Skip to main content

Abstract

Hershey and Chase demonstrated in 1952 that DNA is the essential component of a phage particle which enters an E. coli cell upon infection with T2. DNA alone initiates and directs the two major reactions in phage infection: DNA replication, and synthesis of phage-specific proteins. Confirming this role of nucleic acids in the infective process, nucleic acids of viruses separated from virus protein were later shown to be infective. This “infection of cells by the isolated nucleic acid from a virus, resulting in the production of complete virus” has been termed transfection (Földes and Trautner, 1964). By this definition any transfection system is distinct from virus infection in that infectivity is sensitive to nucleases, but resistant to antiserum directed against the virus particle. Transfection has been observed and analyzed in a large number of systems. Thus Gierer and Schramm(1956) and Fraenkel-Conrat et al. (1957) demonstrated the infectivity of TMV-RNA, an observation that has since been made for a large number of other plant viruses. Transfection of animal cells by animal virus RNA and DNA has been demonstrated. Bacteriophage nucleic acids isolated from various RNA and DNA phages could be made infective for bacteria. All these findings as well as the discovery of bacterial transformation substantiate the unique role of nucleic acids as genetic material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel, P., Trautner, T. A.: Formation of an animal virus within a bacterium. Z. Ver-erbungsl. 95, 66–72 (1964).

    CAS  Google Scholar 

  • Alegria, A. H., Kahn, F. M., Marmur, J.: A new assay for phagehydroxymethylases and its use in Bacillus subtilis transfection. Biochemistry 7, 3179–3186 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Anderson, D. L., Hickman, D. D., Reilly, B. E.: Structure of Bacillus subtilis bacteriophage ø 29 and the length of ø29 deoxyribonucleic acid. J. Bact. 91, 2089–2091 (1966).

    Google Scholar 

  • Anderson, D. L., Mosharrafa, E. T.: Physical and biological properties of phage ø 29 deoxyribonucleic acid. J. Virol. 2, 1185–1190 (1968).

    PubMed  CAS  Google Scholar 

  • Anagnostopoulos, C., Spizizen, J.: Requirements for transformation in B. subtilis. J. Bact. 81, 741–746 (1961).

    PubMed  CAS  Google Scholar 

  • Armentrout, R. W., Rutberg, L.: Mapping of prophage and mature deoxyribonucleic acid from temperate Bacillus bacteriophage ø105 by marker rescue. J. Virol. 6, 760–767 (1970).

    PubMed  CAS  Google Scholar 

  • Armentrout, R. W., Skoog, L., Rutberg, L.: Structure and biological activity of deoxyribonucleic acid from Bacillus bacteriophage ø105: Effects of Escherichia coli exonucleases. J. Virol. 7, 359–371 (1971).

    PubMed  CAS  Google Scholar 

  • Baltz, R. M.: Infectious DNA of bacteriophage T4. J. molec. Biol. 62, 425–437 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Bayreuther, K. E., Romig, W. R.: Polyoma virus: Production in Bacillus suhstilis. Science 146, 778–779 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Benzinger, R., Delius, H., Jaenisch, R., Hofschneider, P. H.: Preparation and properties of E. coli competent for infectious DNA from bacteriophages øX174 and M13 and RNA from bacteriophage M12. Europ. J. Biochem. 2, 414–428 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Benzinger, R., Kleber, I.: Transfection of E. coli and Salmonella typhimurium sphero-plasts: Host-controlled restriction of infectious bacteriophage P22 deoxyribonucleic acid. J. Virol. 8, 197–202 (1971).

    PubMed  CAS  Google Scholar 

  • Benzinger, R., Kleber, I., Huskey, R.: Transfection of Escherichia coli spheroplasts. 1. General facilitation of double-stranded deoxyribonucleic acid infectivity by protamine sulfate. J. Virol. 7, 646–650 (1971).

    PubMed  CAS  Google Scholar 

  • Birdsell, D. C., Hathaway, G. M., Rutberg, L.: Characterization of temperate Bacillus bacteriophage ø105 J. Virol. 4, 264–270 (1969).

    PubMed  CAS  Google Scholar 

  • Biswal, N., Kleinschmidt, A. K., Spatz, H. Gh., Trautner, T. A.: Physical properties of the DNA of bacteriophage SP50. Molec. gen. Genet. 100, 39–55 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Bodmer, W. F., Ganesan, A. T.: Biochemical and genetic studies of integration and recombination in Bacillus subtilis transformation. Genetics 50, 717–738 (1964).

    PubMed  CAS  Google Scholar 

  • Bott, K. F., Wilson, G. A.: Development of competence in the Bacillus subtilis transformation system. J. Bact. 94, 562–570 (1967).

    PubMed  CAS  Google Scholar 

  • Bradley, D.E.: The isolation and morphology of some new bacteriophages specific for Bacillus and Acetobacter species. J. gen. Microbiol. 41, 233–241 (1965).

    PubMed  CAS  Google Scholar 

  • Brenner, S., Stent, G. S.: Bacteriophage growth in protoplasts of Bacillus megaterium. Biochim. biophys. Acta (Amst.) 17, 473–475 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Burkholder, P. R., Giles, Jr. N. H.: Induced biochemical mutations in Bacillus subtilis. Amer. J. Bot. 34, 345–348 (1947).

    Article  CAS  Google Scholar 

  • Cahn, F. H., Fox, M. S.: Fractionation of transformable bacteria from competent cultures of Bacillus subtilis on renografin gradients. J. Bact. 95, 867–875 (1968).

    PubMed  CAS  Google Scholar 

  • Chilton, M. D.: Transforming activity in both complementary strands of Bacillus subtilis DNA. Science 157, 817–819 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Chow, L. T., Boice, L., Davidson, N.: Map of the partial sequence homology between DNA molecules of Bacillus subtilis bacteriophage SPO2 and ø105. J. molec. Biol. 68, 391–400 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Coukoulis, H., Campbell, L. L.: Transformation in Bacillus amyloliquefaciens. J. Bact. 105, 319–322 (1971).

    PubMed  CAS  Google Scholar 

  • Dishman, B.: The Role of Molecular Configuration in Transfection of B. subtilis with Bacteriophage DNA. Ph. D. Thesis, University of Texas, 1972.

    Google Scholar 

  • Dubes, G. R.: Methods for Transfecting cells with nucleic acids of animal Viruses: A review. Basel: Birkhäuser Verlag 1971.

    Google Scholar 

  • Dubnau, D., Davidoff-Abelson, R.: Fate of transforming DNA following uptake by competent B. subtilis. I. Formation and properties of the donor-recipient complex. J. molec. Biol. 56, 209 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Eiserling, F. A., Romig, W. R.: Studies of Bacillus subtilis bacteriophages: Structural characterization by electron microscopy, J. Ultrastruct. Res. 6, 540–546 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Epstein, H. T.: Transfection enhancement by ultraviolet light. Biochem. biophys. Res. Commun. 27, 258–262 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Epstein, H. T.: Factors affecting bacterial competence for transfection and transfection enhancement. Bact. Rev. 32, 313–319 (1968).

    PubMed  CAS  Google Scholar 

  • Epstein, H. T., Mahler, I.: Mechanisms of enhancement of SP82 transfection. J. Virol. 2, 710–715 (1968).

    PubMed  CAS  Google Scholar 

  • Erickson, R. J.: New ideas and data on competence and DNA entry in transformation of Bacillus subtilis. Curr. Top. Mircrobiol. Immunol. 53, 149–199 (1970).

    CAS  Google Scholar 

  • Földes, J., Trautner, T. A.: Infectious DNA from a newly isolated B. subtilis phage. Z. Vererbungsl. 95, 57–65 (1964).

    Article  Google Scholar 

  • Fraenkel-Conrat, H., Singer, B., Williams, R. C.: Infectivity of viral nucleic acid. Biochim. biophys. Acta (Amst.) 25, 87–96 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Freifelder, D.: A novel method for the release of bacteriophage DNA. Biochem. biophys. Res. Commun. 18, 141–144 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Gabor, M., Hotchkiss, R. D.: Manifestation of linear organization in molecules of pneumococcal transformation. Proc. nat. Acad. Sci. (Wash.) 56, 1441–1448 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Gierer, A., Schramm, G.: Infectivity of ribonucleic acid from tobacco mosaic virus. Nature (Lond.) 177, 702–703 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, E. B.: The amount of DNA between genetic markers in phage T4. Proc. nat. Acad. Sci. (Wash.) 56, 1457–1463 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Goulian, M., Kornberg, A., Sinsheimer, R. L.: Enzymatic synthesis of DNA, XXIV. Synthesis of infectious phage øX174 DNA. Proc. nat. Acad. Sci. (Wash.) 58, 2321–2328 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Green, D. M.: Infectivity of DNA isolated from Bacillus subtilis bacteriophage SP82, J. molec. Biol. 10, 438–451 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Green, D. M.: Intracellular inactivation of infective SP82 bacteriophage DNA. J. molec. Biol. 22, 1–13 (1966a).

    Article  CAS  Google Scholar 

  • Green, D. M.: Physical and genetic characterization of sheared infective SP82 Bacteriophage DNA, J. molec. Biol. 22, 15–22 (1966b).

    Article  CAS  Google Scholar 

  • Green, D. M.: Gene dislinkage in transfection of SP82G phage DNA. Genetics 60, 673–680 (1968).

    PubMed  CAS  Google Scholar 

  • Green, D. M., Laman, D.: The organization of gene function in SP82 G. J. Virol. 9, 1033–1046 (1972).

    PubMed  CAS  Google Scholar 

  • Green, D. M., Urban, M. I.: Recombination and transfection mapping of cistron 5 of bacteriophage SP82G, Genetics 70, 187–203 (1972).

    PubMed  CAS  Google Scholar 

  • Guthrie, G. D., Sinsheimer, R. L.: Observations on the infection of bacterial protoplasts with the deoxyribonucleic acid of bacteriophage øX174, Biochim. biophys. Acta (Amst.) 72, 290–297 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Gwinn, D. D., Thorne, C. B.: Helper phage-dependent transfection in Bacillus subtilis, Biochem. biophys. Res. Commun. 25, 260–266 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Haas, M., Yoshikawa, H.: Defective bacteriophage PBSH in Bacillus subtilis. I. Induction, purification, and physical properties of the bacteriophage and its deoxyribonucleic acid, J. Virol. 3, 233–247 (1969).

    PubMed  CAS  Google Scholar 

  • Harm, W., Rupert, C.: Infection of transformable cells of Haemophilus influenzae by bacteriophage and bacteriophage DNA. Z. Vererbungsl. 94, 336–348 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Havender, W. R., Trautner, T. A.: Genetic and transfection studies with B. subtilis phage SP50. II. Temperature-sensitive mutants and the establishment of a linear linkage map. Molec. gen. Genet. 116, 51–67 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Havender, W. R., Trautner, T. A.: Genetic and transfection studies with B. subtilis phage SP50. III. Biological effects of DNA cleavage and the physical basis of the map. Molec. gen. Genet. 116, 51–57 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Hershey, A. D., Chase, M.: Independent functions of viral protein and nucleic acid in growth of bacteriophage, J. gen. Physiol. 36, 39–56 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, H.: Transfecting deoxyribonucleic acid of Bacillus bacteriophage ø29 that is pro tease-sensitive, Proc. nat. Acad. Sci. (Wash.) 69, 1555–1559 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Hogness, D. S., Simmons, J. R.: Breakage of Adg DNA: Chemical and genetic characterization of each isolated half-molecule. J. molec. Biol. 9, 411–438 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Hotz, G., Mauser, R.: Infectious DNA from coliphage T1, I. Some properties of the spheroplast assay system. Molec. gen. Genet. 104, 178–194 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Inselburg, J. W., Eremenko-Volpe, T., Greenwald, L., Meadow, W. L., Marmur, J.: Physical and genetic mapping of the SPO2 prophage on the chromosome of Bacillus subtilis 168. J. Virol. 3, 627–628 (1969).

    PubMed  CAS  Google Scholar 

  • Kahan, E.: A genetic study of temperature-sensitive mutants of the B. subtilis phage SP82. Virology 30, 650–660 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, A. D.: The Production of phage chromosome fragments and their capacity for genetic transfer. J. molec. Biol. 4, 275–287 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, A. D., Hogness, D.: The transformation of E. coli with DNA isolated from bacteriophage Adg, J. molec. Biol. 2, 392–415 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, A. D., Inman, R. B.: Cohesion and the biological activity of bacteriophage lambda DNA. J. molec. Biol. 13, 78–91 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Klotz, G.: Direction of SPPl DNA replication in transfected B. subtilis cells. Molec. gen. Genet. 120, 95–100 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Klotz, G., Spatz, H. Ch.: A biological assay for intracellular phage DNA. J. Molec. gen. Genet. 110, 367–373 (1971)

    Article  CAS  Google Scholar 

  • Levine, J. S., Strauss, H.: Lag period characterizing the entry of transforming DNA into Bacillus subtilis. J. Bact. 89, 281–287 (1965).

    PubMed  CAS  Google Scholar 

  • Liljemark, W. F., Anderson, D. L.: Structure of Bacillus subtilis bacteriophage ø29 and ø 25 deoxyribonucleic acid. J. Virol. 6, 107–113 (1970).

    PubMed  CAS  Google Scholar 

  • Mandel, M., Berg, A.: Cohesive sites and helper phage function of P2, lambda, and 186 DNAs. Proc. nat. Acad. Sci. (Wash.) 60, 265–268 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Mandel, M., Higa, A.: Calcium-dependent bacteriophage DNA infection. J. molec. Biol. 53, 159–162 (1970).

    Article  PubMed  CAS  Google Scholar 

  • May, P., May, E., Granboulan, P., Marmur, J.: Ultrastructure du bacteriophage 2 C et propriétés de son DNA. Ann. Inst. Pasteur 115, 1029–1046 (1968).

    CAS  Google Scholar 

  • McAllister, W. T.: Bacteriophage infection. Which end of the SP82G genome goes in first? J. Virol. 5, 194–198 (1970).

    Google Scholar 

  • McAllister, W. T., Green, D. M.: Bacteriophage SP82G inhibition of an intracellular deoxyribonucleic acid inactivation process in Bacillus subtilis. J. Virol. 10, 51–59 (1972).

    PubMed  CAS  Google Scholar 

  • Méndez, E., Ramirez, G., Salas, M., Vinuela, E.: Structural proteins of bacteriophage ø29. Virology 45, 567–576 (1971).

    Article  PubMed  Google Scholar 

  • Mosharrafa, E. T., Schachtele, C. F.R., Eilly, B. E., Anderson, D. L.: Complementary strands of bacteriophage ø29 deoxyribonucleic acid: Preparative separation and transcription studies. J. Virol. 6, 855–864 (1970).

    PubMed  CAS  Google Scholar 

  • Nester, E. W., Stocker, B. A. D.: Biosynthetic latency in early states of deoxyribonucleic acid transformation in Bacillus subtilis. J. Bact. 86, 785–796 (1963).

    PubMed  CAS  Google Scholar 

  • Okubo, S., Romig, W. R.: Comparison of ultraviolet sensitivity of Bacillus subtilis bacteriophage SPO2 and its infectious DNA. J. molec. Biol. 14, 130–142 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Okubo, S., Romig, W. R.: Impaired transformability of Bacillus subtilis mutant sensitive to mitomycin C and ultraviolet radiation. J. molec. Biol. 15, 440–454 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Okubo, S., Strauss, B., Stodolski, M.: The possible role of recombination in the infection of competent Bacillus subtilis by bacteriophage deoxyribonucleic acid. Virology 24, 552–562 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Okubo, S., Yanagida, T., Fujita, D. J., Ohlsson-Wilhelm, B. M.: The genetics of bacteriophage SPO1. Biken Journal 15, 81–97 (1972).

    PubMed  CAS  Google Scholar 

  • Oostindier-Braaksma, E., Epstein, H. T.: DNA fixation and development of transformability and transfectability in Bacillus subtilis. Molec. gen. Genet. 108, 23–27 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Ortin, S., Vinuela, E., Salas, M., Vasquez, C.: Phage ø29 DNA protein complex in circular DNA. Nature (Lond.) New Biol. 234, 275–277 (1971).

    Article  CAS  Google Scholar 

  • Reilly, B. E., Spizizen, J.: Bacteriophage deoxyribonucleate infection of competent Bacillus subtilis. J. Bact. 89, 782–790 (1965).

    PubMed  CAS  Google Scholar 

  • Riva, S., Polsinelli, M.: Relationship between competence for transfection and for transformation. J. Virol. 2, 587–593 (1968).

    PubMed  CAS  Google Scholar 

  • Riva, S., Polsinelli, M., Falaschi, A.: A new phage of Bacillus subtilis with infectious DNA having separable strands. J. molec. Biol. 35, 347–356 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Romig, W. R.: Infection of Bacillus subtillis with phenol-extracted bacteriophages. Virology 16, 452–459 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Romig, W. R.: Infectivity of Bacillus subtilis bacteriophage deoxyribonucleic acids extracted from mature particles and from lysogenic hosts. Bact. Rev. 32, 349–357 (1968).

    PubMed  CAS  Google Scholar 

  • Rottländer, E., Trautner, T. A.: Genetic and transfection studies with B. subtilis phage SP50. I. Phage mutants with restricted growth on B. subtilis strain 168. Molec. gen. Genet. 108, 47–60 (1970).

    Article  PubMed  Google Scholar 

  • Russo, V. E. A.: On the Physical Structure of λ Recombinant DNA. Molec. gen. Genet. 122, 353–366 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Rutberg, L.: Mapping of a temperate bacteriophage active on Bacillus subtilis. J. Virol. 3, 38–44 (1969).

    PubMed  CAS  Google Scholar 

  • Rutberg, L., Armentrout, R. W.: Low-frequency rescue of a genetic marker in deoxyribonucleic acid from Bacillus bacteriophage ø105 by superinfecting bacteriophage. J. Virol. 6, 768–771 (1970).

    PubMed  CAS  Google Scholar 

  • Rutberg, L., Hoch, J. A., Spizizen, J.: Mechanism of transfection with deoxyribonucleic acid from the temperate Bacillus bacteriophage ø105 J. Virol. 4, 50–57 (1969).

    PubMed  CAS  Google Scholar 

  • Rutberg, L., Rutberg, B.: Characterization of infectious deoxyribonucleic acid from temperate Bacillus bacteriophage ø105 J. Virol. 5, 604–608 (1970).

    PubMed  CAS  Google Scholar 

  • Rutberg, L., Rutberg, B.: Growth of bacteriophage ø105 and its deoxyribonucleic acid in radiation-sensitive mutants of Bacillus subtilis. J. Virol. 8, 919–921 (1971).

    PubMed  CAS  Google Scholar 

  • Sarkar, S.: Assay of infectivity of nucleic acids. Methods in Virology 2, p. 607–644. New York: Academic Press 1970.

    Google Scholar 

  • Schachtele, C. F., Oman, R. W., Anderson, D. L.: Effect of elevated temperature on DNA synthesis in phage ø29 infected Bacillus amyloliquefaciens. J. Virol. 6, 430–437 (1970).

    PubMed  CAS  Google Scholar 

  • Siegel, E. C., Marmur, J.: Temperature-sensitive induction of bacteriophage in Bacillus subtilis 168, J. Virol. 4, 610–618 (1969).

    PubMed  CAS  Google Scholar 

  • Singh, R. N., Pítale, M. P.: Enrichment of Bacillus subtilis transformants by zonal centrifugation. Nature (Lond.) 213, 1262–1263 (1967).

    Article  Google Scholar 

  • Sjöström, J. E., Lindberg, M., Philipson, L.: Transfection of Staphylococcus aureus with bacteriophage deoxyribonucleic acid. J. Bact. 109, 285–291 (1972).

    PubMed  Google Scholar 

  • Spatz, H. Ch.: A determination of the efficiency of uptake of SP 50 DNA in transfection of B. subtilis by mutual exclusion. Molec. gen. Genet. 117, 125–128 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Spatz, H. Ch., Trautner, T. A.: One way to do experiments on gene conversion? Molec. gen. Genet. 109, 84–106 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Spatz, H. Ch., Trautner, T. A.: The role of recombination in transfection. Molec. gen. Genet. 113, 174–190 (1971).

    PubMed  CAS  Google Scholar 

  • Spiegelman, S., Haruna, I., Pace, R. N., Mills, D. R., Peterson, R.: Studies in the replication of viral RNA. J. cell. comp. Physiol. 70, 35–64 (1967).

    CAS  Google Scholar 

  • Spizizen, J., Reilly, E., Evans, A. H.: Microbial transformation and transfection. Ann. Rev. Microbiol. 20, 371–400 (1966).

    Article  CAS  Google Scholar 

  • Strauss, N. S.: Configuration of transforming DNA during entry into Bacillus subtilis. J. Bact. 89, 288–293 (1965).

    PubMed  CAS  Google Scholar 

  • Strauss, N. S.: Further evidence concerning the configuration of transforming DNA during entry into Bacillus subtilis. J. Bact. 91, 702–708 (1966).

    PubMed  CAS  Google Scholar 

  • Szybalski, W.: Use of cesium sulfate for equilibrium density-gradient centrifugation. In: Methods in Enzymology, Vol. XIIb. p. 330–360. New York and London: Academic Press 1968.

    Google Scholar 

  • Tevethia, M. J., Mandel, M.: Nature of the ethylenediaminetetra-acetic acid requirement for transformation of Bacillus subtilis with single-stranded DNA J. Bact. 101, 844–850 (1970).

    PubMed  CAS  Google Scholar 

  • Tevethia, M. J., Mandel, M.: Effects of pH on transformation of Bacillus subtilis with single-stranded DNA. J. Bact. 106, 802–807 (1971).

    PubMed  CAS  Google Scholar 

  • Tichy, P., Rytir, V., Kohoutova, M.: Genetic transformation and transfection of Bacillus subtilis spheroplasts. Folia Microbiol. 13, 510 (1968).

    Article  CAS  Google Scholar 

  • Tokunaga, T., Nakamura, R. M.: Infection of competent Mycobacterium smegmatis with DNA extracted from bacteriophage B1. J. Virol. 2, 110–117 (1968).

    PubMed  CAS  Google Scholar 

  • Tokunaga, T., Sellers, M.: Infection of Mycobacterium smegmatis with D29 phage DNA. J. exp. Med. 119, 139–149 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Trautner, T. A., Spatz, H. Ch., Behrens, B., Pawlek, B., Behncke, M.: Exchange between complementary strands of DNA? Advanc. Biosci. 8, 79–86 (1972).

    Google Scholar 

  • Tsien, H. C., Mosharrafa, E. T., Hickman, D. D., Hagen, E. W., Schachtele, C. F., Anderson, D. L.: Studies with bacteriophage ø29 and its infectious DNA. Proceedings Summer School on Uptake of Informational Molecules. Mol. Belgium 1970. In press.

    Google Scholar 

  • Tsien, H. C., Reilly, B. E., Anderson, D. L.: Gene transfer by bacteriophage ø29 DNA fragments. Bact. Proc. 1970.

    Google Scholar 

  • Van De Pol, J. H., Veldhuisen, G., Cohen, J. A.: Phage transformation: A new criterion for the biological activity of bacteriophage DNA. Biochim. biophys. Acta (Amst.) 48, 417–418 (1961).

    Article  Google Scholar 

  • Veldhuisen, G., Goldberg, E. B.: Genetic transformation of bacteriophage T4. In: Methods in Enzymology, vol. 128, p. 858–863. New York and London: Academic Press 1968.

    Google Scholar 

  • Welker, N. E., Campbell, L. L.: Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis, J. Bacc. 94, 1124–1130 (1967).

    CAS  Google Scholar 

  • Williams, G. L., Green, D.M.: Early extracellular events in infection of competent Bacillus subUlis by DNA of bacteriophage SP82G, Proc. nat. Acad. Sci. (Wash.) 69, 1545–1549 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Wilson, G. A., Bott, K. F.: Nutritional factors influencing the development of competence. In Bacillus subtilis transformation system. J. Bact. 95, 1439–1449 (1968).

    PubMed  CAS  Google Scholar 

  • Yasunaka, K., Tsukamoto, H., Okubo, S., Horiochi, T.: Isolation and properties of suppressor-sensitive mutants of Bacillus subtilis bacteriophage SPO2. J. Virol. 5, 819–821 (1970).

    PubMed  CAS  Google Scholar 

  • Young, E. T., Sinsheimer, K. L.: Vegetative bacteriophage λ DNA. I. Infectivity in a spheroplast assay. J. molec. Biol. 30, 147–164 (1967).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag, Berlin · Heidelberg

About this paper

Cite this paper

Trautner, T.A., Spatz, H.C. (1973). Transfection in B. subtilis. In: Arber, W., et al. Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung. Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65772-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65772-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65774-0

  • Online ISBN: 978-3-642-65772-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics