Comparative Effects of Increased Intracranial Pressure upon Cerebral Oxygenation, Cortical Evoked Potential, and Brain Survival

  • B. H. Clague
  • R. J. Lorig
  • M. H. Weiss
  • J. S. Brodkey
  • F. E. Nulsen

Abstract

The pathophysiology of increased intracranial pressure most often involves some form of cerebral hypoxia. Since the clinical value of monitoring intracranial pressure in neurosurgical patients is well established (12), we felt it important to correlate electrophysiologic evidence of cerebral dysfunction with the effect of increased intracranial pressure on both the cerebral perfusion pressure (CPP) and the venous oxygen saturation (VO2S).

Keywords

Catheter Dioxide Lactate Pyruvate Neurol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amassian, V. E., and Weiner, H.: “The effect of (+) -tubocurarine chloride and of acute hypotension on electrocortical activity of the cat.” J. Physiol. 184:1–15 (1966).PubMedGoogle Scholar
  2. 2.
    Baldy-Moulinier, M., and Frerebeau, P. H.: “Blood flow of the cerebral cortex in intracranial hypertension.” Scand. J. Clin. Lab. Invest. Suppl. 102:V:6 (1968).Google Scholar
  3. 3.
    Freeman, J., and Ingvar, D. H.: “Elimination by hypoxia of the cerebral blood flow autoregulation and EEG relationship.” Exp. Brain Res. 5:61–71 (1968).PubMedCrossRefGoogle Scholar
  4. 4.
    Gleichmann, U., Inguar, D. G., Lassen, N. A., Lubbers, D. W., Siesjö, B. K., and Thews, G.: “Regional cerebral cortical metabolic rate of oxygen and carbon dioxide related to the EEG in the anesthetized dog.” Acta Physiol. Scand. 55:82–94 (1962).PubMedCrossRefGoogle Scholar
  5. 5.
    Gurdjian, E. S., Stone, W. E., and Webster, J. E.: “Cerebral metabolism in hypoxia.” AMA Arch. Neurol Psych. 51:471–472 (1944).Google Scholar
  6. 6.
    Häggendal, E., Löfgren, J., Nilsson, N. J., and Zwetnow, N.: “Die Gehirndurchblurung bei experimentellen Liguordrück Anderungen.” Verhandl. Intern. Neurochirorgen. Kongress, Bad. Bürkheim (1966).Google Scholar
  7. 7.
    Hossmann, K. A., and Sato, K.: “Effect of ischemia on the function of the sensorimotor cortex of the cat.” Electroenceph. Clin. Neurophysiol. 30:535–543 (1971).PubMedCrossRefGoogle Scholar
  8. 8.
    Kety, S. A., Shenkin, H. A., and Schmitt, C. F.: “The effect of increased intracranial pressure on cerebral circulatory functions in man.” J. Clin. Invest. 27:493–499 (1948).CrossRefGoogle Scholar
  9. 9.
    Kjällquist, A., Siesjö, B. K., and Zwetnow, N.: “Effects of increased intracranial pressure on cerebral blood flow and on cerebral venous PO2, PCO2, pH, lactate, and pyruvate in dogs.” Actaphysiol. Scand. 75:267–275 (1969).CrossRefGoogle Scholar
  10. 10.
    Langfitt, T. W., Kassell, N. F., and Wainstein, J. D.: “Cerebral blood flow with intracranial hypertension.” Neurology (Minn.) 15:761–773 (1965).Google Scholar
  11. 11.
    Lowell, A. M., and Bloor, B. M.: “The effects of increased intracranial pressure on cerebrovascular dynamics.” J. Neurosurg. 34:760–769 (1971).PubMedCrossRefGoogle Scholar
  12. 12.
    Lundberg, N.: “Continuous recording of ventricular fluid pressure.” Acta Psychiat. Scand. (Suppl. 149) 36 (1960).Google Scholar
  13. 13.
    Miller, J. D., Stanek, A., and Langfitt, T. W.: “Concepts of cerebral perfusion pressure and vascular compression during intracranial hypertension.” Progr. Brain Res. 35:411–432 1972).CrossRefGoogle Scholar
  14. 14.
    Nicholson, A. N., MacNamara, W. D., and Borland, R. G.: “Responsiveness of the cortex and visual pathway during transienthypotension.” Electroenceph. Clin. Neurophysiol. 25:330–337 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • B. H. Clague
  • R. J. Lorig
  • M. H. Weiss
  • J. S. Brodkey
  • F. E. Nulsen

There are no affiliations available

Personalised recommendations