Neural Control of Temperature Adaptation in Rana temporaria

  • Mikko N. E. Harri


Despite the contradictory results of several investigations it seems probable that the thyroid gland plays an important role in temperature acclimation not only in mammals but also in amphibians (c. f. Jankowsky, I960, 1964; Gorbman, 1964). Temperature acclimation in mammals is known to be controlled both by endocrine glands and the nervous system (e.g., Hsieh and Carlsson, 1957; Depocas, 1960; Héroux, 1962; LeBlanc, 1969), whereas in Poikilothermic vertebrates the role of the nervous system in temperature regulation is still uncertain. Differences exist even within homeotherms since the calorigenic response to noradrenaline, well documented in mammals, seem sto be lacking in birds (Hart, 1962; Hissa and Palokangas, 1970; Palokangas and Hissa, 1971).


Oxygen Consumption Cold Acclimation Ground Squirrel Neural Control Temperature Acclimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andén, N.-E., Corrodi, H., Fuxe, K.: Turnover studies using synthesis inhibition. In: Hooper, G. (Ed.): Metabolism of Amines in the Brain, p. 38–47. St. Albans: Fisher, Knight & Co. 1969.Google Scholar
  2. Angelakos, E. T., Glassman, P. M., Millard, R. W., King, M.: Regional distribution and subcellular localization of catecholamines in the frog heart. Comp. Biochem. Physiol. 15, 313–324 (1965).PubMedCrossRefGoogle Scholar
  3. Azuma, T., Binia, A., Visscher, M. B.: Adrenergic mechanism in the bullfrog and turtle. Am. J. Physiol. 209, 1287–1294 (1965).PubMedGoogle Scholar
  4. Brattstrom, B. H.: Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24, 93–111 (1968).PubMedCrossRefGoogle Scholar
  5. Brodie, B. B., Bogdanski, D. F.: Biogenic amines and drug action in the nervous system of various vertebrate classes. Progr. Brain Res. 9, 234–242 (1964).CrossRefGoogle Scholar
  6. Corrodi, H., Fuxe, K., Hökfelt, T.: A possible role played by central monoamine neurones in thermo-regulation. Acta Physiol. Scand. 71, 224–232 (1967).PubMedCrossRefGoogle Scholar
  7. Depocas, F.: The calorigenic response of cold-acclimated white rats to infused noradrenaline. Can. J. Biochem. Physiol. 38, 107–114 (1960).PubMedCrossRefGoogle Scholar
  8. Draskóczy, P. R., Lyman C. P.: Turnover of catecholamines in active and hibernating ground squirrels. J. Pharmacol. Exptl. Therap. 155, 101–111 (1967).Google Scholar
  9. Feldberg, W., Myers, R. D.: A new concept of temperature regulation by amines in the hypothalamus. Nature (London) 200, 1325 (1963).CrossRefGoogle Scholar
  10. Feldberg, W., Myers, R. D.: Effects on temperature of amines injected into the cerebral ventricles. A new concept of temperature regulation. J. Physiol. (London) 173, 226–237 (1964).Google Scholar
  11. Freeman, B. M.: Thermoregulatory mechanisms of the neonate fowl. Comp. Biochem. Physiol. 33, 219–230 (1970).CrossRefGoogle Scholar
  12. Garattini, S., Valzelli, L.: Serotonin, p. 392 Amsterdam: Elsevier 1965.Google Scholar
  13. Gorbman, A.: Endocrinology of the amphibia. In: Moore, J. A. (Ed.): Physiology of the Amphibia, p. 371–425. New York and London: Academic Press 1964.Google Scholar
  14. Harri, M. N. E.: Effect of season and temperature acclimation on the 5-hydroxytryptamine level and utilization in the brain and intestine of the frog, Rana temporaria. Comp. Gen. Pharmacol. 3, 11–18 (1972a).CrossRefGoogle Scholar
  15. Harri, M. N. E.: Effect of Season and temperature acclimation on the tissue catecholamine level and utilization in the frog, Rana temporaria. Comp. Gen. Pharmacol. 3, 101–112 (1972b).CrossRefGoogle Scholar
  16. Harri, M. N. E., Hedenstam, R.: Calorigenic effect of adrenaline and noradrenaline in the frog, Rana temporaria. Comp. Biochem. Physiol. 41A, 409–419 (1972).CrossRefGoogle Scholar
  17. Harri, M. N. E., Hedenstam, R., Lindgren, E., Puuska, M.: Calorigenic effect of 5-hydroxytryptamine in the frog, Rana temporaria. Comp. Biochem. Physiol. 43A, 545–552 (1972).CrossRefGoogle Scholar
  18. Harri, M. N. E., Lindgren, E.: Adrenergic control of carbohydrate metabolism in the frog, Rana temporaria. Comp. Gen. Pharmacol. 3, 226–234 (1972).PubMedCrossRefGoogle Scholar
  19. Harri, M. N. E., Tirri, R.: Brain monoamines in the temperature acclimation of mice. Acta Physiol. Scand. 75, 631–635 (1969).PubMedCrossRefGoogle Scholar
  20. Hart, J. S.: Seasonal acclimatization in four species of wild birds. Physiol. Zool. 35, 224–236 (1962).Google Scholar
  21. Héroux, O.: Seasonal adjustments in captured wild Norway rats — II. Survival time, pelt insulation, shivering and metabolic and pressor responses to noradrenalin. Can. J. Biochem. Physiol. 40, 405–414 (1962).Google Scholar
  22. Hissa, R., Palokangas, R.: Thermoregulation in the titmouse (Parus major L.). Comp. Biochem. Physiol. 33, 941–953 (1970).CrossRefGoogle Scholar
  23. Holzapfel, R. A.: The cyclic character of hibernation in frogs. Quart. Rev. Biol. 12, 65–84 (1937).CrossRefGoogle Scholar
  24. Hsieh, A. C., Carlsson, D. L.: Role of adrenaline and noradrenaline in chemical regulation of heat production. Am J. Physiol. 190, 243–245 (1957).PubMedGoogle Scholar
  25. Jankowsky, H. D.: Über die hormonale Beeinflussung der Temperaturadaptation beim Grasfrosch (Rana temporaria L.). Z. Vergleich. Physiol. 43, 392–410 (1960).CrossRefGoogle Scholar
  26. Jankowsky, H. D.: Die Bedeutung der Hormone für die Temperaturanpassung im normalen Temperaturbereich. Helgoländer Wiss. Meeresuntersuch. 9, 412–419 (1964).CrossRefGoogle Scholar
  27. Julku, H., Lagerspetz, K. Y. H., Tirri, R.: The diurnal variation of thermoregulatory efficiency in mice. Ann. Zool. Fennici 7, 375–377 (1970).Google Scholar
  28. Kärki, N. T., Lahovaara, S.: Identification and assay of 5-hydroxytryptamine in brain and intestine of lower vertebrates. Ann. Med. Exptl. Fenniae 43, 419–423 (1965).Google Scholar
  29. Le Blanc, J.: Stress and interstress adaptation. Federation Proc. 28, 996–1000 (1969).Google Scholar
  30. Le Blanc, J., Pouliot, M.: Importance of noradrenaline in cold adaptation. Am. J. Physiol. 207, 853–856 (1964).Google Scholar
  31. Leduc, J.: Catecholamine production and release in exposure and acclimation to cold. Acta Physiol. Scand. 53 (Suppl. 183) (1961).Google Scholar
  32. Melander, A., Nilsson, E., Sundler, F.: Sympathetic activation of thyroid hormone secretion in mice. Endocrinology 90, 194–199 (1972).PubMedCrossRefGoogle Scholar
  33. Melander, A., Sundler, F.: Interactions between catecholamines, 5-hydroxytryptamine and TSH on the secretion of thyroid hormone. Endocrinology 90, 188–193 (1972).PubMedCrossRefGoogle Scholar
  34. Moore, K. E., Calvert, D. N., Brody, T. M.: Tissue catecholamine content of cold-acclimated rats. Proc. Soc. Exptl. Biol. Med. 106, 816–818 (1961).Google Scholar
  35. Musacchia, X. J., Jellinek, M., Cooper, T.: Effect of hibernation and cold torpor on tissue catecholamine content. Proc. Soc. Exptl. Biol. Med. 110, 856–857 (1962).Google Scholar
  36. Palokangas, R., Hissa, R.: Thermoregulation in young blackheaded gull (Larus ridibundus L.). Comp. Biochem. Physiol. 38A, 743–750 (1971).CrossRefGoogle Scholar
  37. Segura, E. T., Biscardi, A. M., Apelbaum, J.: Seasonal variations of brain epinephrine, norepinephrine and 5-hydroxytryptamine associated with changes in the EEG of the toad, Bufo arenarum Hensel. Comp. Biochem. Physiol. 22, 843–850 (1967).PubMedCrossRefGoogle Scholar
  38. Spafford, D. C., Pengelley, E. T.: The influence of the neurohumor serotonin on hibernation in the golden-manteled ground squirrel. Citellus lateralis. Comp. Biochem. Physiol. 38, 239–250 (1971).CrossRefGoogle Scholar
  39. Svensson, T. H. S., Waldeck, B.: On the significance of central noradrenaline for motor activity: experiments with a new dopamine-hydroxylase inhibitor. Eur. J. Pharmacol. 7, 278–282 (1969).PubMedCrossRefGoogle Scholar
  40. Tirri, R.: Brain monoamines in the control of body temperature in mice. Ann. Zool. Fennici 7, 323–328 (1970).Google Scholar
  41. Tirri, R.: Central effects of 5-hydroxytryptamine and noradrenaline on body temperature and oxygen consumption in infant rats. Experientia 27, 274–276 (1971).PubMedCrossRefGoogle Scholar
  42. Toh, C. C.: Effects of temperature on the 5-hydroxytryptamine (serotonin) content of tissues. J. Physiol. (London) 151, 410–415 (1960).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • Mikko N. E. Harri

There are no affiliations available

Personalised recommendations