Advertisement

Metabolic Changes Induced by Ionizing Radiations

  • Paul Todd
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 38 / 1)

Abstract

Metabolic changes induced by ionizing radiations fall into two categories: those that follow the primary radiation events and lead to subcellular damage and cell lethality and those that are consequences of cell lethality and tissue damage. The former are observable shortly after irradiation and can be found in isolated cellular systems. The latter cannot be observed in isolated cell systems and are limited to whole organisms, usually with considerable lag after radiation exposure.

Keywords

Metabolic Change Cell Lethality Strand Scission Histone Phosphorylation Histone Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlström, L., von Etiler, H., von Hevesy, G.: Die Wirkung der Röntgenstrahlen auf den Nucleinsäureumsatz in den Organen der Ratte. Arkiv Kemi Mineral. Geol. 19 A, 1–16 (1944).Google Scholar
  2. Bacq, Z.M., Alexander, P.: Fundamentals of radiobiology, 2nd ed. Oxford: Pergamon Press 1961.Google Scholar
  3. Barron, E.S.G., Dickman, S.R.: Studies on the mechanism of ionizing radiations. II. Inhibition of sulfhydryl enzymes by alpha, beta, and gamma rays. J. gen. Physiol. 32, 595–607 (1949).PubMedGoogle Scholar
  4. Bases, R., Méndez, F.: Delayed inhibition of histone synthesis despite prompt inhibition of DNA synthesis in x-irradiated Hela cells. Radiat. Res. 47, 258 (1971).Google Scholar
  5. Becker, R.R., Kung, H-C., Barb, N.F., Pearson, O.S., King, C.G.: Nutritional and biochemical effects of irradiation. Food Technol. 10, 61–64 (1956).Google Scholar
  6. Becker, Y., Levitt, J.: Stimulation of macromolecular processes in BSC1 cells due to medium replenishment. Exp. Cell Res. 51, 1–11 (1968).Google Scholar
  7. Benjamin, E., Sluka, E.: Antikörperbildung nach Experimenteller Schädigung des Hematopoetischen Systems durch Röntgenstrahlen. Wien. Klin. Wochenschr. 21, 311–313 (1908).Google Scholar
  8. Bernstein, M.H.: Deoxyribonucleoprotein of cell nuclei: sensitivity to x-rays. Nature (Lond.) 174, 463 (1954).Google Scholar
  9. Bond, V.P., Fliedner, T.M., Archambeau, J.O.: Mammalian radiation lethality. New York: Academic Press 1965.Google Scholar
  10. Brin, M., McKee, R.W.: Effects of x-irradiation, nitrogen mustard, fasting, cortisone, and adrenalectomy on transaminase activity in the rat. Arch. Biochem. Biophys. 61, 384–389 (1964).Google Scholar
  11. Brinkman, R., Lamberts, H.B.: Direct registration of an instantaneous x-ray effect in rats and man. Nature (Lond.) 181, 774–775 (1958).Google Scholar
  12. Brinkman, R., Lamberts, H.B.: Examples of immediate low-level x-ray effects: their significance for the study of chemical protection. Int. J. Radiat. Biol. Suppl. 1, 167 (1960).Google Scholar
  13. Budilova, E.V., Kuzin, A.M.: Disaggregation by ionizing radiation in deoxyribose nucleo-protein filaments. Biofizika 2, 476–479 (1957).Google Scholar
  14. Budilova, E.V., Kuzin, A.M.: Disaggregation by ionizing radiation in deoxyribose nucleo-protein filaments. Biophysics 2, 467–470 (1957).Google Scholar
  15. Butler, J. A. V.: The action of ionizing radiation on biological materials. Radiat. Res. 4, 20–32 (1956).PubMedGoogle Scholar
  16. Cole, L.J., Ellis, M.E.: Physicochemical alterations in spleen deoxyribonucleoprotein after in vitro x-irradiation with 850 R. Radiat. Res. 5, 252–266 (1956).PubMedGoogle Scholar
  17. Creasey, W. A., Stocken, L. A.: The effect of ionizing radiation on nuclear phosphorylation in the radiosensitive tissues of the rat. Biochem. J. 72, 519–523 (1959).PubMedGoogle Scholar
  18. Dale, W.M., Davies, J.V.: The liberation of sulphide hydrogen by x-radiation from cysteine and glutathione. Biochem. J. 48, 129–132 (1951).PubMedGoogle Scholar
  19. Dalrymple, G.V., Sanders, J.L., Moss, A. J., Jr., Baker, M.L„ Wilkinson, K.P.:Energy dependent nucleolytic processes are responsible for the production of many post-irradiation breaks in L-cell DNA. Biochem. biophys. Res. Comm. 36, 284–288 (1969).PubMedGoogle Scholar
  20. Deakin, H., Ord, M.G., Stocken, L.A.: Glucose-6-phosphate dehydrogenase activity and thiol content of thymus nuclei from control and x-irradiated rats. Biochem. J. 89, 296–304 (1963).PubMedGoogle Scholar
  21. Elkind, M.M.: DNA: a principal target (or a target of principle) in the radiation lethality o mammalian cells? Radiat. Res. 47, 315 (1971).Google Scholar
  22. Elkind, M.M., Kamper, C.: Two forms of repair in mammalian cells following irradiation. Biophys. J. 10, 237–245 (1970).PubMedGoogle Scholar
  23. Elkind, M.M., Sakamoto, K., Kamper, C.: Age dependent toxic properties of actinomycin D and x-rays in cultured Chinese hamster cells. Cell Tissue Kinet. 1, 209–224 (1969).Google Scholar
  24. Euler, H.V., Hevesy, G.V.: Wirkung der Röntgenstrahlen auf den Umsatz der Nuklein-säure in Jensen-Sarkom. Akiv. Kemi Mineral. Geol. 17A, 1–60 (1944).Google Scholar
  25. Evans, T.C., Leeper, D.B., Schenken, L. L.: Further analysis of the effects of fractionation of x-irradiation on DNA synthesis and mitosis in ascites tumor cells. Radiat. Res. 43, 217–218 (1970).Google Scholar
  26. Fisher, W.D., Anderson, N.G., Wilbur, K.M.: Studies on nuclei. II. Effects of x-rays on deoxyribonucleoprotein from rat thymus. Exp. Cell Res. 18, 481–493 (1959).PubMedGoogle Scholar
  27. Fliedner, T.M.: Zur Hämatologie des Akuten Strahlensyndroms. Strahlentherapie 112, 543–560 (1960).PubMedGoogle Scholar
  28. Fritz-Niggli, H.: Enzymatische Strahlenschädigung von Lebermitochondrien durch die mini- male Röntgendosis von 0, 1 r. Naturwiss. 43, 225–226 (1956).Google Scholar
  29. Gelbard, A.S., Perez, A.H., Kim, J.H.: The effect of irradiation on thymidine kinase activity in synchronous populations of Hela cells. Radiat. Res. 43, 219 (1970).Google Scholar
  30. Gilbert, C.W., Paterson, E., Haigh, M.V., Schofield, R.: Red-cell and plasma-volume changes in the Rhesus monkey after whole-body irradiation by x-rays. Int. J. Radiat, Biol. 5, 9–23 (1962).Google Scholar
  31. Gordy, W., Ard, W.B., Shields, H.: Microwave spectroscopy of biological substances. I. Paramagnetic resonance in x-irradiated amino acids and proteins. Proc. nat. Acad. Sci. (Wash.) 41, 983–996 (1955).Google Scholar
  32. Groedel, F., Lossen, H.: Über den Röntgenkater. Strahlentherapie 13, 756–757 (1922).Google Scholar
  33. Gronow, M., Todd, P.: The synthesis of deoxyribonucleic acid and nuclear proteins by rat hepatoma cells immediately after gamma irradiation. Radiat. Res. 39, 705–715 (1969).PubMedGoogle Scholar
  34. Gurley, L.R., Hardin, J.M., Walters, R.A.: The response of histone fractions to x-irradiation in cultured Chinese hamster cells. Biochem. biophys. Res. Commun. 38, 290–297 (1970).PubMedGoogle Scholar
  35. Hagemann, R., Evans, T. C.: The effect of x-irradiation on glycine transport in Ehrlich Ascites tumor cells. Radiat. Res. 33, 371–380 (1968).PubMedGoogle Scholar
  36. Hevesy, G.V.: Effect of x-rays on the incorporation of carbon-14 into animal tissue. Nature (Lond.) 164, 269 (1949).Google Scholar
  37. Hewitt, R., Marburger, K.: UV sensitivity of DNA containing 5-bromouracil. Biophys. Soc. Abstr. 11, 279 (1971).Google Scholar
  38. Hilton, J., Stocken, L.A.: The role of thiol groups in the modification of the template activity of histone-deoxyribonucleic acid complexes. Biochem. J. 100, 21C (1966).Google Scholar
  39. Holmes, B.E.: The indirect effect of x-rays on the synthesis of nucleic acids in vivo, Brit. J. Radiol. 22, 487 (1949).PubMedGoogle Scholar
  40. Holmes, B.E.:Influence of radiation on metabolism of regenerating rat liver. Ionizing radiation and cell metabolism, (Wolstenholme, G.E.W. and O’Connor, C.M., Eds.), pp. 225–283. London: Ciba 1956.Google Scholar
  41. Jackson, D.P., Cronkite, E.P., LeRoy, G.V., Halpern, B.: Further studies on the nature of the hemorrhagic state in radiation injury. J. Lab. clin. Med. 39, 449–461 (1952).PubMedGoogle Scholar
  42. Jackson, K.L., Rhodes, R., Entenman, C.: Electrolyte excretion in the rat after severe intestinal damage by x-irradiation. Radiat. Res. 8, 361–373 (1958).PubMedGoogle Scholar
  43. Kargaonkar, K.S., Desai, A.M.: Monolayer technique to study effects of ionizing radiations on histone. Radiat. Res. 11, 625–635 (1959).Google Scholar
  44. Kaufman, B.P., McDonald, M.R., Bernstein, M.H.: Cytochemical studies of changes induced in cellular materials by ionizing rudiations. Ann. N.Y. Acad. Sci. 59, 553–566 (1955).Google Scholar
  45. Kay, R.E., Entenman, C.: Hyperglycemia and increased liver glycogen in rats after x-irradiation. Proc. Soc. exp. Biol. (N.Y.) 91, 143–146 (1956).Google Scholar
  46. Klouwen, H.M.: Radiosensitivity of nuclear ATP synthesis and its relation to inhibition of mitosis, pp. 142–166. In: Cellular radiation biology. Baltimore: Williams and Wilkins 1965.Google Scholar
  47. Kohn, H.L.: Effect of x-rays upon hemolysin production in the rat. J. Immunol. 66, 525–533 (1951).PubMedGoogle Scholar
  48. Langan, T.A.: Histone phosphorylation: stimulation by adenosine 3′, 5′-monophosphate. Science 162, 579–580 (1968).PubMedGoogle Scholar
  49. Lenherr, A.D., Charlesby, A., Singh, B.B.: Energy transfer in nucleoproteins. Int. J. Rad. Biol. 12, 51–60 (1967).Google Scholar
  50. Lessler, M.A.: Modification of human erythrocyte respiration by x-rays. Radiat. Res. 9, 144 (1958).Google Scholar
  51. Lett, J.T.: The restoration of chromosomal DNA structure in x-irradiated cells. Radiat. Res. 47, 313–314 (1971).Google Scholar
  52. Lett, J.T., Caldwell, I., Dean, C.J., Alexander, P.: Rejoining of x-ray induced breaks in the DNA of leukaemia cells. Nature (Lond.) 214, 790–792 (1967).Google Scholar
  53. Little, J.B.: Differential response of cultured human cells to irradiation in the exponential and plateau phases of growth. Radiat. Res. 39, 504–505 (1970).Google Scholar
  54. Logan, R., Errera, M., Ficq, A.: The effect of x-rays and ultraviolet light on the uptake in vitro of (8–14C)-adenine and (2–14C)-phenylalanine by isolated nuclei. Biochim. biophys. Acta (Amst.) 32, 147–155 (1959).Google Scholar
  55. Lushbaugh, C.C., Comas, F., Saenger, E.L., Jacobs, M., Hofstra, R., Andrews, G. A.: Radio-sensitivity of man by extrapolation from studies of total body irradiation of patients. Radiat. Res. 27, 487–488 (1966).Google Scholar
  56. Mathé, G., Jammet, H.P., Pendic, B., Schwarzenberg, L., Duplan, J.F., Maupin, B., Latarjet, R., Lattrien, M.J., Kalic, D., Djukic, L.: Transfusions et grefes de moelle osseusl homologue chez de humains irradiés à haute dose accidentellement. Rev. Franc. Etudes Clin. Biol. 4, 226–238 (1959).PubMedGoogle Scholar
  57. McGrath, R.A., Williams, R.W.: Reconstruction in vivo of irradiated Escherichia coli DNA and the rejoining of broken pieces. Nature (Lond.) 212, 534–535 (1966).Google Scholar
  58. McKee, R.W., Brin, M.: Effects of x-irradiation on glyconeogenesis, glyoogenesis and gluco-neogenesis in the rat. Arch. Biochem. Biophys. 61, 390–396 (1956).PubMedGoogle Scholar
  59. Mead, J. F.: The irradiation-induced autoxidation of linoleic acid. Science 115, 470–472 (1952).PubMedGoogle Scholar
  60. Miquel, J., Klatzo, L., Menzel, D.B., Haymaker, W.: Glycogen changes in x-irradiated rat brain. Acta neuropath. 2, 482–493 (1963).Google Scholar
  61. Mitchell, J. S.: Disturbance of nucleic acid metabolism produced by therapeutic doses of x- and γ-radiation. III. Inhibition of synthesis of thymonucleic acid by radiation. Brit. J. exp. Path. 23, 309–315 (1942).Google Scholar
  62. Moss, A.J., Jr, Dalrymple, G.V., Sanders, J.L., Wilkinson, K.P., Nash, J.C.: Dinitrophenol inhibits the rejoining of radiation induced DNA breaks by L cells. Biophys. Soc. Abstr. 11, 30a (1971).Google Scholar
  63. Ord, M.G., Stocken, L. A.: Biochemical effects of x-irradiation and the sulfhydryl hypothesis: a re-appraisal. Nature (Lond.) 200, 136–138 (1963).Google Scholar
  64. Ord, M.G., Stocken, L.A.: Phosphorylation of histones from natural and γ-irradiated rats. Biochem. J. 101, 34 P (1966).Google Scholar
  65. Obd, M.G., Stocken, L. A.: The biochemical effects of ionizing radiation on nuclear function in animal cells. Proc. Roy. Soc. Edinburgh 70B, 117–124 (1968).Google Scholar
  66. Osawa, S., Allfrey, V., Mirsky, A.E.: Mononucleotides of the cell nucleus. J. gen. Physiol. 40, 491–513 (1957).PubMedGoogle Scholar
  67. Palmer, R.F., Sullivan, M.F.: Hanford Atomic Prod. Operation Report HW-56414 (17. June 1958).Google Scholar
  68. Patt, H.M., Tyree, E.B., Straube, H.L., Smith, D.E.: Cysteine protection against x-irradiation. Science 110, 213–214 (1949).PubMedGoogle Scholar
  69. Pavlovskaya, T.E., Vulkova, M.S., Pasynskii, A.G.: Izmenenie svyazyvaniya metionina S35 syvorotkoi krovi pri detanuratsii oblucheniem i nagrevaniem. Dokl. A. N. USSR 101, 723–726 (1955).Google Scholar
  70. Peacocke, A.R., Preston, B.N.: The action of γ-rays on sodium deoxyribonucleate in solution. II. Degradation. Proc. Roy. Soc. Lond. Ser. B, 153, 90–102 (1960).Google Scholar
  71. Petrović, D., Miletić, B., Brdar, B.: Restoration of viability of x-irradiated L-strain cells by isologous subcelluar fractions. Int. J. Radiat. Biol. 7, 131–139 (1964).Google Scholar
  72. Phillips, R.A., Tolmach, L.J.: Repair of potentially lethal damage in x-irradiated Hela cells. Radiat. Res. 29, 413–432 (1966).PubMedGoogle Scholar
  73. Pollard, E. C.: The action of ionizing radiation on the cellular synthesis of protein. In: Harris, R.J.C. (Ed.): The initial effects of ionizing radiations on cells, (Harris, R.J.C., Ed.). pp. 68–89 New York: Academic Press 1961.Google Scholar
  74. Pollard, E.C., Davis, S. A.: The action of ionizing radiation on transcription (and translation) in several strains of E. coli. Radiat. Res. 41, 375–399 (1970).PubMedGoogle Scholar
  75. Potter, R.L., Bethell, F.H.: Oxidative phosphorylation in spleen mitochondria. Fed. Proc. 2, 270 (1952).Google Scholar
  76. Pruden, H., Snipes, W., Gordy, W.: Electron spin resonance of an irradiated single crystal of thymidine. Proc. nat. Acad. Sci. (Wash.) 53, 917–924 (1965).Google Scholar
  77. Richmond, J.E., Altman, K.L., Solomon, K.: The effect of x-radiation on the biosynthesis of hemoglobin. J. biol. Chem. 190, 817–825 (1951).PubMedGoogle Scholar
  78. Robbins, E., Borun, T. W.: The cytoplasmic synthesis of histones in Hela cells and its temporal relation to DNA replication. Proc. Nat. Acad. Sci. (Wash.) 57, 409–416 (1967).Google Scholar
  79. Robbins, E., Pederson, T.: On the role of ions in mitosis. In Vitro 6, 323–334 (1971).PubMedGoogle Scholar
  80. Rueckert, R.R., Mueller, G.C.: Studies on the unbalanced growth in tissue culture. I. Induction and consequences of thymidine deficiency. Cancer Res. 20, 1584 (1960).PubMedGoogle Scholar
  81. Scaife, J.F., Hill, B.: The uncoupling of oxidative phosphorylation by ionizing radiation. Canad. J. Biochem. Physiol. 40, 1025–1042 (1962).PubMedGoogle Scholar
  82. Schoenberg, M., Brooks, R., Hall, I., Schneiderman, M.: Effect of irradiation on the hyalur-onidase-hyaluronic acid system. Arch. Biochem. 30, 333–340 (1951).PubMedGoogle Scholar
  83. Scholes, G., Weiss, J.: Oxygen effect and formation of peroxides in aqueous solutions. Radiat. Res. Suppl. 1, 177–189 (1959).Google Scholar
  84. Selye, H.: The physiology and pathology of exposure to stress. Montreal: Acta, Inc. 1950.Google Scholar
  85. Sire, H.S., Gauthier, J., Becker, R., Bolger, J.: Blood coagulation factors in total body irradiation. Blood 18, 702–709 (1961).Google Scholar
  86. Smith, M.R., Fleming, D.U., Wood, W.B., Jr.: The effect of acute radiation on phagocytic mechanisms of antibacterial defense. J. Immunol. 90, 914–924 (1963).PubMedGoogle Scholar
  87. Snipes, W., Henriksen, T.: Radiation-induced radicals in thymidine single crystals at 77° K. Int. J. Radiat. Biol. 17, 367–373 (1970).Google Scholar
  88. Soška, J., Benes͂, L., Drašil, V., Karpfel, Z., Paleček, E., Skalka, M.: The significance of free deoxyribonucleotides in radiation damage. In: The initial effects of ionizing radiations on cells, Harris, R. J.C. (Ed.): pp. 153–163. New York: Academic Press 1961.Google Scholar
  89. Sparrow, A.H., Rosenfeld, F.M.: X-ray-induced depolymerization of thymonucleohistone and of sodium thymonucleate. Science 104, 245–248 (1946).Google Scholar
  90. Stevely, W.S., Stocken, L.A.: Phosphorylation of rat thymushistone. Biochem. J. 100, 20C (1966).PubMedGoogle Scholar
  91. Stevely, W.S., Stocken, L.A.: Histone phosphorylation and cell division. Biochem. J. 109, 24P–25P (1968).PubMedGoogle Scholar
  92. Stocken, L. A.: Some observations on the effects of ionizing radiation on the metabolism of DNA in animal tissues. Advanc. Biol. med. Phys. 12, 239–243 (1968).Google Scholar
  93. Studier, F.W.: Sedimentation studies of the size and shape of DNA. J. molec. Biol. 11, 373–390 (1965).PubMedGoogle Scholar
  94. Sugino, Y., Potter, R.L.: Deoxycytidylic acid deaminase in regenerating rat thymus. Radiat. Res. 12, 477 (1960).Google Scholar
  95. Sullivan, M.F.: Dependence of radiation diarrhea on the presence of bile in the intestine. Nature (Lond.) 195, 1217–1218 (1962).Google Scholar
  96. Suteb, G.M.: Response of hematopoietic system to x-rays. U.S. Atomic Energy Commission Document MDDC-824 (1947).Google Scholar
  97. Swept, M.N., Taketa, S.T.: Effect on circulating blood volume of partial shielding of rat intestine during x-irradiation. Radiat. Res. 8, 616–525 (1958).Google Scholar
  98. Taylor, W.D., Ginoza, W.: Correlation of y-ray inactivation and strand scission in the implicative form of Ø X174 bacteriophage DNA. Proa Natl. Acad. Sci. U.S. 58, 1753–1757 (1967).Google Scholar
  99. Van Bekkum, D. W.: The effects of x-rays on phosphorylations in vivo. Biochim. biophys. Acta (Amst.) 25, 487–493 (1957).Google Scholar
  100. Warren, S.L., Whipple, G.H.: Roentgen ray intoxication. I. Bacterial invasion of the blood stream as influenced by x-ray destruction of the mucosal epithelium of the small intestine. J. exp. Med. 38, 713–723 (1923).PubMedGoogle Scholar
  101. Whitfield, J.F.: How radiation causes cell death. Euratom Bull. 4, 116–121 (1965).Google Scholar
  102. Whitfield, J.F., Brohee, H., Youdale, T.: Changes in nuclear histone of irradiated rat thymocytes. Exp. Cell Res. 36, 417–421 (1964).PubMedGoogle Scholar
  103. Winchell, H.S., Vimoksant, S.L., Raley, R. B.: Relative effects of radiation on de novo DNA base synthesis and thymidine incorporation into DNA. University of California Radiation Laboratory Report UCRL-18347, 149–154 (1968).Google Scholar
  104. Wolfrom, M.L., Binkley, W.W., McCabe, L.L., Shenhan, T.M., MicHelakts, A.M.: The effect of ionizing radiations on carbohydrates. Radiat. Res. 10, 37–47 (1959).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • Paul Todd

There are no affiliations available

Personalised recommendations