Skip to main content

Molecular Mechanisms of Temperature Adaptation in Arctic Ectotherms and Heterotherms

  • Chapter
Effects of Temperature on Ectothermic Organisms

Abstract

The dispersion into and exploitation of the Arctic by northern organisms has been made possible by the evolutionary development of metabolic characteristics which permit the animal to maintain and control its metabolic processes in an environment of low, and sometimes widely changing, temperatures. The molecular mechanisms of adaptation to temperature appear to be exceedingly complex, and a large literature on the subject has accumulated (see Hochachka and Somero, 1971, for a recent review). One of the more outstanding observations in recent years is that numerous physiologic functions in ectotherms are insensitive to temperature (Newell, 1966, 1967; Newell and Northcroft, 1967) and thus there must be mechanisms which permit the animal’s metabolism to remain independent of thermal change. There is a steadily growing literature on the mechanisms possibly responsible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assaf, S.A., Graves, D. J.: Structure and catalytic properties of lobster muscle glycogen Phosphorylase. J. Biol. Chem. 244, 5544–5555 (1969).

    PubMed  CAS  Google Scholar 

  • Baldwin, J., Hochachka, P. W.: Functional significance of isozymes in thermal acclimation. Acetylcholinesterase from trout brain. Biochem. J. 116, 883–889 (1970).

    PubMed  CAS  Google Scholar 

  • Bartholomew, G. A.: Body Temperature and Metabolism. In: Gordon, M. S. (Ed.): Animal Function: Principles and Adaptation, p. 290–354. London: The Macmillan Comp. Ltd. 1968.

    Google Scholar 

  • Behrisch, H. W.: Temperature and the regulation of enzyme activity in poikilotherms. Regulatory properties of fish fructose diphosphatase. Ph. D. Thesis, p. 125. University of British Columbia 1969 a.

    Google Scholar 

  • Behrisch, H. W.: Temperature and the regulation of enzyme activity in poikilotherms. Fructose disphosphatase from migrating salmon. Biochem. J. 115, 687–696 (1969b).

    PubMed  CAS  Google Scholar 

  • Behrisch, H. W.: Temperature and the regulation of enzyme activity in poikilotherms. Regulatory properties of fructose diphosphatase from muscle of the Alaskan king crab. Biochem. J. 121, 399–409 (1971).

    PubMed  CAS  Google Scholar 

  • Behrisch, H. W.: Molecular mechanisms of adaptation to low temperature in marine poikilotherms. Some regulatory properties of dehydrogenases from two arctic species. Mar. Biol. 13, 267–275 (1972a).

    Article  CAS  Google Scholar 

  • Behrisch, H. W.: Regulation by phosphoenolpyruvate of fructose 1,6-diphosphatase in skeletal muscle: evidence for an allosteric activator of the enzyme. Can. J. Biochem. 50, 710–713 (1972b).

    Article  PubMed  CAS  Google Scholar 

  • Behrisch, H. W., Hochachka, P. W.: Temperature and the regulation of enzyme activity in poikilotherms. Properties of trout fructose-diphosphatase. Biochem. J. 111, 287–295 (1969 a).

    PubMed  CAS  Google Scholar 

  • Behrisch, H. W., Hochachka, P. W.: Temperature and the regulation of enzyme activity in poikilotherms. Properties of lungfish fructose-diphosphatase. Biochem. J. 112, 601–607 (1969 b).

    PubMed  CAS  Google Scholar 

  • Burlington, R. F.: Recent advances in intermediary metabolism of hibernating mammals. In: Hibernation-Hypothermia: perspectives and challenges, p. 3–16. Amsterdam: Elsevier Publ. Co. 1972.

    Google Scholar 

  • Bygrave, F. L.: Studies on the interaction of metal ions with pyruvate kinase from Ehrlich ascites tumor cells and from rabbit muscle. Biochem. J. 101, 488–494 (1966).

    PubMed  CAS  Google Scholar 

  • Bygrave, F. L.: The ionic environment and metabolic control. Nature (London) 214, 667–671 (1967).

    Article  CAS  Google Scholar 

  • Caldwell, R. S., Vernberg, F. J.: The influence of acclimation temperature on the lipid composition of fish gill mitochondria. Comp. Biochem. Physiol. 34, 179–191 (1970).

    Article  CAS  Google Scholar 

  • Changeux, J. P.: Allosteric interactions interpreted in terms of quaternary structure. Brook-haven Symp. Biol. 17, 232–249 (1964).

    CAS  Google Scholar 

  • Cowey, C. P.: Comparative studies on theactivity of D-glyceraldehyde-3-phosphate dehydrogenase from cold- and warm-blooded animals with reference to temperature. Comp. Biochem. Physiol. 23, 696–976 (1967).

    Google Scholar 

  • Dean, J. M.: The metabolism of tissues of thermally acclimated trout (Salmo gairdneri). Comp. Biochem. Physiol. 29, 185–196 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Dixon, M., Webb, E. D.: The Enzymes. 2nd Ed., p. 950. London: Longmans, Green and Co. 1964.

    Google Scholar 

  • Ekberg, D. R.: Respiration in tissues of goldfish adapted to high and low temperatures. Biol. Buü. 114, 308–316 (1958).

    Article  CAS  Google Scholar 

  • Ekberg, D. R.: Respiration in tissues of goldfish adapted to high and low temperatures. Biol. Bull. 114, 308–316 (1958).

    Article  CAS  Google Scholar 

  • Ekberg, D. R.: Aerobic and anaerobic metabolism in gills of the crucian carp adapted to high and low temperatures. Comp. Biochem. Physiol. 5, 123–128 (1962).

    Article  CAS  Google Scholar 

  • Exton, J. H., Park, C. R.: Gluconeogenesis in liver: effects of adrenalectomy, Cortisol, and glucagon. Federation Proc. 24, 537 a (1965).

    Google Scholar 

  • Feltz, E. T., Fay, F. H.: Thermal requirements in vitro of epidermal cells from seals. Cryobiology 3, 261–264 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Galster, W. A., Morrison, P. R.: Cyclic changes in carbohydrate concentrations during hibernation in the arctic ground squirrel. Am. J. Physiol. 218, 1228–1232 (1970).

    PubMed  CAS  Google Scholar 

  • Gerhart, J. C.: Subunits for control and catalysis in aspartate transcarbamylase. Brookhaven Symp. Biol. 17, 222–231 (1964).

    PubMed  CAS  Google Scholar 

  • Hannon, J. P., Beyer, R. E., Burlington, R. F., Somero, G. N., Bland, J. H.: A guide for future studies of low temperature metabolic function. In: Hibernation-Hypothermia: perspectives and challenges, p. 99–119. Amsterdam: Elsevier Publ. Co. 1972.

    Google Scholar 

  • Haschemayer, A. E. V.: Compensation of liver protein synthesis in temperature-acclimated toadfish, Opsanus tau. Biol. Bull. 135, 130–140 (1968).

    Article  Google Scholar 

  • Helmreich, E., Cori, C.: The effects of pH and temperature on the kinetics of the Phosphorylase reaction. Proc. Natl. Acad. Sci. U.S. 52, 647–654 (1964).

    Article  CAS  Google Scholar 

  • Hickman, C. P., McNab, R. A., Nelson, J. S., Van Breemen, E. D., Comfort, D.: Effect of cold acclimation on electrolyte distribution in rainbow trout (Salmo gairderni). Can. J. Zool. 42, 577–597 (1964).

    Article  CAS  Google Scholar 

  • Hochachka, P. W., Hayes, F. R.: The effect of temperature acclimation on pathways of glucose metabolism in the trout. Can. J. Zool. 40, 261–270 (1962).

    Article  CAS  Google Scholar 

  • Hochachka, P. W., Lewis, J. S.: Temperature and regulation of citrate synthase variants. J. Biol. Chem. 264, 1544–1552 (1971).

    Google Scholar 

  • Hochachka, P. W., Somero, G. N.: The adaptation of enzymes to temperature. Comp. Biochem. Physiol. 27, 659–668 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Hochachka, P. W., Somero, G. N.: Biochemical adaptation to the environment. In: Hoar, W. S., Randall, D. J. (Eds.): Fish physiology, Vol. 6, p. 100–156. London: Academic Press 1971.

    Google Scholar 

  • Horecker, B. L., Pontremoli, S., Rosen, S., Rosen, O.: Structure and function in fructose diphosphatase. Federation Proc. 25, 1521–1528 (1966).

    CAS  Google Scholar 

  • Houston, A. H.: Osmoregulatory adaptation of steelhead trout (Salmo gairdneri). Can. J. Zool. 37, 729–748 (1959).

    Article  CAS  Google Scholar 

  • Houston, A. H., Madden, J.: Environmental temperature and plasma electrolytic regulation in the carp Cyprius carpio. Nature (London) 217, 969–970 (1968).

    Article  CAS  Google Scholar 

  • Houston, A. H., Madden, J., de Wilde, M. A.: Environmental temperature and the body fluid system of the fresh water teleost IV. Water-electrolyte regulation in thermally acclimated carp, Cyprius carpio. Comp. Biochem. Physiol. 34, 805–818 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Irving, L., Schmidt-Nielsen, K., Abrahamson, N. S. B.: On the melting point of animal fats in cold climates. Physiol. Zool. 30, 93–105 (1957).

    CAS  Google Scholar 

  • Iwatsuki, N., Okazaki, R.: Mechanisms of regulation of deoxythymidine kinase Escherichia coli. II. Effect of temperature on the enzyme’s activity and its kinetics. J. Mol. Biol. 29, 155–165 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P. R., Hartmann, C. W.: Environmental atlas of Alaska, p. 111. College, Alaska: Univ. of Alaska Press 1971.

    Google Scholar 

  • Kanungo, M. S., Prosser, C. L.: Physiological and biochemical adaptation of goldfish to cold and warm temperatures. I. Standard and active oxygen consumption of cold- and warm-acclimated goldfish at various temperatures. J. Cellular Comp. Physiol. 54, 265–273 (1959).

    Article  CAS  Google Scholar 

  • Krebs, H. A.: Renal gluconeogenesis. Advan. Enzyme Regulation 1, 385–400 (1963).

    Article  CAS  Google Scholar 

  • Meng, M. S., West, G. C., Irving, L.: Fatty acid composition of caribou bone marrow. Comp. Biochem. Physiol. 30, 187–191 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Miller, L. K.: Caudal nerve function as related to temperature in some Alaskan mammals. Comp. Biochem. Physiol. 21, 679–686 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Miller, L. K.: Temperature-dependent characteristics of peripheral nerves exposed to different thermal conditions in the same animal. Can. J. Zool. 48, 75–81 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Miller, L. K., Irving, L.: Temperature-related function in warm and cold-acclimated musk-rats. Am. J. Physiol. 231, 1295–1298 (1967).

    Google Scholar 

  • Monod, J. P., Wyman, J., Changeux, J. P.: On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Moon, T. W.: Isozymes in temperature acclimation: trout NADP+ linker isocitrate dehydrogenase. Federation Proc. 29, 400 a (1970).

    Google Scholar 

  • Morris, D., Smith, M. W.: Protein synthesis in the intestine of goldfish acclimatized to different temperatures. Biochem. J. 102, 648–653 (1967).

    PubMed  CAS  Google Scholar 

  • Newell, R. C.: Effect of temperature on the metabolism of poikilotherms. Nature (London) 212, 426–428 (1966).

    Article  CAS  Google Scholar 

  • Newell, R. C.: Oxidative activity of poikilotherm mitochondria as a function of temperature. J. Zool. (London) 151, 299–311 (1967).

    CAS  Google Scholar 

  • Newell, R. C., Northcroft, H. R.: A re-interpretation of the effect of temperature on the metabolism of certain marine invertebrates. J. Zool. (London), 151, 277–298 (1967).

    Google Scholar 

  • Newsholme, E. A., Gevers, W.: Control of glycolysis and gluconeogenesis in liver and kidney cortex. Vitamins and Hormones 25, 1–87 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Noble, R. W.: Relation between allosteric effects and changes in the energy of bonding between molecular subunits. J. Mol. Biol. 39, 479–491 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Precht, H.: Ergänzende Versuche zur Bedeutung des Blutes für die Temperaturadaptation bei Fischen. Zool. Anz. 175, 301–310 (1964).

    Google Scholar 

  • Precht, H.: Ãœber die Bedeutung des Blutes für die Temperaturadaptation von Fischen. Zool. Jahrb. Abt. Allg. Zool. Physiol. 71, 313–328 (1965).

    Google Scholar 

  • Rahn, H.: Gas transport from the external environment to the cell. In: de Reuck, A. V. S., Porter, R. (Eds.): Ciba Foundn. Symp. on the development of the lung, p. 3–23. Boston: Little, Brown and Co. 1965.

    Google Scholar 

  • Rao, K. P.: Physiology of acclimation to low temperature in poikilotherms. Science, N. Y. 137, 682–683 (1962).

    Article  CAS  Google Scholar 

  • Rao, K. P.: Biochemical correlates of temperature acclimation. In: Prosser, C. L. (Ed.): Molecular mechanisms of temperature adaptation, p. 227–244. Washington, D. C.: AAAS Press 1967.

    Google Scholar 

  • Reeves, R., Wilson, T.: Intracellular pH in bullfrog striated and cardiac muscle as a function of body temperature. Federation Proc. 28, 782a (1969).

    Google Scholar 

  • Robin, E.: Relationship between temperature and plasma pH and carbon dioxide tension in the turtle. Nature (London) 195, 249, 251 (1962).

    Google Scholar 

  • Schimke, R. T.: Differential effects of fasting and protein-free diets on levels of urea enzymes in rat liver. J. Biol. Chem. 237, 1921–1924 (1962).

    PubMed  CAS  Google Scholar 

  • Schimke, R. T.: Roles of synthesis and degradation in regulation of enzyme levels in mammalian tissues. Current Topics Cell. Regul. 11, 77–124 (1969).

    Google Scholar 

  • Scholander, P. F., Flagg, W., Waters, V., Irving, L.: Climatic adaptation in arctic and tropical poikilotherms. Physiol. Zool. 26, 67–92 (1953).

    Google Scholar 

  • Scholander, P. F., Schevill, W. E.: Counter-current heat exchange in the tins of whales. J. Appl. Physiol. 8, 279–282 (1955).

    PubMed  CAS  Google Scholar 

  • Somero, G. N., Giese, A. C., Wohlschlag, D.: Cold adaptation in the Antarctic fish Trematomus bernachii. Comp. Biochem. Physiol. 26, 223–233 (1968).

    Article  Google Scholar 

  • Somero, G. N., Hochachka, P. W.: The effect of temperature on catalytic and regulatory function of pyruvate kinase of the rainbow trout and the Antarctic fish Trematomus bernachii. Biochem. J. 110, 395–400 (1968).

    PubMed  CAS  Google Scholar 

  • Taketa, K., Pogell, B.: Allosteric inhibition of rat liver fructose diphosphatase by adenosine 5’ monophosphate. J. Biol. Chem. 240, 651–662 (1965).

    PubMed  CAS  Google Scholar 

  • Toews, D., Hickman, C. P.: The effect of cycling temperatures on electrolyte balance in skeletal muscle and plasma of rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 29, 905–918 (1969).

    Article  CAS  Google Scholar 

  • Umminger, B. L.: Physiological studies on super-cooled killifish (Fundulus heteroclitus). I. Serum inorganic constituents in relation to osmotic and ionic regulation at subzero temperatures. J. Exptl. Zool. 172, 283–302 (1969).

    Article  CAS  Google Scholar 

  • Umminger, B. L.: Osmoregulation by killifish in fresh water at temperatures near freezing. Nature (London) 210, 421–422 (1970).

    Google Scholar 

  • Weber, G., Singhal, R. L., Srivastava, S. K.: Action of glucocorticoid as inducer and insulin as suppressor of biosynthesis of hepatic gluconeogenic enzymes. Ad van. Enzyme Regulation 4, 43–75 (1965).

    Article  Google Scholar 

  • Wohlschlag, D.E.: Respiratory metabolism and ecological characteristics of some fishes in McMurdo Sound, Antarctica. In: Lee, Mo. O. (Ed.): Biology of the Antarctic Seas, Washington, D. C.: American Geophys. Union. 1, 33–62 (1964).

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Behrisch, H.W. (1973). Molecular Mechanisms of Temperature Adaptation in Arctic Ectotherms and Heterotherms. In: Wieser, W. (eds) Effects of Temperature on Ectothermic Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65703-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65703-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65705-4

  • Online ISBN: 978-3-642-65703-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics