Fluorinated Pyrimidines and Their Nucleosides

  • Charles Heidelberger
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 38 / 2)


Since their introduction (Heidelberger et al., 1957), the fluorinated pyrimidines and their nucleosides have been widely used as biochemical tools for the elucidation of a number of problems encountered in cell biology and molecular biology. Of more practical importance, however, has been their extensive use as drugs for the palliative treatment of patients suffering from disseminated cancer. One of the compounds is now clinically useful in the curative treatment of herpes simplex viral infections of the eye. Although these compounds have generated an enormous literature, this chapter will deal primarily with a review of the major pharmacological and biochemical effects of these compounds; the coverage of the literature, by necessity, will focus only on key references that are germane to the topics being described. Several reviews of this topic have appeared elsewhere (Heidelberger and Ansfield, 1963; Heidelberger, 1965, 1966, 1967, 1969, 1970, 1973; Mandel, 1969; Carter, 1970).


Coat Protein Tobacco Mosaic Virus Ribonucleic Acid Catabolite Repression Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andoh, T., Chargaff, E.: Formation and fate of abnormal ribosomes of E. coli cells treated with 5-fluorouracil. Proc. nat. Acad. Sci. (Wash.) 54, 1181–1189 (1965).Google Scholar
  2. Ansfield, F. J., Ramirez, G.: Phase I and II studies of 2’-deoxy-5-(trifluoromethyl)uridine. Cancer Chemother. Rep. 55, 205–208 (1971).Google Scholar
  3. Ansfield, F. J., Ramirez, G., Davis, H. L., Jr., Korbitz, B. C., Vermtod, H., Gollin, F. F.: Treatment of advanced cancer of the head and neck. Cancer 25, 78–82 (1970).PubMedGoogle Scholar
  4. Ansfield, F. J., Ramirez, G., Korbitz, B. C., Davis, H. L., JR.: Five-drug therapy for advanced breast cancer. A phase I study. Cancer Chemother. Rep. 55, 183–187 (1971a).Google Scholar
  5. Ansfield, F. J., Ramirez, G., Mackman, S., Bryan, G.T., Curreri, A. R.: A ten year study of 5-fluorouracil in disseminated breast cancer with clinical results and survival times. Cancer Res. 29, 1062–1066 (1969).PubMedGoogle Scholar
  6. Ansfield, F. J., Ramirez, G., Skibba, J. L., Bryan, G.T., Davis, H. L., Wirtanen, G. W.: Intrahepatic arterial infusion with 5-fluorouracil. Cancer, 28, 1147–1151 (1971b).PubMedGoogle Scholar
  7. Aronson, A. I.: The inhibition of bacteriophage protein synthesis by 5-fluorouracil. Biochim. biophys. Acta (Amst.) 49, 89–97 (1961a).Google Scholar
  8. Aronson, A. I.: The effect of 5-fluorouracil on bacterial protein and ribonucleic acid synthesis. Biochim. biophys. Acta (Amst.) 49, 98–107 (1961b).Google Scholar
  9. Baliga, B.S., Hender, S., Srinivasan, P. R.: Incorporation of 5-fluorouracil into the transfer RNA of Escherichia coli K22N6 and its effect on the methylation of uracil. Biochim. biophys. Acta (Amst.) 186, 25–32 (1969).Google Scholar
  10. Bateman, J.R., Pugh, R. P., Cassidy, F. R., Marshall, G. J., Irwin, L. E.: 5-Fluorouracil Given Once Weekly: comparison of intravenous and oral administration. Cancer 28, 907– 913 (1971).Google Scholar
  11. Bertani, L. E.: Lysogenic conversion by bacteriophage P2 resulting in an increased sensitivity of Escherichia coli to 5-fluorodeoxyuridine. Biochim. biophys. Acta (Amst.) 87, 631–640 (1964).Google Scholar
  12. Bhuyan, B.K., Scheldt, L.G., Fraser, T. J.: Cell cycle phase specificity of antitumor agents. Cancer Res. 32, 398–407 (1972).PubMedGoogle Scholar
  13. Birnie, G. D., Kroeger, H., Heidelberger, C.: Studies on fluorinated pyrimidines. XVIII. The degradation of 5-fluoro-2’-deoxyuridine and related compounds by nucleoside phos- phorylase. Biochemistry 2, 566–572 (1963).PubMedGoogle Scholar
  14. Blomgren, S. E., Wolberg, W. H., Kisken, W. A.: The effect of fluoropyrimidines on delayed cutaneous hypersensitivity. Cancer Res. 25, 977–979 (1965).PubMedGoogle Scholar
  15. Bosch, L., Harbers, E., Heidelberger, C.: Studies on fluorinated pyrimidines. V. Effects on nucleic acid metabolism in vitro. Cancer Res. 18, 335–343 (1958).PubMedGoogle Scholar
  16. Bresnick, E., Williams, S. S.: Effects of 5-trifluoromethyldeoxyuridine upon deoxythymidine kinase. Biochem. Pharmacol. 16, 503–507 (1967).PubMedGoogle Scholar
  17. Brockman, R. W., Davis, J. M., Stutts, P.: Metabolism of uracil and 5-fluorouracil by drug- sensitive and by drug-resistant bacteria. Biochim. biophys. Acta (Amst.) 40, 22–32 (1960).Google Scholar
  18. Bruce, W. R., Meeker, B.E.: Comparison of the sensitivity of hematopoietic colony-forming cells in different proliferative states to 5-fluorouracil. J. nat. Cancer Inst. 38, 401–405 (1967).PubMedGoogle Scholar
  19. Bruce, W. R., Valeriote, F. A.: Normal and malignant stem cells and chemotherapy. In: 21st Symposium on Fundamental Cancer Research. M.D.Anderson Hospital, Houston, Texas, pp. 435–464, 1968.Google Scholar
  20. Buděšínský, Z., Jelinek, U., Přikryl, J.: 5-Halogenpyrimidine. I. Darstellung von 4-hy- droxy-5-halogenpyrimidinen. Coll. Czech. Chem. Commun. 11, 2550–2557 (1962).Google Scholar
  21. Bujard, H., Heidelberger, C.: Fluorinated pyrimidines. XXVII. Attempts to determine transcription errors during the formation of fluorouracil-containing messenger ribonucleic acid. Biochemistry 5, 3339–3345 (1966).PubMedGoogle Scholar
  22. Burchenal, J. H., Adams, H. H., Newell, N. S., Fox, J. J.: Comparative activity of 1-β-D- arabinofuranosyl-5-fluorocytosine and related compounds against transplanted mouse leukemias in vitro and in vitro. Cancer Res. 26, 370–373 (1966).PubMedGoogle Scholar
  23. Burchenal, J.H., Holmberg, E. A. D., Fox, J. J., Hemphill, S.C., Reppert, J. A.: The effects of 5-fluorodeoxycytidine, 5-fluorodeoxyuridine and related compounds on transplanted mouse leukemias. Cancer Res. 19, 494–500 (1959).PubMedGoogle Scholar
  24. Bussard, A., Naono, S., Gros, F., Monod, J.: Effects d’un analogue de l’uracile sur les propriétés d’une protéine enzymatique synthetisée en sa presence. C. R. Acad. Sci. (Paris) 250, 4049–4051 (1960).Google Scholar
  25. Carter, S. K., Ed.: Proceedings of the conference on the chemotherapy of solid tumors; appraisal of 5-fluorouracil and BCNU. Cancer Evaluation Branch, National Cancer Institute 1970.Google Scholar
  26. Chadwick, M., Rogers, W.L.: The distribution of 5-fluoro-2’-deoxyuridine-5’-monophosphate in mice after 5-fluorouracil administration. Proc. Amer. Ass. Cancer Res. 11, 15 (1970).Google Scholar
  27. Champe, S. P., Benzer, S.: Reversal of mutant phenotypes by 5-fluorouracil: an approach to nucleotide sequences in messenger-RNA. Proc. nat. Acad. Sci. (Wash.) 48, 532–546 (1962).Google Scholar
  28. Chandross, R., Rich, A.: The crystal structure of the 2:1 intramolecular complex containing l-methyl-5-fluorouracil and 9-ethyl-2, 6-diaminopurine. Biopolymers 10, 1795–1807 (1971).Google Scholar
  29. Chaube, S., Murphy, M. L.: The teratogenic effects of the recent drugs active in cancer chemotherapy. Advan. Teratol. 3, 181–237 (1968).Google Scholar
  30. Chaudhuri, N. K., Montag, B. J., Heidelberger, C.: Studies on fluorinated pyrimidines. III. The metabolism of 5-fluorouracil-2-14C and 5-fluoroorotic acid-2-14C in vitro. Cancer Res. 18, 318–328 (1958).PubMedGoogle Scholar
  31. Chaudhuri, N. K., Mukherjee, K. L., Heidelberger, C.: Studies on fluorinated pyrimidines VII. The degradative pathway. Biochem. Pharmacol. 1, 328–341 (1959).Google Scholar
  32. Čihák, A., Wilkinson, D., Pitot, H. C.: The effect of pyrimidine analogues and tryptophan on enzyme synthesis and degradation in rat liver. Adv. Enzyme Regulation 9, 267–289 (1971).Google Scholar
  33. Clarkson, B., O’Connor, A., Winston, L., Hutchison, D.).: The physiologic disposition of 5-fluorouracil and 5-fluoro-β-deoxyuridine in man. Clin. Pharmacol. Ther. 5, 581–610 (1964).Google Scholar
  34. Cohen, J.L., Krant, M.J., Shnider, B. I., Matias, P. I., Horton, J., Baxter, D.: Radiation plus 5-fluorouracil (NSC-19893): clinical demonstration of an additive effect in bronchogenic carcinoma. Cancer Chemother. Rep. 55, 253–258 (1971).Google Scholar
  35. Cohen, S. S., Flaks, J. G., Barner, H. D., Loeb, M. R., Lichtenstein, J.: The mode of action of 5-fluorouracil and its derivatives. Proc. nat. Acad. Sci. (Wash.) 44, 1004–1012 (1958).Google Scholar
  36. Cooper, G. M., Dunning, W. F., Greer, S.: Role of catabolism in pyrimidine utilization for nucleic acid synthesis in vitro. Cancer Res. 32, 390–397 (1972).PubMedGoogle Scholar
  37. Cooper, P. D.: The mutation of poliovirus by 5-fluorouracil. Virology 22, 186–192 (1964).PubMedGoogle Scholar
  38. Curreri, A. R., Ansfield, F. J., Mciver, F. A., Waisman, H. A., Heidelberger, C.: Clinical studies with 5-fluorouracil. Cancer Res. 18, 478–484 (1958).PubMedGoogle Scholar
  39. Cushley, R., Wempen, I., Fox, J. J.: Nucleosides. XLIV. Long-range protein-fluorine spin- spin coupling in 5-fluoropyrimidine nucleosides. J. Amer. ehem. Soc. 90, 709–715 (1968).Google Scholar
  40. Danneberg, P. B., Montag, B. J., Heidelberger, C.: Studies on fluorinated pyrimidines. IV. Effects on nucleic acid metabolism in vitro. Cancer Res. 18, 329–334 (1958).PubMedGoogle Scholar
  41. Davern, C. I.: The inhibition and mutagenesis of an RNA bacteriophage by 5-fluorouracil. Austral. J. biol. Sci. 17, 726–737 (1964).Google Scholar
  42. De Kloet, S. R.: Effects of 5-fluorouracil and 6-azauracil on the synthesis of ribonucleic acid and protein in Saccharomyces carlsbergensis. Biochem. J. 106, 167–178 (1968).PubMedGoogle Scholar
  43. De Kloet, S. R., Strijkert, P. J.: Selective inhibition of ribosomal RNA synthesis in Saccharomyces carlsbergensis by 5-fluorouracil. Biochem. biophys. Res. Commun. 23, 49–55 (1966).Google Scholar
  44. De Repentigny, J., Sonea, S., Frappier, A.: Differentiation by immunodiffusion and by quantitative immunofluorescence between 5-fluorouracil-treated and normal cells from a toxinogenic Staphylococcus aureus strain. J. Bact. 88, 444–448 (1964).Google Scholar
  45. Dexter, D. L., Heidelberger, C.: Effect of trifluorothymidine on transcription of vaccinia virus mRNA. Molec. Pharmacol. 9, 283–296 (1973).Google Scholar
  46. Dexter, D.L., Wolberg, W. H., Ansfield, F. J., Helson, L., Heidelberger, C.: The clinical pharmacology of 5-trifluoromethyl-2’-deoxyuridine. Cancer Res. 32, 247–253 (1972).PubMedGoogle Scholar
  47. Dipple, A., Heidelberger, C.: Fluorinated pyrimidines. XXVIII. The synthesis of 5-trifluoro- methyl-6-azauracil and5-trifluoromethyl-6-aza-2’-deoxyuridine. J. med. Chem. 9, 715–718 (1966).Fluorinated Pyrimidines and Their NucleosidesGoogle Scholar
  48. Duschinsk Y, R., Gabriel, T., Tatjtz, W., Nttssbatjm, A., Hoffer, M., Grtjnberg, E., Bur- Chenal, J. H., Fox, J. J.: Nucleosides. XXXVII. 5, 6-Substituted 5-fluorodihydropyrimi- dines and their 2’-deoxyribonucleosides. J. med. Chem. 10, 47–58 (1967).Google Scholar
  49. Duschinsky, R., Pleven, E., Heidelberger, C.: The synthesis of 5-fluoropyrimidines. J. Amer. chem. Soc. 79, 4559–4560 (1957).Google Scholar
  50. Erlanger, M., Martz, G., Ott, F., Storck, H., Rieder, J., Kessler, S.: Cutaneous absorption and urinary excretion of 6-14C-5-fluorouracil applied in an ointment to healthy and diseased skin. Dermatologica (Napol.) 140, 7–14 (1970).Google Scholar
  51. Everson, R., Kessel, D., Hall, T. C.: Enzymatic determinants of responsiveness of the LPC-1 plasma cell neoplasm to fluorouracil and fluorodeoxyuridine. Biochem. Pharmacol. 19, 2932–2934 (1970).PubMedGoogle Scholar
  52. Fikus, M., Wierzchowski, K. L., Shugar, D.: Reversible photochemical transformation of 5-fluorouracil analogues and poly-5-fluorouridylic acid. Biochem. biophys. Res. Commun. 16, 478–483 (1964).Google Scholar
  53. Fox, J.J., Miller, N., Wempen, I.: Nucleosides. XXIX. l-β-D-Arabinofuranosyl-5-fluorocyto- sine (FCA) and related arabinonucleosides. J. med. Chem. 9, 101–105 (1966).PubMedGoogle Scholar
  54. Fridland, A., Langenbach, R. J., Heidelberger, C.: Purification of thymidylate synthetase from Ehrlich ascites carcinoma cells. J. biol. Chem. 246, 7110–7114 (1971).PubMedGoogle Scholar
  55. Fujiwara, Y., Heidelberger, C.: Fluorinated pyrimidines. XXXVIII. The incorporation of 5-trifluoromethyl-2’-deoxyuridine into the deoxyribonucleic acid of vaccinia virus. Molec. Pharmacol. 6, 281–291 (1970).Google Scholar
  56. Fujiwara, Y., Oki, T., Heidelberger, C.: Fluorinated pyrimidines. XXXVII. Effects of 5- trifluoromethy 1 -2 ’- deoxyuridine on the synthesis of deoxyribonucleic acid of mammalian cells in culture. Molec. Pharmacol. 6, 273–280 (1970).Google Scholar
  57. Garen, A., Siddiqi, O.: Suppression of mutations in the alkaline phosphatase structural cistron of E. coli. Proc. nat. Acad. Sci. (Wash.) 48, 1121–1127 (1962).Google Scholar
  58. Giege, R., Weil, J-H.: Étude des tRNA de levure avant incorporé du 5-fluorouracile provenant de la desamination in vitro de la 5-fluorocytosine. Bull. Soc. chim. Biol. 52, 135–144 (1970).PubMedGoogle Scholar
  59. Goldberg, N.D., Dahl, J.L., Parks, R.E., JR.: pH Dependence of the reactions with the 5-fluorouracil and 6-azauracil analogues of uridine diphosphate glucose. J. biol. Chem. 238, 3109–3114 (1963).PubMedGoogle Scholar
  60. Goodman, F.: Nucleic acid metabolism and bacteriophage multiplication: effects of 5-fluorouracil on coliphage synthesis. Virology 21, 249–257 (1963).PubMedGoogle Scholar
  61. Gordon, M. P., Staehelin, M.: Studies on the incorporation of 5-fluorouracil into a virus nucleic acid. Biochim. biophys. Acta (Amst.) 36, 351–361 (1959).Google Scholar
  62. Gotto, A.M., Belkhode, M.L., Totjster, 0.: Stimulatory effects of inosine and deoxyinosine on the incorporation of uracil-2-14C, 5-fluorouracil-2-14C, and 5-bromouracil-2-14C into nucleic acids by Ehrlich ascites tumor cells in vitro. Cancer Res. 29, 807–811 (1969).PubMedGoogle Scholar
  63. Gottschling, H., Heidelberger, C.: Fluorinated pyrimidines. XIX. Some biological effects of 5-trifluoromethyl-2’-deoxyuridine on Escherichia coli and bacteriophage T4B. J. mol. Biol. 7, 541–560 (1963).PubMedGoogle Scholar
  64. Goz, B., Prttsoff, W.H.: Pharmacology of viruses. Ann. Rev. Pharmacol. 10, 143–170 (1970).PubMedGoogle Scholar
  65. Gros, F., Gilbert, W., Hiatt, H.H., Attardi, G., Spahr, P.F., Watson, J.D.: Molecular and biological characterization of messenger RNA. Cold Spr. Harb. Symp. quant. Biol. 26, 111–126 (1961).Google Scholar
  66. Gros, F., Naono, S.: Bacterial synthesis of “modified” enzymes in the presence of a pyrimidine analog. In: Harris, R.J.C. (Ed.): Protein biosynthesis, pp. 195–205. London: Academic Press 1961.Google Scholar
  67. Gritnberg-Manago, M., Miohelson, A.M.: Polynucleotide analogues. IV. Polyfluorouridylic and copolymers containing fluorouridylic acid. Biochim. biophys. Acta (Amst.) 87, 593– 600 (1964).Google Scholar
  68. Harbers, E., Chaudhtjri, N.K., Heidelberger, C.: Studies on fluorinated pyrimidines. VIII. Further biochemical and metabolic investigations. J. biol. Chem. 234, 1255–1262 (1959).PubMedGoogle Scholar
  69. Harris, D.R., Macintyre, W.M.: The crystal and molecular structure of 5-fluoro-2’-deoxy- 0-uridine. Biophys. J. 4, 203–225 (1964).PubMedGoogle Scholar
  70. Hartmann, K-U. Heidelberger, C.: Studies on fluorinated pyrimidines. VIII. Inhibition of thymidylate synthetase. J. biol. Chem. 236, 3006–3013 (1961).PubMedGoogle Scholar
  71. Heidelberger, C.: Fluorinated pyrimidines. Progr. nucleic Acid Res. molec. Biol. 4, 1–50 (1965).Google Scholar
  72. Heidelberger, C.: Fluorinated pyrimidines, biochemically and clinically useful antimetabolites. In: Molekulare Biologie des malignen Wachstums, pp. 155–176. Berlin-Heidelberg- New York: Springer 1966.Google Scholar
  73. Heidelberger, C.: Cancer chemotherapy with purine and pyrimidine analogues. Ann. Rev. Pharmacol. 7, 101–124 (1967).PubMedGoogle Scholar
  74. Heidelberger, C.: The need for additional alkylating agents and antimetabolites. Cancer Res. 29, 2435–2442 (1969).PubMedGoogle Scholar
  75. Heidelbebger, C.: Chemical carcinogenesis, chemotherapy: cancer’s continuing core challenges, G.H.A. Clowes Memorial Lecture. Cancer Res. 30, 1549–1569 (1970).Google Scholar
  76. Heidelberger, C.: Pyrimidine and pyrimidine nucleoside antimetabolites. In: Frei, E. III, Holland, J. F. (Eds.): Cancer medicine, pp. 768–791. Philadelphia: Lea and Febiger 1973.Google Scholar
  77. Heidelberger, C., Anderson, S.W.: Fluorinated pyrimidines. XXI. The tumor-inhibitory activity of 5-trifluoromethyl-2’-deoxyuridine. Cancer Res. 24, 1979–1985 (1964).PubMedGoogle Scholar
  78. Heidelberger, C., Ansbteld, F. J.: Experimental and clinical use of fluorinated pyrimidines in cancer chemotherapy. Cancer Res. 23, 1226–1243 (1963).PubMedGoogle Scholar
  79. Heidelberger, C., Birnie, G.D., Boohar, J., Wentland, D.: Fluorinated pyrimidines. XX. Inhibition of the nucleoside phosphorylase cleavage of 5-fluoro-2’-deoxyuridine by 5-tri- fluoromethyl-2’-deoxyuridine. Biochim. biophys. Acta (Amst.) 76, 315–318 (1963).Google Scholar
  80. Heidelberger, C., Boohar, J., Kampschroer, B.: Fluorinated pyrimidines. XXIV. in vitro metabolism of 5-trifluoromethyluracil-2-14C and 5-trifluoromethyl-2’-deoxyuridine-2-14C. Cancer Res. 25, 377–381 (1965).PubMedGoogle Scholar
  81. Heidelberger, C., Chaudhtjri, N. K., Danneberg, P., Mooren, D., Griesbach, L., Duschin- Sky, R., Schnitzer, R. J., Pleven, E., Scheiner, T.: Fluorinated pyrimidines, a new class of tumor-inhibitory compounds. Nature (Lond.) 179, 663–666 (1957).Google Scholar
  82. Heidelberger, C., Griesbach, L., Cruz, O., Schnitzer, R. J., Grunberg, E.G.: Fluorinated pyrimidines. VI. Effect of 5-fluorouridine and 5-fluoro-2’-deoxyuridine on transplanted tumors. Proc. Soc. exp. Biol. (N.Y.) 97, 470–475 (1958b).Google Scholar
  83. Heidelberger, C., Griesbach, L., Montag, B.J., Mooren, D., Cruz, 0., Schnitzer, R.J., Grunbergje.: Studies on fluorinated pyrimidines. II. Effects on transplanted tumors. Cancer Res. 18, 305–317 (1958a).PubMedGoogle Scholar
  84. Heidelberger, C., Kaldor, G., Mukherjee, K.L., Danneberg, P.B.: Studies on fluorinated pyrimidines. XI. in vitro studies on tumor resistance. Cancer Res. 20, 903–909 (1960a).Google Scholar
  85. Heidelberger, C., Leibman, K.C., Harbers, E., Bhargava, P.M.: The comparative utilization of uracil-2-14C by liver, intestinal mucosa and Flexner-Jobling carcinoma in the rat. Cancer Res. 17, 399–404 (1957).PubMedGoogle Scholar
  86. Heidelberger, C., Parsons, D.G., Remy, D.C.: Synthesis of 5-trifluoromethyluracil and 5- trifluoromethyl-2’-deoxyuridine. J. med. Chem. 7, 1–5 (1964).PubMedGoogle Scholar
  87. Heidelberger, C., Sunthankar, A.V., Griesbach, L., Randerson, S.: Fluorinated pyrimidines. XXII. Effects of simple nucleotides on transplanted tumors. Proc. Soc. exp. Biol. (N.Y.) 104, 127–129 (1960b).Google Scholar
  88. Helson, L., Yagoda, A., McCarthy, M., Murphy, M.L., Krakopp, I.H.: Clinical trials with 5-trifluoromethyl-2’-deoxyuridine (F3TDR). Proc. Amer. Assoc. Cancer Res. 11, 35 (1970).Google Scholar
  89. Hignett, R.C.: Interference of 5-fluorouracil in the biosynthesis of ribosomes in Staphylococcus aureus (strain Duncan). Biochim. biophys. Acta (Amst.) 114, 559–564 (1966).Google Scholar
  90. Hills, D.C., Horowitz, J.: Ribosome synthesis in E. coli treated with 5-fluorouracil. Biochemistry 5, 1625–1632 (1966).Google Scholar
  91. Hrpbess, A.R., Arnstein, H.R. V., Edmunds, M.E.: Thionucleotide formation in Escherichia coli transfer ribonucleic acid in the presence of 5-fluorouracil. FEBS Let. 16, 109–113 (1971).Google Scholar
  92. Hopper, M., Dtjsöhinsky, R., Fox, J. J., Yung, N.: Simple synthesis of pyrimidine-2’-deoxy- ribonucleosides. J. Amer. Chem. Soc. 81, 4112–4113 (1959).Google Scholar
  93. Horowitz, J., Chargapp, E.: Massive incorporation of 5-fluorouracil into a bacterial ribonucleic acid. Nature (Lond.) 184, 1213–1215 (1959).Google Scholar
  94. Horowitz, J., Kohlmeier, V.: Formation of active β-galactosidase by E. coli treated with 5-fluorouracil. Biochim. biophys. Acta (Amst.) 142, 208–218 (1967).Google Scholar
  95. Horowitz, J., Satjkkonen, J.J., Chargapp, E.: Effect of fluoropyrimidines on the synthesis of bacterial proteins and nucleic acids. J. biol. Chem. 235, 3266–3272 (1960).PubMedGoogle Scholar
  96. Houlabek, V.: The composition of tobacco mosaic virus protein after the incorporation of 5-fluorouracil into the virus. J. molec. Biol. 6, 164–166 (1963).Google Scholar
  97. Hsu, T.C.. Humphrey, R.M., Somers, C.E.: Responses of Chinese hamster and L cells to 2’-deoxy-5-fluorouridine and thymidine. J. nat. Cancer Inst. 32, 839–855 (1964).Google Scholar
  98. Huberman, E., Heidelberger, C.: The mutagenicity to mammalian cells of pyrimidine nucleoside analogs. Mutation Res. 14, 130–132 (1972).PubMedGoogle Scholar
  99. Iwabuchi, M., Okata, E., Kono, M., Osawa, S.: The effect of 5-fluorouracil on the ribosome formation in E. coli. Biochim. biophys. Acta (Amst.) 114, 83–94 (1966).Google Scholar
  100. Jacobs, E.M., Reeves, W. J., Wood, D.A., Rttgh, R., Braunwald, J., Bateman, J.R.: Treatment of cancer with weekly intravenous 5-fluorouracil. Cancer 27, 1302–1305 (1971).PubMedGoogle Scholar
  101. Johns, D.G., Sartorelli, A.C., Bertino, J.R., Iannotti, A.T., Booth, B.A., Welch, A.D.: Enzymatic hydroxylation of 5-fluoropyrimidines by aldehyde oxidase and xanthine oxidase. Biochem. Pharmacol. 15, 400–403 (1966).PubMedGoogle Scholar
  102. Johnson, J.L., Yamamoto, K.R., Weislogel, P. O., Horowitz, J.: Some properties of transfer ribonucleic acids from 5-fluorouracil-treated Escherichia coli. Biochemistry 8, 1901–1908 (1969).PubMedGoogle Scholar
  103. Kahan, F.M., Hurwitz, J.: The role of deoxyribonucleic acid in ribonucleic acid synthesis. J. biol. Chem. 287, 3778–3785 (1962).Google Scholar
  104. Kaiser, I.I.: Studies on 5-fluorouracil-containing ribonucleic acid. I. Separation and partial characterization of fluorouracil-containing transfer ribonucleic acids from Escherichia coli. Biochemistry 8, 231–238 (1969a).PubMedGoogle Scholar
  105. Kaiser, I.I.: Studies on 5-fluorouracil-containing RNA. II. Gross reduction of 4-thiouracil- containing TRNA from E. coli. Biochim. biophys. Acta (Amst.) 182, 449–453 (1969b).Google Scholar
  106. Kaiser, I.I.: Isolation of 5-fluorouracil-containing 5 S ribonucleic acid from Escherichia coli. Biochemistry 9, 569–573 (1970).PubMedGoogle Scholar
  107. Kaiser, I.I.: Structural properties of 5-fluorouracil-containing transfer ribonucleic acids from Escherichia coli. Biochemistry 10, 1540–1545 (1971a).PubMedGoogle Scholar
  108. Kaiser, I.I.: Reduced levels of 5, 6-dihydrouridine in fluorouracil-containing transfer RNA’s from Saccharomyces cerevisiae. FEBS Let. 17, 249–252 (1971b).Google Scholar
  109. Kaiser, I.I., Jacobson, M., Hedgcoth, C.: Studies on 5-fluorouracil-containing ribonucleic acid. III. Greatly reduced level of 5, 6-dihydrouridine in fluorouracil-containing transfer RNA from E. coli. J. biol. Chem. 244, 6707–6708 (1969).Google Scholar
  110. Kasbekar, D.K., Greenberg, D.M.: Studies on tumor resistance to 5-fluorouracil. Cancer Res. 28, 818–824 (1963).Google Scholar
  111. Kaufman, H.E.: in vitro studies with antiviral agents. Ann. N.Y. Acad. Sci. 180, 168–180 (1965).Google Scholar
  112. Kaufman, H.E., Heidelberger, C.: Therapeutic antiviral action of 5-trifluoromethyl-2’- deoxyuridine in herpes simplex keratitis. Science 145, 585–586 (1964).PubMedGoogle Scholar
  113. Kawai, S., Hanafusa, H.: The effects of reciprocal changes in temperature and the transformed state of cells infected with a Rous sarcoma virus mutant. Virology 46, 470–479 (1971).PubMedGoogle Scholar
  114. Kent, R. J., Heidelberger, C.: Fluorinated pyrimidines. XXXV. The metabolism of 2’, 3’- dehydro-5-fluoro-β-deoxyuridine in Ehrlich ascites cells. Biochem. Pharmacol. 19, 1095– 1104 (1970).Google Scholar
  115. Kent, R. J., Heidelberger, C.: Fluorinated pyrimidines. XL. The reduction of 5-fluorouridine- 5’-diphosphate by ribonucleotide reductase. Molec. Pharmacol. 8, 465–475 (1972).Google Scholar
  116. Kent, R. J., Khwaja, T.A., Heidelberger, C.: Fluorinated pyrimidines. XXXIV. Structure- activity studies on methylated 5-fluoro-β-deoxyuridine derivatives. J. med. Chem. 18, 70–73 (1970).Google Scholar
  117. Kessel, D., Bruns, R., Hall, T.C.: Determinants of responsiveness to 5-fluorouridine in trans-plantable murine leukemias. Molec. Pharmacol. 7, 117–121 (1971).Google Scholar
  118. Kessel, D., Hall, T.C.: Influence of ribose donors on the action of 5-fluorouracil. Cancer Res. 29, 1749–1754 (1969).PubMedGoogle Scholar
  119. Kessel, D., Hall, T.C., Reyes, P.: Metabolism of uracil and 5-fluorouracil in P388 murine leukemia cells. Molec. Pharmacol. 5, 481–486 (1969).Google Scholar
  120. Kessel, D., Wodinsky, I.: Thymidine kinase as a determinant of the response to 5-fluoro-2’- deoxyuridine in transplantable murine leukemias. Molec. Pharmacol. 6, 251–254 (1970).Google Scholar
  121. Khwaja, T.A., Heidelberger, C.: Fluorinated pyrimidines. XXIX. Synthesis of 2’, 3’-de- hydro-5-fluoro-2’-deoxyuridine and 2’, 3’-dideoxy-5-fluorouridine. J. med. Chem. 10, 1066 –1070 (1967).PubMedGoogle Scholar
  122. Khwaja, T.A., Heidelberger, C.: Fluorinated pyrimidines. XXXII. Synthesis of 2’, 3’-de- hydro-5-trifluoromethyl-2’-deoxyuridine and 5-trifluoromethyluridine. J. med. Chem. 12, 543–545 (1969).PubMedGoogle Scholar
  123. Khwaja, T.A., Heidelberger, C.: Fluorinated pyrimidines. XXXIII. Synthesis of methylated 5-fluoro-2’-deoxyuridine derivatives. J. med. Chem. 13, 64–69 (1970).PubMedGoogle Scholar
  124. Kim, S-H., Rich, A.: A non-complementary hydrogen-bonded complex containing 5-fluoro- uracil and 1-methylcytosine. J. molec. Biol. 42, 87–95 (1969).PubMedGoogle Scholar
  125. Kline, I., Venditti, J.M., Mead, J.A.R., Tyrer, D.D., Goldin, A.: The antileukemic effectiveness of 5-fluorouracil and methotrexate in the combination chemotherapy of advanced L-1210 in mice. Cancer Res. 26, 848–852 (1966).PubMedGoogle Scholar
  126. Kline, I., Woodman, R. J., Gang, M., Waravdekar, V.S., Goldin, A., Venditti, J.M.: Enhanced response of leukemic (L-1210) mice to combination chemotherapy with 5-(3, 3- dimethyl-l-triazeno)-imidazole-4-carboxamide (NSC-45388) and 5-fluorouracil (NSC- 19893). Cancer 27, 1363–1368 (1971).Google Scholar
  127. Koeohlin, B.A., Rubio, F., Palmer, S., Gabriel, T., Dusohinsky, R.: The metabolism of 5-fluorocytosine-2-14C and of cytosine-14C in the rat and the disposition of 5-fluorocytosine- 2-14C in man. Biochem. Pharmacol. 15, 435–446 (1966).Google Scholar
  128. Koenig, H.: Neurobiological action of some pyrimidine analogs. Int. Rev. Neurobiol. 10, 199 –230 (1967).PubMedGoogle Scholar
  129. Kolar, V., Mechl, Z.: Fluoxidin (preliminary report on clinical evaluation). Neoplasma (Bratisl.) 18, 485–487 (1971).Google Scholar
  130. Kono, M., Osawa, S.: Intermediary steps of ribosome formation in Escherichia coli. Biochim. biophys. Acta (Amst.) 87, 326–334 (1964).Google Scholar
  131. Korfsmeier, K. H.: Wirkung von 5-fluorouracil auf den Protein Stoffwechsel von Tumoren und gesundem Gewebe in der Kultur. Zeit. Krebsforsch. 74, 20–27 (1970).Google Scholar
  132. Kramer, G., Wittmann, H.G., Schuster, H.: Die Erzeugung von Mutanten des Tabakmosaik Virus durch den Einbau von Fluorouracil in die Virusnucleinsäure. Z. Naturforsch. 19 b, 46–51 (1964).Google Scholar
  133. Lahiri, S.R., Boileatj, G., Hall, T.C.: Treatment of metastatic colorectal carcinoma with 5-fluorouracil by mouth. Cancer 28, 902–906 (1971).PubMedGoogle Scholar
  134. Lengyel, P., Speyer, J.P., Oohoa, S.: Synthetic polynucleotides and the amino acid code. Proc. nat. Acad. Sci. (Wash.) 47, 1936–1942 (1961).Google Scholar
  135. Liebedq, C., Peters, R. A.: The toxicity of fluoroacetate and the tricarboxylic acid cycle. Biochim. biophys. Acta (Amst.) 3, 215–230 (1949).Google Scholar
  136. Lindner, A.: Cytochemical effects of 5-fluorouracil on sensitive and resistant Ehrlich ascites tumor cells. Cancer Res. 19, 189–194 (1959).PubMedGoogle Scholar
  137. Lowrie, R. J., Bergqxjist, P.L.: Transfer ribonucleic acids from E. coli treated with 5-fluoro- uracil. Biochemistry 7, 1761–1770 (1968).Google Scholar
  138. Lozeron, H.A., Gordon, M.P.: Ultraviolet sensitization and photoreactivation of tobacco mosaic virus ribonucleic acid containing 5-fluorouracil. Biochemistry 3, 507–510 (1964).PubMedGoogle Scholar
  139. Lozeron, H.A., Gordon, M.P., Gabriel, T., Tautz, W., Duschinsky, R.: The photochemistry of 5-fluorouracil. Biochemistry 3, 1844–1850 (1964).PubMedGoogle Scholar
  140. Lozeron, H.A., Szybalski, W.: Incorporation of 5-fluorodeoxyuridine into the DNA of B. subtilis phage PBS2 and its radiobiological consequences. J. molec. Biol. 30, 277–290 (1967).PubMedGoogle Scholar
  141. Lozzio, C.B.: Lethal effects of fluorodeoxyuridine on cultured mammalian cells at Various stages of the cell cycle. J. cell. Physiol. 74, 57–62 (1969).PubMedGoogle Scholar
  142. Madoc-Jones, H., Bruce, W.R.: On the mechanism of the lethal action of 5-fluorouracil on mouse L cells. Cancer Res. 28, 1976–1981 (1968).PubMedGoogle Scholar
  143. Maktnodan, T., Santos, G.W., Qttinn, R.P.: Immunosuppressive drugs. Pharmacol. Rev. 22, 189–247 (1970).Google Scholar
  144. Mandel, H.G.: The incorporation of 5-fluorouracil into RNA and its molecular consequences. Progr. molec. subcell. Biol. 1, 82–135 (1969).Google Scholar
  145. Mazza, F., Sobell, H.M., Kartha, G.: Base-pairing configurations between purines and pyrim- idines in the solid state. IV. Crystal and molecular structure of two 1:1 hydrogen-bonded complexes, l-methyl-5-bromouracil:9-ethyl-2-aminopurine and l-methyl-5-fluorouracil:9- ethyl-2-aminopurine. J. molec. Biol. 43, 407–422 (1969).PubMedGoogle Scholar
  146. Melnick, J.L., Stinebaugh, S.E., Rapp, F.: Incomplete simian papovavirus SV40, formation of non-infectious viral antigen in the presence of fluorouracil. J. exp. Med. 119, 313–326 (1964).PubMedGoogle Scholar
  147. Mertes, M.P., Saheb, S.E.: Use of sulfur tetrafluoride in synthesis of potential anticancer agents. J. pharm. Sci. 52, 508–509 (1963).PubMedGoogle Scholar
  148. Mitchell, M.S., Deconti, R.C.: Immunosuppression by 5-fluorouracil. Cancer 29, 884–889 (1970).Google Scholar
  149. Moertel, C.G., Reitemeier, R.J.: Fluorouracil, floxuridine controversy. J. Amer. med. Assoc. 201, 780 (1967).Google Scholar
  150. Morse, P.A., Potter, V.R.: Pyrimidine metabolism in tissue culture cells derived from rat hepatomas. I. Suspension cell cultures derived from Novikoff hepatoma. Cancer Res. 25, 499–508 (1965).PubMedGoogle Scholar
  151. Mukherjee, K.L., Boohar, J., Wentland, P., Ansfield, F.J., Heidelberger, C.: Studies on fluorinated pyrimidines. XVI. Metabolism of 5-fluorouracil-2-14C and 5-fluoro-2’-deoxy- uridine-2-14C in cancer patients. Cancer Res. 23, 49–66 (1963 a).Google Scholar
  152. Mukhekjee, K. L., Ctjrreri, A.R., Javid, M., Heidelberger, C.: Studies on fluorinated pyrimidines. XVII. Tissue distribution of 5-fluorouracil-2-14C and 5-fluoro-2’-deoxyuridine in cancer patients. Cancer Res. 23, 67–77 (1963b).Google Scholar
  153. Mukherjee, K.L., Heidelberger, C.: Studies on fluorinated pyrimidines. IX. The degradation of 5-fluorouracil-6-14C. J. biol. Chem. 235, 433–437 (1960).PubMedGoogle Scholar
  154. Mukherjee, K. L., Heidelberger, C.: Studies on fluorinated pyrimidines. XV. Inhibition of the incorporation of formate-14C into DNA thymine of Ehrlich ascites carcinoma cells by 5-fluoro-2’-deoxyuridine-5’-monophosphate and related compounds. Cancer Res. 22, 815 –822 (1962).PubMedGoogle Scholar
  155. Munyon, W., Salzman, N.P.: The incorporation of 5-fluorouracil into poliovirus. Virology 18, 95–101 (1962).PubMedGoogle Scholar
  156. Nakada, D., Magasanik, B.: The roles of inducer and catabolite repressor in the synthesis of ju-galactosidase by Escherichia coli. J. molec. Biol. 8, 105–127 (1964).PubMedGoogle Scholar
  157. Naono, S., Gros, P.: Éffects d’un analogue de base nucleique sur la biosynthèse de proteines bactériennes. C.angements de la composition globale des proteins. C. R. Acad. Sci. (Paris) 250, 3527–3529 (1960a).Google Scholar
  158. Naono, S., Gros, P.: Synthèse par E. coli d’une phosphatase modifiée en presence d’un analogue primidique. C. R. Acad. Sci. (Paris) 250, 3889–3891 (1960b).Google Scholar
  159. Nesnow, S., Mian, A.M., Oki, T., Dexter, D.L., Heidelberger, C.: Fluorinated pyrimidines. XLI. Synthesis of 5-trifluoromethy 1 -3’-deoxyuridine and 5-fluoro- 3 ‘-deoxyuridine. J. med. Chem. 15, 676–677 (1972).PubMedGoogle Scholar
  160. Nizhizawa, Y., Casida, J.E., Anderson, S. W., Heidelberger, C.: 3’, 5’-Diesters of 5-fluoro- β-deoxyuridine: synthesis and biological activity. Biochem. Pharmacol. 14, 1605–1620 (1965).Google Scholar
  161. Ockey, C.H., Hsu, T.C., Richardson, L.C.: Chromosome damage induced by 5-fluoro-2’- deoxyuridine in relation to the cell cycle of the Chinese hamster. J. nat. Cancer Inst. 40, 465–475 (1968).Google Scholar
  162. Oki, T., Heidelberger, C.: Fluorinated pyrimidines. XXXIX. Effects of 5-trifluoromethyl- 2’-deoxyuridine on the replication of vaccinia viral messenger RNA and protein. Molec. Pharmacol. 7, 653–662 (1971).Google Scholar
  163. Oyen, T.B., Laland, S.G.: 5-Fluoropyrimidin-2-one deoxyriboside and its growth-inhibiting properties. Biochim. biophys. Acta (Amst.) 182, 567–569 (1969).Google Scholar
  164. Paijl, J., Hagiwara, A.: A kinetic study of the action of 5-fluoro-2’ -deoxyuridine on synthetic processes in mammalian cells. Biochim. biophys. Acta (Amst.) 61, 243–249 (1962).Google Scholar
  165. Peck, R.M., Markey, F., Yudkin, M.D.: Effect of 5-fluorouracil on -galactosidase synthesis in an Escherichia coli mutant resistant to catabolite repression of the Lac operon. FEBS Lett. 16, 43–44 (1971).PubMedGoogle Scholar
  166. Pitot, H.C., Peraino, C.: Studies on the induction and repression of enzymes in rat liver. J. biol. Chem. 239, 1783–1788 (1964).PubMedGoogle Scholar
  167. Pittillo, R.F., Ray, B.J.: Chemotherapeutic activity of 5-fluorocytosine against a lethal Candida albicans infection in mice. Appl. Microbiol. 17, 773–774 (1969).PubMedGoogle Scholar
  168. Pxjjman, V., Sandberg, J., Howsden, L., Goldin, A.: The effect of fluoxidine on L-1210 leukemia in mice. Neoplasma (Bratisl.) 17, 133–136 (1970).Google Scholar
  169. Reichard, P., Skold, O., Klein, G., Revesz, L., Magnusson, P.H.: Studies on resistance against 5-fluorouracil. I. Enzymes of the uracil pathway during development of resistance. Cancer Res. 22, 235–243 (1962).PubMedGoogle Scholar
  170. Remy, D.C., Sttnthankar, A.V., Heidelberger, C.: Studies on fluorinated pyrimidines. XIV. The synthesis of derivatives of 5 -fluoro -2 ’- deoxyuridine-5r-phosphate and related compounds. J. org. Chem. 27, 2491–2500 (1961).Google Scholar
  171. Reyes, P.: The synthesis of 5-fluorouridine-5’-phosphate by a pyrimidine phosphoribosyl- transferase of mammalian origin. I. Some properties of the enzyme from P1534 J mouse leukemic cells. Biochemistry 8, 2057–2062 (1969).Google Scholar
  172. Reyes, P., Hall, T.C.: Synthesis of 5-fluorouridine-5’-phosphate by a pyrimidine phospho- ribosyltransferase of mammalian origin. II. Correlation between the tumor levels of the enzyme and the 5-fluorouracil-promoted increase in survival of tumor-bearing mice. Biochem. Pharmacol. 18, 2587–2590 (1969).PubMedGoogle Scholar
  173. Reyes, P., Heidelberger, C.: Fluorinated pyrimidines. XXVI. Mammalian thymidylate synthetase: Its mechanism of action and inhibition by fluorinated nucleotides. Molec. Pharmacol. 1, 14–30 (1965).Google Scholar
  174. Rich, M.A., Bolafpi, J.L., Knoll, J.E., Cheong, L., Eidinoff, M.L.: Growth inhibition of a human cell strain by 5-fluorouracil, 5-fluorouridine, and 5-fluoro-2’-deoxyuridine-reversal studies. Cancer Res. 18, 730–735 (1958).PubMedGoogle Scholar
  175. Robins, M. J., Naik, S.R.: Nucleic acid related compounds. III. A facile synthesis of 5-fluoro- uracil bases and nucleosides by direct fluorination. J. Amer. chem. Soc. 93, 5277–5278 (1971).Google Scholar
  176. Robins, M.J., NAIK, S.R.: A direct synthesis of 5-fluorocytosine and its nucleosides using trifluoromethyl hypofluorite. J. chem. Soc. chem. Commun., 18–19 (1972).Google Scholar
  177. Rogers, H. J., Perkins, H.R.: 5-Fluorouracil and mucopeptide biosynthesis by Staph, aureus. Biochem. J. 77, 448–459 (1960).PubMedGoogle Scholar
  178. Rogers, W.I., Hartman, A.C., Palm, P.E., Okstein, C., Kensler, C.L.: The fate of 5-tri- fluoromethyl-2’-deoxyuridine in monkeys, dogs, mice, and tumor-bearing mice. Cancer Res. 29, 953–961 (1969).PubMedGoogle Scholar
  179. Rogers, W.I., Wilson, J.A.: Determination of labile trifluoromethyl compounds with a fluoride-ion electrode: differential analysis of 5-trifluoromethyluracil and 5-trifluoromethyl- β-deoxyuridine. An. Biochem. 82, 31–37 (1969).Google Scholar
  180. Rosen, B.: Characteristics of 5-fluorouracil-induced synthesis of alkaline phosphatase. J. molec. Biol. 11, 845–850 (1965).PubMedGoogle Scholar
  181. Rosen, B., Rothman, F., Weigert, M.G.: Miscoding caused by 5-fluorouracil. J. molec. Biol. 44, 363–375 (1969).PubMedGoogle Scholar
  182. Rottsselot, L.M., Cole, D.R., Grossi, C.E., Conte, A. J., Gonzales, E.M., Pasternak, B.S.: A five year progress report on the effectiveness of intraluminal chemotherapy (5-fluoro- uracil) adjuvant to surgery for colorectal cancer. Amer. J. Surg. 115, 140–157 (1968).Google Scholar
  183. Rueckert, R. R., Mueller, G.C.: Studies on unbalanced growth in tissue culture. I. Induction and consequences of thymidine deficiency. Cancer Res. 20, 1584–1591 (1960).PubMedGoogle Scholar
  184. Rutman, R. J., Cantarow, A., Paschkis, K.E.: Studies in 2-acetylaminofiuorene carcinogenesis. III. The utilization of uracil-2-14C by preneoplastic rat liver and rat hepatoma. Cancer Res. 14, 119–134 (1954).PubMedGoogle Scholar
  185. Ryan, K. J., Acton, E.M., Goodman, L.: Chemical synthesis of β-deoxy-5-(trifluoromethyl)- uridine and its a anomer. J. org. Chem. 81, 1181–1184 (1966).Google Scholar
  186. Salzman, N.P.: The rate of formation of vaccinia deoxyribonucleic acid and vaccinia virus. Virology 10, 150–152 (1960).PubMedGoogle Scholar
  187. Salzman, N.P., Shatkin, A.J., Sebring, E.D.: Viral protein and DNA synthesis in vaccinia virus-infected HeLa cell cultures. Virology 19, 542–550 (1963).PubMedGoogle Scholar
  188. Santi, D. V., Sakai, T.T.: Thymidylate synthetase. Model studies of inhibition by 5-trifluoro- ethyl-β-deoxyuridylic acid. Biochemistry 10, 3598–3607 (1971).PubMedGoogle Scholar
  189. Sartorelli, A.C., Creasey, W.A.: The antineoplastic and biochemical effects of some 5- fiuoropyrimidines. Cancer Res. 27, 2201–2206 (1967).PubMedGoogle Scholar
  190. Sohmàhl, I)., Osswald, H.: Experimental studies of the carcinogenic activity of antitumor and immunosuppressive agents. Arzneimittel-Forsch. 20, 1461–1467 (1970).Google Scholar
  191. Shotctra, Y., Kaizer, H., Nathans, D.: Fragments of MS 2 RNA as messengers for specific bacteriophage proteins: fragments from fluorouracil-containing particles. J. molec. Biol. 38, 453–455 (1968).Google Scholar
  192. Skemtjra, Y., Moses, R.E., Nathans, D.: Coliphage MS 2 containing 5-fluorouracil. I. Preparation and physical properties. J. molec. Biol. 12, 266–279 (1965).Google Scholar
  193. Shimura, Y., Moses, R.E., Nathans, D.: Coliphage MS 2 containing 5-fluorouracil. II. RNA- deficient particles formed in the presence of 5-fluorouracil. J. molec. Biol. 28, 95–102 (1967).PubMedGoogle Scholar
  194. Skòld, O.: Enzymic ribosidation and ribotidation of 5-fluorouracil by extracts of the Ehrlich ascites tumor. Biochim. biophys. Acta (Amst.) 29, 651 (1958).Google Scholar
  195. Skòld, 0., Magntjsson, P-H., Revesz, L.: Studies on resistance against 5-fluorouracil. III. Selective value of resistant uridine kinase-deficient tumor cells. Cancer Res. 22, 1226–1229 (1962).Google Scholar
  196. Slapik:Off, S., Berg, P.: Mechanism of ribonucleic acid polymerase action. Effect of nearest neighbors on competition between uridine triphosphate and uridine triphosphate analogs for incorporation into ribonucleic acid. Biochemistry 6, 3654–3658 (1967).Google Scholar
  197. Smith, C.G., Grady, J. E., Ktxpiecki, F.P.: Blood and urine levels of antitumor agents determined with cell culture methods. Cancer Res. 25, 241–245 (1965).PubMedGoogle Scholar
  198. Strijkert, P.J.: The effect of 5-fluorouracil on induced enzyme synthesis in yeast. Biochim. biophys. Acta (Amst.) 182, 262–263 (1969).Google Scholar
  199. Stjndaralingam, M.: Conformations of the furanose ring in nucleic acids and other carbohydrate derivatives in the solid state. J. Amer. chem. Soc. 87, 599–606 (1965).Google Scholar
  200. Stjtic, D., Djordjevic, B.: Effect of 5-fluorouracil on antigenic properties of tobacco mosaic virus. Nature (Lond.) 203, 434–435 (1964).Google Scholar
  201. Szer, W., Shtjgar, D.: Preparation of poly-5-fluorouridylic acid and the properties of halogenated polyuridylic acids and their complexes with polyadenylic acid. Acta biochim. poi 10, 219–231 (1963).Google Scholar
  202. Taylor, J.H., Hatjt, W.F., Tung, J.: Effects of fluorodeoxyuridine on DNA replication, chromosome breakage, and reunion. Proc. nat. Acad. Sci. (Wash.) 48, 190–198 (1962).Google Scholar
  203. Temin, H.M.: Nature of the provirus of Rous sarcoma. Nat. Cancer Inst. Monogr. 17, 557–570 (1964).Google Scholar
  204. Temin, H.M., Mizutani, S.: RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature (Lond.) 226, 1211–1213 (1970).Google Scholar
  205. Tershak, D.R.: Effect of 5-fluorouracil on poliovirus-induced RNA polymerase. J. molec. Biol. 21, 43–50 (1966).PubMedGoogle Scholar
  206. Thomasz, A., Borek, E.: The mechanism of an osmotic instability induced in E. coli K-12 by 5-fluorouracil. Biochemistry 1, 543–552 (1962).Google Scholar
  207. Tomita, K.I., Katz, L., Rich, A.: Crystal structure of the intermolecular complex 9-ethyl- adenine: l-methyl-5-fluorouracil. J. molec. Biol. 30, 545–549 (1967).PubMedGoogle Scholar
  208. Umeda, M., Heidelberger, C.: Fluorinated pyrimidines. XXX. Comparative studies of fluorin- ated pyrimidines with various cell lines. Cancer Res. 28, 2529–2538 (1968).PubMedGoogle Scholar
  209. Umeda, M., Heidelberger, C.: Fluorinated pyrimidines. XXXI. Mechanisms of inhibition of vaccinia virus replication in HeLa cells by pyrimidine nucleosides. Proc. Soc. exp. Biol. (N.Y.) 130, 24–29 (1969).Google Scholar
  210. Utz, J.P.: Current status of the chemotherapy of systemic mycoses. Ann. intern. Med. 68, 1177–1178 (1968).Google Scholar
  211. Van Dyk, J. J., Clarkson, B.D., Dttschinsky, R., Kelver, 0., La Sala, E., Krakoit, I.H.: Clinical evaluation of ö-bromo-ö-fluoro-e-methoxy-dihydro’-deoxyuridine. Cancer Res. 27, 2129–2136 (1967).Google Scholar
  212. Vietti, T., Eggerding, F., Valeriote, F.: Combined effect of x-radiation and 5-fluorouracil on survival of transplanted leukemic cells. J. nat. Cancer Inst. 49, 865–870 (1971).Google Scholar
  213. Voet, D., Rich, A.: The structure of an intermolecular complex between cytosine and 5- fluorouracil. J. Amer. chem. Soc. 91, 3069–3075 (1969).Google Scholar
  214. Wagner, N.J., Heidelberger, C.: Some effects of 5-fluoroorotate and 5-fluorouracil on the soluble ribonucleic acid of rat liver. Biochim. biophys. Acta (Amst.) 61, 373–379 (1962).Google Scholar
  215. Wahba, A.J., Gardner, R.S., Basilio, C., Miller, R.S., Speyer, J.F., Lengyel, P.: Synthetic polynucleotides and the amino acid code. VIII. Proc. nat. Acad. Sci. (Wash.) 49, 116–121 (1963).Google Scholar
  216. Wellings, P.C., Awdry, P.N., Bors, F.H., Jones, B.R., Brown, D.C., Kaufman, H.E.: Double-blind clinical evaluation of trifluorothymidine in the treatment of herpes simplex ulcers of the cornea. Amer. J. Ophthamol. 73, 932–942 (1972).Google Scholar
  217. Wempen, I., Dtjschinsky, R., Kaplan, L., Fox, J.J.: Thiation of nucleosides. IV. The synthesis of 5-fluoro-2’-deoxycytidine and related compounds. J. Amer. chem. Soc. 83, 4755 –4766 (1961).Google Scholar
  218. Wempen, I., Fox, J. J.: Pyrimidines. II. Synthesis of 6-fluorouracil. J. med. Chem. 7, 207–209 (1964a).PubMedGoogle Scholar
  219. Wempen, I., Fox, J.J.: Spectrophotometric studies of nucleic acid derivatives and related compounds. VI. On the structure of certain 5- and 6-halogenouracils and cytosines. J. Amer. chem. Soc. 86, 2475–2477 (1964b).Google Scholar
  220. Wilkinson, D.S., Öihak, A., Pitot, H.C.: Inhibition of ribosomal ribonucleic acid maturation in rat liver by 5-fluoroorotic acid resulting in the selective labeling of cytoplasmic messenger ribonucleic acid. J. biol. Chem. 246, 6418–6427 (1971).PubMedGoogle Scholar
  221. Willen, R.: Polyacrylamide-agarose electrophoretic patterns of the RNA labeling in liver cytoplasm and total liver of 5-fluorouracil-treated rats. Hoppe-Seyler’s Z. Physiol. Chem. 351, 1141–1150 (1970).Google Scholar
  222. Williams, A.C., Klein, E.: Experiences with local chemotherapy and immunotherapy in premalignant and malignant skin lesions. Cancer 25, 450–462 (1970).PubMedGoogle Scholar
  223. Wittmann-Liebold, B., Wittmann, H.C.: Lokalisierung von Aminosäure-austauschen bei Spontanmutanten und nach Fluoruracileisbau isolierten Mutanten des Tabakmosaikvirus. Z. Vererbungsl. 97, 218–225 (1965).PubMedGoogle Scholar
  224. Wolberg, W.H.: The effect of 5-fluorouracil on DNA thymine synthesis in human tumors. Cancer Res. 29, 2137–2144 (1969).PubMedGoogle Scholar
  225. Wolberg, W.H.: Biochemical approaches to prediction of response in solid tumors. Nat. Cancer Inst. Monogr. 34, 189–195 (1971).Google Scholar
  226. Wolberg, W.H.: Response of DNA thymine synthesis in human tumor and normal tissue to 5-fluorouracil. Cancer Res. 32, 130–132 (1972).PubMedGoogle Scholar
  227. Wolberg, W.H., Ansfield, F.J.: The relation of thymidine labeling index in human tumors in vitro to the effectiveness of 5-fluorouracil chemotherapy. Cancer Res. 31, 448–450 (1971).PubMedGoogle Scholar
  228. Yagil, E., Silbebstein, N.: Decay of normal and 5-fluorouracil-substituted messenger ribonucleic acid of alkaline phosphatase in Escherichia coli. J. Bact. 100, 1364–1370 (1969).PubMedGoogle Scholar
  229. Yung, N.C., Bubchenal, J.H., Fecher, R., Dusohinsky, R., Fox, J.J.: Nucleosides. XI. Synthesis of 1-β-D-arabinosyl-5-fluorouracil and related nucleosides. J. Amer. chem. Soc. 83, 4060–4065 (1961).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • Charles Heidelberger

There are no affiliations available

Personalised recommendations