending giant fiber system in the cockroach (Periplaneta americana L.). J. exp. Zool. 108, 243–262 (1948).

    PubMed  CAS  Google Scholar 

  • Roeder, K.D.: The behaviour of free flying moths in the presence of artificial ultrasonic pulses. Anim. Behav. 10, 300–304 (1962).

    Google Scholar 

  • Roeder, K.D.: Acoustic sensitivity of the noctuid tympanic organ and its range for the cries of bats. J. Insect Physiol. 12, 843–859 (1966a).

    PubMed  CAS  Google Scholar 

  • Roeder, K.D.: Interneurons in the thoracic nerve cord activated by tympanic nerve fibers in noctuid moths. J. Insect Physiol. 12, 1227–1244 (1966b).

    PubMed  CAS  Google Scholar 

  • Roeder, K.D.: Auditory system of noctuid moths. Science 154, 1515–1521 (1966c).

    PubMed  CAS  Google Scholar 

  • Roeder, K.D.: Nerve cells and insect behaviour. 2nd Ed., 238 pp. Cambridge: Harvard University Press 1967 a.

    Google Scholar 

  • Roeder, K.D.: Turning tendency of moths exposed to ultrasound while in stationary flight. J. Insect Physiol. 13, 873–888 (1967b).

    Google Scholar 

  • Roeder, K.D.: Acoustic interneurons in the brain of noctuid moths. J. Insect Physiol. 15, 825–838 (1969a).

    PubMed  CAS  Google Scholar 

  • Roeder, K.D.: Brain interneurons in noctuid moths: differential suppression by high sound intensities. J. Insect Physiol. 15, 1713–1718 (1969b).

    PubMed  CAS  Google Scholar 

  • Roeder, K.D.: Episodes in insect brains. Amer. Sci. 58, 378–389 (1970).

    PubMed  CAS  Google Scholar 

  • Roeder, K.D., Treat, A.E.: An acoustic sense in some hawkmoths (Choerocampinae). J. Insect Physiol. 16, 1069–1086 (1970a).

    Google Scholar 

  • Roeder, K.D., Treat, A.E., Berg, J.S.V.: Distal lobe of the pilifer: an ultrasonic receptor in Choerocampine hawkmoths. Science 170, 1098–1099 (1970b).

    PubMed  CAS  Google Scholar 

  • Roth, L.M.: A study of mosquito behavior. An experimental laboratory study of the sexual behavior of Aedes aegypti (Linnaeus). Am. Midland Naturalist 40, 265–352 (1948).

    Google Scholar 

  • Rovner, J.S.: Acoustic communication in a lycosid spider (Lycosa rabida Walchenaer). Anim. Behav. 15, 273–281 (1967).

    PubMed  CAS  Google Scholar 

  • Rowell, C.H.F., McKay, J.M.: An acridid auditory interneurone. I. Functional connexions and response to single sounds. J. exp. Biol. 51, 231–245 (1969).

    Google Scholar 

  • Schwabe, J.: Beiträge zur Morphologie und Histologie der tympanalen Sinnesapparate der Orthopteren. Zoologica (Stuttg.) 50, 1–154 (1908).

    Google Scholar 

  • Schwartzkopff, J.: Mechanoreception. In: Physiology of Insecta 1, pp. 509–561. New York: Academic Press 1964.

    Google Scholar 

  • Simmons, J.A., Wever, E.G., Pylka, J.M.: Periodical cicada: sound production and hearing. Science 171, 212–213 (1971).

    PubMed  CAS  Google Scholar 

  • Stout, J. F., Huber, F.: Responses of central auditory neurons of female crickets (Gryllus campestris L.) to the calling song of the male. Z. vergl. Physiol. 76, 302–313 (1972).

    Google Scholar 

  • Suga, N.: Peripheral mechanism of hearing in locust. Jap. J. Physiol. 10, 533–546 (1960).

    Google Scholar 

  • Suga, N.: Central mechanism of hearing and sound localization in insects. J. Insect Physiol. 9, 867–873 (1963).

    Google Scholar 

  • Suga, N., Katsuki, Y.: Central mechanism of hearing in insects. J. exp. Biol. 38, 545–558 (1961).

    Google Scholar 

  • Swihart, S.L.: Hearing in butterflies (Nymphalidae: Heliconius, Ageronia). J. Insect Physiol. 13, 469–476 (1967).

    Google Scholar 

  • Thurm, U.: Untersuchungen zur funktionellen Organisation sensorischer Zellverbände. Verh. dtsch. Zool. Ges. 64, 79–88 (1970).

    Google Scholar 

  • Tischner, H.: Über den Gehörsinn von Stechmücken. Acoustica 3, 335–343 (1953).

    Google Scholar 

  • Treat, A.E.: The response to sound in certain Lepidoptera. Ann. ent. Soc. Am. 48, 272–284 (1955).

    Google Scholar 

  • Uga, S., Kuwabara, M.: On the fine structure of the chordotonal sensillum in antenna of Drosophila melanogaster. J. Electr. Microsc. 14, 173–181 (1965).

    Google Scholar 

  • Uhrig, D.: Untersuchungen zum Lautschema des Weibchens von Chorthippus biguttulus (Orthoptera, Acrididae). Inaug. Diss. Univ. München (1970).

    Google Scholar 

  • Vogel, R.: Über ein tympanales Sinnesorgan, das mutmaßliche Hörorgan der Singzikaden. Z. Anat. Entw. Gesch. 67, 190–231 (1923).

    Google Scholar 

  • Walcott, C., van der Kloot, W.G.: The physiology of the spider vibration receptor. J. exp. Zool. 141, 191–244 (1959).

    Google Scholar 

  • Walker, T.J., Jr.: Specificity in the response of female tree crickets (Orthoptera, Gryllidae, Oecanthinae) to calling songs of the males. Ann. Entomol. Soc. Am. 50, 626–636 (1957).

    Google Scholar 

  • Wishart, G., Riordan, D.F.: Flight responses to various sounds by adult males of Aedes aegypti (L.). Can. Entomol. 91, 181 (1959).

    Google Scholar 

  • Yanagisawa, K., Hashimoto, T., Katsuki, Y.: Frequency discrimination in the central nerve cords of locusts. J. Insect Physiol. 13, 635–643 (1967).

    Google Scholar 

  • Zaretsky, M.D.: Patterned response to song in cricket central auditory neurone. Nature (Lond.) 229, 195–196 (1971).

    CAS  Google Scholar 

  • Zhantiev, R.D.: The ultrastructure of mechanoreceptor sensilla in insects. J. gen. Biol, (in Russian) 30, 224–231 (1969).

    Google Scholar 

  • Zhantiev, R.D.: Frequency characteristics of tympanal organs in grasshoppers (Orthoptera, Tettigoniidae). Zool. J. (in Russian) 50, 507–514 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Michelsen, A. (1974). Hearing in Invertebrates. In: Keidel, W.D., Neff, W.D. (eds) Auditory System. Handbook of Sensory Physiology, vol 5 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65829-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65829-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65831-0

  • Online ISBN: 978-3-642-65829-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics