Skip to main content

Metabolism of Cancer Chemotherapeutic Agents via Pathways Utilized by Xenobiotics

  • Chapter
Antineoplastic and Immunosuppressive Agents Part I

Abstract

The main factors which affect the duration and intensity of drug action are absorption, distribution, excretion, and metabolism; in this chapter attention will be focused on one important factor, the metabolism of antineoplastic agents. The metabolism of a drug can lead to an increase, a decrease, or no change in the pharmacologic or toxicologic activity of that drug. The catabolic reactions which are usually directed toward enhancing the elimination of a drug are emphasized in this and the preceding chapter. The anabolic processes by which conversion of drugs to more complex forms, and, in some cases, incorporation into body constituents occurs, have been discussed (Johns, Chapt. 14, this volume). In the latter case assimilation can occur only when the enzymes involved in intermediary anabolism cannot distinguish the antineoplastic compound from endogenous substrates because of a close resemblance in structural and/or physicochemical properties. Such a substitution of a drug for a natural metabolite is defined by the term “parametabolite” where substitution in a morphological, as well as a functional sense can occur. When the drug substitutes for the natural metabolite only in a morphological sense, with a resultant blockage in the normal biochemical process, the drug is called an antimetabolite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvares, A.P., Schilling, G.R., Kttntzman, R.: Differences in the kinetics of benzpyrene hydroxylation by hepatic drug-metabolizing enzymes from phenobarbital and 3-methyl-cholanthrene-treated rats. Biochem. biophys. Res. Commun. 30, 588–593 (1968).

    PubMed  CAS  Google Scholar 

  • Axelrod, J.: Biochemical factors in the activation and inactivation of drugs. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 238, 24–35 (1960).

    CAS  Google Scholar 

  • Axelrod, J., Inscoe, J.K., Tomkins, G.M.: Enzymatic synthesis of N-glucuronic acid conjugates. Nature (Lond.) 179, 538–539 (1957).

    CAS  Google Scholar 

  • Bailey-Wood, R., Dodgson, K.S., Rose, F.A.: A rat liver sulphohydrolase enzyme acting on adenylyl sulphate. Biochem. J. 112, 257–258 (1969).

    PubMed  CAS  Google Scholar 

  • Baron, J., Tephly, T.R.: Effect of 3-amino-l, 2,4-triazole on the stimulation of hepatic microsomal heme synthesis and induction of hepatic microsomal oxidases produced by pheno-barbital. Molec. Pharmacol. 5, 10–20 (1969).

    CAS  Google Scholar 

  • Beraud, T., Vannotti, A.: Comportement métabolique du rat hepatectomise. Acta Endocrinol. 35, 324–333 (1960).

    CAS  Google Scholar 

  • Bollman, J.L., Mendez, F. L.: Separation of bile pigments by column chromatography. Fed. Proc. 14, 399–400 (1955).

    Google Scholar 

  • Booth, J., Boyland, E.: The biochemistry of aromatic amines. 10. Enzymic N-hydroxylation of arylamines and conversion of arylhydroxylamines into o-aminophenols. Biochem. J. 91, 362–369 (1964).

    PubMed  CAS  Google Scholar 

  • Boyland, E., Manson, D., Orr, S.F.D.: The biochemistry of aromatic amines. 2. The conversion of arylamines into arylsulfamic acids and arylamine-iglucuronic acids. Biochem. J. 65, 417–423 (1957).

    PubMed  CAS  Google Scholar 

  • Boyland, E., Nery, R.: The metabolism of urethane and related compounds. Biochem. J. 94, 198–208 (1965).

    PubMed  CAS  Google Scholar 

  • Bray, D.A., Devita, V.T., Adamson, R.H., Oliverio, V.T.: Effects of l-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU; NSC-79037) and its degradation products on progression of L1210 cells through the cell cycle. Cancer Chemother. Rep. 55, 215–220 (1971).

    PubMed  CAS  Google Scholar 

  • Bridges, J.W., Williams, R.T.: N-Glucuronide formation in vivo and in vitro. Biochem. J. 83, 27P (1962).

    CAS  Google Scholar 

  • Bridges, J.W., Kibby, M.R., Walker, S.R., Williams, R.T.: Species differences in the metabolism of sulphadimethoxine. Biochem. J. 109, 851–856 (1968).

    PubMed  CAS  Google Scholar 

  • Bridges, J. W., Kibby, M.R., Walker, S.R., Williams, R.T.: Structure and species as factors affecting the metabolism of some methoxy-6-sulphanilamidopyrimidines. Biochem. J. III, 167–172 (1969a).

    Google Scholar 

  • Bridges, J.W., Walker, S.R., Williams, R.T.: Species differences in the metabolism and excretion of sulphasomidine and sulphamethomidine. Biochem. J. III, 173–179 (1969b).

    Google Scholar 

  • Brock, N., Hohorst, H.J.: Metabolism of cyclophosphamide. Cancer 20, 900–904 (1967).

    PubMed  CAS  Google Scholar 

  • Brodie, B.B., Gillette, J.R., LaDu, B.N.: Enzymatic metabolism of drugs and other foreign compounds. Ann. Rev. Biochem. 27, 427–454 (1958).

    PubMed  CAS  Google Scholar 

  • Brown, H.D., Chattopadhyay, S.K., Pennington, S.N., Spratt, J.S., Morris, H.P.: Mixed-function oxidation in tumors. Brit. J. Cancer 25, 135–141 (1971).

    PubMed  CAS  Google Scholar 

  • Cantoni, G.L.: S-adenosylmethionine: a new intermediate formed enzymatically from L-methionine and adenosine triphosphate. J. biol. Chem. 204, 403–416 (1953).

    CAS  Google Scholar 

  • Castro, J.A., Gillette, J.R.: Species and sex differences in the kinetic constants for the N-demethylation of ethylmorphine by liver microsomes. Biochem. biophys. Res. Commun. 28, 426–430 (1967).

    PubMed  CAS  Google Scholar 

  • Claude, A.: The constitution of protoplasm. Science 97, 451–456 (1943).

    PubMed  CAS  Google Scholar 

  • Cohen, J.L., Jao, J.Y.: Enzymatic basis of cyclophosphamide activation by hepatic microsomes of the rat. J. Pharmacol, exp. Ther. 174, 206–210 (1970).

    CAS  Google Scholar 

  • Cohn, R.: Über das Verhalten einiger Pyridin- und Naphthalinderivate im thierischen Stoff-wechsel. Hoppe-Seylers Z. physiol. Chem. 18, 112–113 (1894).

    Google Scholar 

  • Colvin, M., Bono, V.H., Jr.: The enzymatic reduction of hydroxyurea to urea by mouse liver. Cancer Res. 30, 1516–1519 (1970).

    PubMed  CAS  Google Scholar 

  • Conney, A.H., Gilman, A.G.: Puromycin inhibition of enzyme induction by 3-methyl-cholanthrene and phenobarbital. J. biol. Chem. 238, 3682–3685 (1963).

    PubMed  CAS  Google Scholar 

  • Conney, A.H., Schneidman, K., Jacobson, M., Kuntzman, R.: Drug-induced changes in steroid metabolism. Ann. N. Y. Acad. Sci. 123, 98–109 (1965).

    PubMed  CAS  Google Scholar 

  • Craig, A.W., Jackson, H.: The mechanism of 32P-labelled triethylene-phosphoramide in relation to its anti-tumor activity. Brit. J. Pharmacol. 10, 321–325 (1955).

    PubMed  CAS  Google Scholar 

  • Dahm, V.K., Breuer, H.: Enzymatische Untersuchungen über die Glucuronidierung von Östriol beim Menschen. Z. klin. Chem. 4, 153–157 (1966).

    CAS  Google Scholar 

  • Danielli, J.F., Montagu, K.A., Bernard, P.J., Pye, A., Price, F.W., Hamerton, J.L., Courtney, W.A.M., A. R. Brit. Empire Cancer Campaign 37, 575–576 (1959).

    Google Scholar 

  • Davies, D.S., Gigon, P.L., Gillette, J.R.: Sex differences in the kinetic constants for the N-demethylation of ethylmorphine by rat liver microsomes. Biochem. Pharmacol. 17, 1865–1872 (1968).

    PubMed  CAS  Google Scholar 

  • Devita, V.T., Denham, C., Davidson, J. D., Oliverio, V.T.: Physiological disposition of the carcinostatic l, 3-bis(2-chloroethyl)-l-nitrosourea (BCNU) in man and animals. Clin. Pharmacol. Ther. 8, 566–577 (1967).

    PubMed  CAS  Google Scholar 

  • Dewaide, J.H.: Metabolism of Xenobiotics. Ph. D. Thesis, Univ. of Nijmegen, Nijmegen, Netherlands (1971).

    Google Scholar 

  • Dixon, R.L.: Effect of chloramphenicol on the metabolism and lethality of cyclophosphamide in rats. Proc. Soc. exp. Biol. (N. Y.) 127, 1151–1155 (1968).

    CAS  Google Scholar 

  • Dixon, R.L., Shultice, R. W., Fouts, J.R.: Factors affecting drug metabolism by liver micro-somes. IV. Starvation. Proc. Soc. exp. Biol. (N. Y.) 103, 333–335 (1960).

    CAS  Google Scholar 

  • Dodgson, K.S., Rose, F.A.: Sulfoconjugation and sulfobydrolysis. In: Metabolic conjugation and metabolic hydrolysis (Fishman, W.H., Ed.) p. 240. New York: Academic Press 1970.

    Google Scholar 

  • Donelll, M.G., Garattinij S.: Drug metabolism after repeated treatments with cytotoxic agents. Europ. J. Cancer 7, 361–364 (1971).

    Google Scholar 

  • Dost, F.N., Reed, D. J.: Methane formation in vivo from N-isopropyl α(2-methylhydrazino)-p-toluamide hydrochloride, a tumor-inhibiting methylhydrazine derivative. Biochem. Pharmacol. 16, 1741–1746 (1967).

    PubMed  CAS  Google Scholar 

  • Dring, L.G., Smith, R.L., Williams, R.T.: The fate of amphetamine in man and other mammals. J. pharm. Pharmacol. 18, 402–404 (1966).

    PubMed  CAS  Google Scholar 

  • Duncan, G.G., Cristofori, F.C., Yue, J.K., Murthy, M.S.J.: The control of obesity by intermittent fasts. Med. Clin. N. Amer. 48, 1359–1372 (1964).

    Google Scholar 

  • Dutton, G.J., Storey, I.D.E.: The isolation of a compound of uridine diphosphate and glucuronic acid from liver. Biochem. J. 53, XXXVII (1953).

    PubMed  CAS  Google Scholar 

  • Ellison, T.L., Gutzait, L., Van Loon, E. J.: The comparative metabolism of d-amphetamine-C14 in the rat, dog, and monkey. J. Pharmacol. exp. Ther. 152, 383–387 (1966).

    PubMed  CAS  Google Scholar 

  • Everett, J.L., Ross, W.C.J.: Aryl-2-halogenoalkylamines. Part II. J. chem. Soc. 1972–1983 (1949).

    Google Scholar 

  • Farber, S., Toch, R., Sears, E.M., Pinkel, D.: Advances in chemotherapy of cancer in man. Adv. Cancer Res. 4, 1–71 (1956).

    PubMed  CAS  Google Scholar 

  • Field, R.B., Gang, M., Kline, I., Vendttti, J.M., Waravdekar, V.S.: The effect of pheno-barbital or 2-diethylaminoethyl-2, 2-diphenyl-valerate on the activation of cyclophos-phamide in vivo. J. Pharmacol. exp. Ther. 180, 475–483 (1972).

    PubMed  CAS  Google Scholar 

  • Fouts, J.R.: Interaction of drugs and hepatic microsomes. Fed. Proc. 21, 1107–1111 (1962).

    PubMed  CAS  Google Scholar 

  • Fouts, J.R., Brodie, B.B.: The enzymatic reduction of chloramphenicol, p-nitrobenzoic acid and other aromatic nitro compounds in mammals. J. Pharmacol. exp. Ther. 119, 197–207 (1957).

    PubMed  CAS  Google Scholar 

  • Fox, B.W., Craig, A. W., Jackson, H.: The comparative metabolism of myleran-85S in the rat, mouse, and rabbit. Biochem. Pharmacol. 5, 27–29 (1960).

    PubMed  CAS  Google Scholar 

  • Franchi, G., Rosso, R.: Metabolic fate of zoxazolamine in tumor bearing rats. Biochem. Pharmacol. 18, 236–238 (1969).

    PubMed  CAS  Google Scholar 

  • French, A.P., Warren, J. C.: Properties of steroid sulphatase and aryl sulphatase activities of human placenta. Biochem. J. 105, 233–241 (1967).

    PubMed  CAS  Google Scholar 

  • Frezza, M., Desandre, G., Perona, G., Coericher, R.: Bilirubin inhibition of 4-methyl-umbelliferone glucuro conjugation in vitro by the human liver. Clin. chim. Acta 21, 509–512 (1968).

    PubMed  CAS  Google Scholar 

  • Friedman, O.M., Papanastassiou, Z.N., Levi, R.S., Till, H.R., Jr., Whaley, W.M.: Potential carcinolytic agents related to cyclophosphamide. J. med. Chem. 6, 82–85 (1963).

    PubMed  CAS  Google Scholar 

  • Fujiwara, T., Spencer, B.: Adenyl deaminase of Helix pomatia. Biochem. J. 85, 19P (1962).

    Google Scholar 

  • Gaudette, L.E., Brodie, B.B.: Relationship between the lipid solubility of drugs and their oxidation by liver microsomes. Biochem. Pharmacol. 2, 89–96 (1959).

    PubMed  CAS  Google Scholar 

  • Gillette, J.R.: Factors affecting drug metabolism. Ann. N. Y. Acad. Sci. 179, 43–66 (1971).

    PubMed  CAS  Google Scholar 

  • Gillette, J.R., Gram, T.E.: Cytochrome P-450 reduction in liver microsomes and its relationship to drug metabolism. In: Microsomes and drug oxidations. (Gillette, J.R., Conney, A.H., Cosmides, G.J., Estabrook, R. W., Fouts, J.R., Mannering, G. J., Eds.,) pp. 133–150. New York: Academic Press 1969.

    Google Scholar 

  • Goldenthal, E.I., Nadkarni, M.V., Smith, P.K.: The excretion of radioactivity following administration of tri-C14-ethylenimino-s-triazine in normal mice. J. Pharmacol, exp. Ther. 122, 431–441 (1958).

    CAS  Google Scholar 

  • Gram, T.E., Hansen, A. R., Fouts, J.R.: The submicrosomal distribution of hepatic UDP-glucuronyl transferases in the rabbit. Biochem. J. 106, 587–591 (1968).

    PubMed  CAS  Google Scholar 

  • Grelm, H., Remmer, H.: Abbauhemmung und Synthesesteigerung bei der Vermehrung mikro-somaler Cytochrome durch Phenobarbital. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 264, 238–239 (1969).

    Google Scholar 

  • Grunicke, H., Liersch, M., Holzer, H., Arnold, H.: Untersuchungen zum Wirkungsmechanismus von Endoxan. Biochem. Pharmacol. 14, 1485–1490 (1965).

    PubMed  CAS  Google Scholar 

  • Guarino, A.M., Fales, H.M.: Gas chromatography-mass spectrometry. Handbook exp. Pharmacol. XXVIII-2, 178–208 (1971).

    Google Scholar 

  • Guarino, A.M., Gram, T.E., Gigon, P.L., Greene, F. E., Gillette, J. R.: Changes in Michaelis and spectral constants for aniline in hepatic microsomes from phenobarbital-treated rats. Molec. Pharmacol. 5, 131–136 (1969).

    CAS  Google Scholar 

  • Halac, E., Jr., Frank, S.: Glucuronyl transferase and glycogen deficiency in liver of Gunn rats. Biochem. biophys. Res. Commun. 2, 379–383 (1960).

    CAS  Google Scholar 

  • Hansen, W.J., Giles, W.G., Nadler, S.B.: Metabolism of 9-ethyl-e-MP-S36 and 9-butyl-6-MP-S35 in humans. Proc. Soc. exp. Biol. (N. Y.) 113, 163–165 (1963).

    CAS  Google Scholar 

  • Harper, N.J.: Drug latentiation. J. med. pharm. Chem. 1, 467–500 (1959).

    PubMed  CAS  Google Scholar 

  • Henderson, J.F., Mazel, P.: Demethylation of purine analogs by microsomal enzymes from mouse liver. Biochem. Pharmacol. 13, 207–210 (1964).

    PubMed  CAS  Google Scholar 

  • Hill, D.L., Laster, W.R., Jr., Struck, R.F.: Enzymatic metabolism of cyclophosphamide and nicotine and production of a toxic cyclophosphamide metabolite. Cancer Res. 32, 658–665 (1972).

    PubMed  CAS  Google Scholar 

  • Holtzman, J.L., Gdllette, J.R.: The effect of phenobarbital on the turnover of microsomal phospholipid in male and female rats. J. biol. Chem. 243, 3020–3028 (1968).

    PubMed  CAS  Google Scholar 

  • Imamura, H.: Studies on carcinostatic substances. XXVIII. Activation of the derivatives of 2-chloroethylamine with latent activity. Chem. pharm. Bull. 8, 449–454 (1960).

    CAS  Google Scholar 

  • Irving, C.L.: Enzymatic N-hydroxylation of the carcinogen 2-acetylaminofluorene and the metabolism of N-hydroxy-2-acetylaminofluorene-9-14C in vitro, J. biol. Chem. 239, 1589–1596 (1964).

    PubMed  CAS  Google Scholar 

  • Iring, C.L., Wiseman, R., Jr., Hull, J.T.: Biliary excretion of the O-glucuronide of N-hydroxy-2-acetylaminofluorene by the rat and rabbit. Cancer Res. 27, 2309–2317 (1967).

    Google Scholar 

  • Iyer, V.N., Szybalski, W.: Mitomycins and porfiromycin: chemical mechanism of activation and cross-linking of DNA. Science 145, 55–58 (1964).

    PubMed  CAS  Google Scholar 

  • Jayle, M.F., Pasqualini, J.R.: In: Glucuronic acid: free and combined. Chemistry, biochemistry, pharmacology, and medicine, p. 507. (Dutton, G. J., Ed.). New York: Academic Press 1966.

    Google Scholar 

  • Kamil, I. A., Smith, J.K., Williams, R.T.: Studies in detoxication. 50. The isolation of methyl and ethyl glucuronides from the urine of rabbits receiving methanol and ethanol. Biochem. J. 54, 390–392 (1953).

    PubMed  CAS  Google Scholar 

  • Kampffmeyer, H., Kiese, M.: The effect of carbon monoxide on the hydroxylation of aniline and N-ethylaniline by microsomal enzymes. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 250, 1–8 (1965).

    CAS  Google Scholar 

  • Kandaswamy, T.S., Henderson, J.F.: The metabolism of ethidium bromide in normal and neoplastic tissues. Cancer Res. 23, 250–253 (1963).

    CAS  Google Scholar 

  • Kaslander, J.: Formation of an S-glucuronide from tetraethylthiuram disulfide (Antabuse®) in man. Biochem. biophys. Acta (Amst.) 71, 730–732 (1963).

    CAS  Google Scholar 

  • Kato, R., Frontino, G., Vassanelli, P.: Decreased activities of liver microsomal drug-metabolizing enzymes in the rats bearing Walker carcinosarcoma. Experientia (Basel) 19, 31–32 (1963).

    CAS  Google Scholar 

  • Kato, R., Gillette, J.R.: Effect of starvation on NADPH-dependent enzymes in liver micro-somes of male and female rats. J. Pharmacol, exp. Ther. 150, 279–284 (1965).

    CAS  Google Scholar 

  • Kato, R., Jondorf, W.R., Loeb, L.A., Ben, T., Gelboin, H.V.: Studies on the mechanism of drug-induced microsomal enzyme activities. V. Phenobarbital stimulation of endogenous messenger RNA and polyuridylic acid-directed L-[14C]-phenylalanine incorporation. Molec. Pharmacol. 2, 171–186 (1966).

    CAS  Google Scholar 

  • Kato, R., Oshima, T., Takanaka, A.: Studies on the mechanism of nitroreduction by rat liver. Molec. Pharmacol. 5, 487–498 (1969a).

    CAS  Google Scholar 

  • Kato, R., Takanaka, A., Shoji, H.: Inhibition of drug-metabolizing enzymes of liver micro-somes by hydrazine derivatives in relation to their lipid solubility. Jap. J. Pharmacol. 19, 315–322 (1969b).

    PubMed  CAS  Google Scholar 

  • Kiese, M., Uehleke, H.: Der Ort der N-oxydation des Anilins im höheren Tier. Naunyn-Schmiedebergs Arch. exp. Phar. Pharmak. 242, 117–129 (1961).

    CAS  Google Scholar 

  • Koizumi, T., Suematsu, T., Kawasaki, A., Hiramatsu, K., Iwabori, N.: Synthesis and degradation of active sulfate in liver. Biochem. biophys. Acta (Amst.) 184, 106–113 (1969).

    CAS  Google Scholar 

  • Kreis, W.: Metabolism of an antineoplastic methylhydrazine derivative in a P815 mouse neoplasm. Cancer Res. 30, 82–89 (1970).

    PubMed  CAS  Google Scholar 

  • Kuntzman, R., Jacobson, M., Schneidman, K., Conney, A.H.: Similarities between oxidative drug-metabolizing enzymes and steroid hydroxylases in liver microsomes. J. Pharmacol. exp. Ther. 146, 280–285 (1964).

    PubMed  CAS  Google Scholar 

  • Kuntzman, R., Levin, W., Jacobson, M., Conney, A.H.:Studies on microsomal hydroxylation and the demonstration of a new carbon monoxide binding pigment in liver microsomes. Life Sci. 7, 215–224 (1968).

    CAS  Google Scholar 

  • Lang, N.: Steroid hormones and enzyme induction. In: The biochemistry of steroid hormone action. (Smellie, R.M.S., Ed.) pp. 85–100. New York: Academic Press 1971.

    Google Scholar 

  • Lange, G.: Verschiedene Induktion der mikrosomalen N- und p-Hydroxylierung von Anilin und N-Äthylanilin bei Kaninchen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 257, 230–256 (1967).

    CAS  Google Scholar 

  • Lavin, P., Koss, L.G.: Effects of a single dose of cyclophosphamide on various organs in the rat. III. Electron microscopic study of the liver. Amer. J. Path. 62, 159–168 (1971).

    PubMed  CAS  Google Scholar 

  • Lee, R.M., Livett, B.H.: A method for the colorimetric estimation of local anaesthetics containing an ester link, and its use in the determination of esterase activity. Biochem. Pharmacol. 16, 1757–1765 (1967).

    PubMed  CAS  Google Scholar 

  • Leibman, K.C., McAllister, W.J., Jr.: Metabolism of trichloroethylene in liver microsomes. III. Induction of the enzymic activities and its effect on excretion of metabolites. J. Pharmacol. exp. Ther. 157, 574–580 (1967).

    PubMed  CAS  Google Scholar 

  • Levin, W., Kuntzman, R.: Biphasic decrease of radioactive hemoprotein from liver microsomal CO-binding particles. J. biol. Chem. 244, 3671–3676 (1969).

    PubMed  CAS  Google Scholar 

  • Lippel, K., Olson, J.A.: Biosynthesis of β-glucuronides of retinal and of retinoic acid in vivo and in vitro. J. Lipid Res. 9, 168–175 (1968).

    PubMed  CAS  Google Scholar 

  • Lotlikar, P.D., Enomoto, M., Miller, J. A., Miller, E.C.: Species variation in the N- and ring-hydroxylation of 2-acetylaminofluorene and effects of 3-methylcholanthrene pretreatment. Proc. Soc. exp. Biol. (N. Y.) 125, 341–346 (1967).

    CAS  Google Scholar 

  • Lu, I., Larson, R.E.: Hepatic oxidative metabolism of pentobarbital following intoxication with l, 3-bis(2-chloroethyl)-l-nitrosourea (BCNU). Proc. Western Pharmacol. Soc. 13, 78–82 (1970).

    CAS  Google Scholar 

  • Maddock, C.L., Handler, A.H., Friedman, O.M., Foley, G.E., Farber, S.: Primary evaluation of alkylating agent cyclohexylamine salt of N,N-bis(2-chloroethyl)phosphorodiamidic acid (NSC-69945; OMF-59) in experimental antitumor assay systems. Cancer Chemother. Rep. 50, 629–639 (1966).

    CAS  Google Scholar 

  • Maller, R.K., Heidelberger, C.: Studies on OPSPA. II. Distribution and excretion of radioactivity following administration of OPSPA-C14 and OPSPA-P32 to the rat. Cancer Res. 17, 284–290 (1957).

    PubMed  CAS  Google Scholar 

  • Mandel, H.G.: The physiological disposition of some anticancer agents. Pharmacol. Rev. 11, 743–838 (1959).

    PubMed  CAS  Google Scholar 

  • Marsh, J.B., James, A.T.: The conversion of stearic to oleic acid by liver and yeast preparations. Biochim. biophys. Acta (Amst.) 60, 320–328 (1962).

    CAS  Google Scholar 

  • Mason, H.S.: In: Advances in enzymology. (Nord, F.F., Ed.), p. 1979. New York: Interscience 1957.

    Google Scholar 

  • Mattes, L., Kruger, S., Schueler, F.W.: The effect of Ehrlich ascites tumor on the sleeping time of mice. Arch. int. Pharmacodyn. 87, 166–172 (1962).

    Google Scholar 

  • Mazel, P., Henderson, J.F., Axelrod, J.: S-demethylation by microsomal enzymes. J. Pharmacol. exp. Ther. 143, 1–6 (1964).

    PubMed  CAS  Google Scholar 

  • Mazel, P., Kerza-Kwiatecki, A., Simanis, J.: Studies on the demethylation of puromycin and related compounds by liver microsomal enzymes. Biochim. biophys. Acta (Amst.) 114, 72–82 (1966).

    CAS  Google Scholar 

  • Mellett, L.B., Hodgson, P.E., Woods, L.A.: Absorption and fate of C14 labeled N, N′, N″- triethylenethiophosphoramide (thio-TEPA) in humans and dogs. J. Lab. clin. Med. 60, 818–825 (1962).

    PubMed  CAS  Google Scholar 

  • Mlettinen, T.A., Leskinen, E.: Enzyme levels of glucuronic acid metabolism in the liver, kidney and intestine of normal and fasted rats. Biochem. Pharmacol. 12, 565–575 (1963).

    Google Scholar 

  • Miller, J.A., Cramer, J.W., Miller, E.C.: The N- and ring-hydroxylation of 2-acetylamino-fluorene during carcinogenesis in the rat. Cancer Res. 20, 950–962 (1960).

    PubMed  CAS  Google Scholar 

  • Milsom, S.W., Rose, F.A., Dodgson, K.S.: Assay of a microsomal marker enzyme: Rat liver aryl sulfatase. Biochem. J. 109, 40P (1968).

    PubMed  CAS  Google Scholar 

  • Montgomery, J.A., James, R., McCaleb, G.S.: The modes of decomposition of 1, 3-bis(2-chloroethyl)-l-nitrosourea and related compounds. J. med. Chem. 10, 668–674 (1967).

    PubMed  CAS  Google Scholar 

  • Moy, R.H.: Studies of the pharmacology of o, p’-DDD in man. J. Lab. clin. Med. 58, 296–304 (1961).

    PubMed  CAS  Google Scholar 

  • Nadkarni, M.V., Trams, E.G., Smith, P.K.: Preliminary studies on the distribution and fate of TEM, TEPA, and myleran in the human. Cancer Res. 19, 713–718 (1959).

    PubMed  CAS  Google Scholar 

  • Nebert, D.W., Gelboin, H. V.: Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture. I. Assay and properties of induced enzyme. J. biol. Chem. 243, 6242–6249 (1968).

    PubMed  CAS  Google Scholar 

  • Nelson, A. A., Woodward, G.: Severe adrenal cortical atrophy (cytotoxic) and hepatic damage produced in dogs by feeding 2, 2-bis(parachlorophenyl)-l, l-dichloroethane (DM) or TDE). Arch. Path. 48, 387–394 (1949).

    PubMed  CAS  Google Scholar 

  • Oliverio, V.T., Vietzke, W.M., Williams, M.K., Adamson, R.H.: The absorption, distribution, excretion and biotransformation of the carcinostatic l-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea in animals. Cancer Res. 30, 1330–1337 (1970).

    PubMed  CAS  Google Scholar 

  • Omura, T., Sato, R., Cooper, D.Y., Rosenthal, O., Estabrook, R.W.: Function of cytochrome P-450 of microsomes. Fed. Proc. 24, 1181–1189 (1965).

    PubMed  CAS  Google Scholar 

  • Otsuka, S.: Studies on nitro-reducing enzymes of swine liver. Properties and cofactor requirements of nitro and nitroso reductases. J. Biochem. (Tokyo) 50, 85–94 (1961).

    CAS  Google Scholar 

  • Parke, D.V.: Studies in detoxication. 84. The metabolism of [14C] aniline in the rabbit and other animals. Biochem. J. 77, 493–503 (1960).

    PubMed  CAS  Google Scholar 

  • Parke, D.V.: Cited in: Detoxication mechanisms, 2nd ed. (Williams, R.T., Ed.) p. 492. Chapman and Hall 1952.

    Google Scholar 

  • Preussmann, R., Vonhodenberg, A., Hengy, H.: Mechanism of carcinogenesis with 1-aryl-3, 3-dialkyltriazenes. Enzymatic dealkylation by rat liver microsomal fraction in vitro. Biochem. Pharmacol. 18, 1–13 (1969).

    PubMed  CAS  Google Scholar 

  • Prough, R.A., Wittkop, J.A., Reed, D.J.: Further evidence on the nature of microsomal metabolism of procarbazine and related alkylhydrazines. Arch. Biochem. Biophys. 140, 450–458 (1970).

    PubMed  CAS  Google Scholar 

  • Quinn, G.P., Axelrod, J., Brodie, B.B.: Species, strain, and sex differences in metabolism of hexobarbitone, amidopyrine, antipyrine, and aniline. Biochem. Pharmacol. 1, 152–159 (1958).

    Google Scholar 

  • Rakieten, N., Rakieten, M.L., Nadkarni, M.V.: Studies on the diabetogenic action of Streptozotocin (NSC-37917). Cancer Chemother. Rep. 29, 91–98 (1963).

    Google Scholar 

  • Rall, D.P.: Pharmacologic aspects of selective chemotherapy of leukemia and Burkitt’s tumor. Combination chemotherapy: advertent and inadvertent. Cancer Res. 27, 2650–2655 (1967).

    PubMed  CAS  Google Scholar 

  • Remy, C.N.: Metabolism of thiopyrimidines and thiopurines. S-methylation with S-adenosyl-methionine transmethylase and catabolism in mammalian tissues. J. biol. Chem. 238, 1078–1084 (1963).

    PubMed  CAS  Google Scholar 

  • Roberts, R.J., Warwick, G.P.: Mode of action of alkylating agents: formation of S-ethyl-cysteine from ethyl methanesulphonate in vivo. Nature (Lond.) 179, 1181–1182 (1957).

    CAS  Google Scholar 

  • Roberts, R.J., Warwick, G.P.: Studies on the mode of action of alkylating agents. A. R. Brit. Empire Cancer Campaign. 37, 40–43 (1959).

    Google Scholar 

  • Roberts, R.J., Plaa, G.L.: Effect of phénobarbital on the excretion of an exogenous bilirubin load. Biochem. Pharmacol. 16, 827–835 (1967).

    PubMed  CAS  Google Scholar 

  • Ross, W.C.J., Warwick, G.P.: Aryl-2-halogenoalkylamines. Part XVIII. The rates of reduction of substituted 4-di-(2-chloroethyl) aminoazobenzenes by stannous chloride, hydrazine, and the xanthine oxidase-xanthine system. J. chem. Soc. 1724–1732 (1956).

    Google Scholar 

  • Ross, W.C.J., Wilson, J.G.: Some N,N-di-2-chloroalkyl derivatives of carboxyamides and sulphonamides. J. chem. Soc. 3616–3622 (1959).

    Google Scholar 

  • Rosso, R., Dolfini, L., Donelli, M.G.: Prolonged effect of pentobarbital in tumor bearing rats. Europ. J. Cancer 4, 133–135 (1968a).

    CAS  Google Scholar 

  • Rosso, R., Dolfini, L., Franchi, G.: Metabolism of amphetamine in tumor bearing rats. Biochem. Pharmacol. 17, 633–634 (1968b).

    PubMed  CAS  Google Scholar 

  • Rubin, A., Tephly, T.R., Mannering, G.J.: Kinetics of drug metabolism by hepatic microsomes. Biochem. Pharmacol. 13, 1007–1016 (1964).

    PubMed  CAS  Google Scholar 

  • Sarcione, E. J., Sokal, J.E.: Detoxication of thiouracil by S-methylation. J. biol. Chem. 231, 605–608 (1958).

    PubMed  CAS  Google Scholar 

  • Scheline, R.R.: Drug metabolism by intestinal microorganisms. J. pharm. Sci. 57, 2021–2037 (1968).

    PubMed  CAS  Google Scholar 

  • Schmid, R., Hammaker, L., Axelrod, J.: The enzymatic formation of bilirubin glucuronide. Arch. biochem. Biophys. 70, 285–288 (1957).

    PubMed  CAS  Google Scholar 

  • Schmid, R., Lester, R.: In: Glucuronic acid: free and combined. Chemistry, biochemistry, pharmacology, and medicine, p. 493 (Dutton, G. J., Ed.). New York: Academic Press 1966.

    Google Scholar 

  • Schumacher, H., Smith, R.L., Williams, R.T.: The metabolism of thalidomide: the spontaneous hydrolysis of thalidomide in solution. Brit. J. Pharmacol. 25, 324–337 (1965a).

    PubMed  CAS  Google Scholar 

  • Schumacher, H., Smith, R.L., Williams, R.T.: The metabolism of thalidomide: the fate of thalidomide and some of its hydrolysis products in various species. Brit. J. Pharmacol. 25, 338–351 (1965b).

    PubMed  CAS  Google Scholar 

  • Schwartz, H.S.: Pharmacology of mitomycin C. III. In vitro metabolism by rat liver. J. Pharmacol, exp. Ther. 136, 250–258 (1962).

    CAS  Google Scholar 

  • Schwartz, H.S., Philips, F.S.: Pharmacology of mitomycin C. II. Renal excretion and metabolism by tissue homogenates. J. Pharmacol. exp. Ther. 133, 335–342 (1961).

    PubMed  CAS  Google Scholar 

  • Schwartz, H.S., Sodergren, J.E., Philips, F.S., Mitomycin C.: Chemical and biological studies on alkylation. Science 142, 1181–1183 (1963).

    PubMed  CAS  Google Scholar 

  • Skibba, J.L., Beal, D.D., Ramirez, G., Bryan, G.T.: N-demethylation of the antineoplastic agent 4(5)-(3, 3-dimethyl-l-triazeno)imidazole-5(4)-carboxamide in rats and man. Cancer Res. 30, 147–150 (1970).

    PubMed  CAS  Google Scholar 

  • Skipper, H.E., Bennett, L.L., Jr., Bryan, C.E., White, L., Jr., Newton, M.A., Simpson, L.: Carbamates in the chemotherapy of leukemia. VIII. Overall tracer studies on carbonyllabeled urethane, methylene-labeled urethane and methylene-labeled ethyl alcohol. Cancer Res. 11, 46–51 (1951).

    PubMed  CAS  Google Scholar 

  • Sladek, N.E.: Therapeutic efficacy of cyclophosphamide as a function of its metabolism. Cancer Res. 32, 535–542 (1972).

    PubMed  CAS  Google Scholar 

  • Smith, P.K., Nadkarni, M. V., Trams, E.G., Davison, C.: Distribution and fate of alkylating agents. Ann. N. Y. Acad. Sci. 68, 834–850 (1958).

    PubMed  CAS  Google Scholar 

  • Steinberg, A.D., Plotz, P.H., Wolff, S.M., Wong, V.G., Agus, S.G., Decker, J.L.: Cytotoxic drugs in treatment of nonmalignant diseases. Ann. intern. Med. 76, 619–642 (1972).

    Google Scholar 

  • Stevenson, I.H., Dutton, G.J.: Glucuronide synthesis in kidney and gastrointestinal tract. Biochem. J. 82, 330–340 (1962).

    PubMed  CAS  Google Scholar 

  • Strominger, J.L., Kalckar, H.M., Axelrod, J., Maxwell, E.S.: Enzymatic oxidation of uridine diphosphate glucose to uridine diphosphate glucuronic acid. J. Amer. chem. Soc. 76, 6411–6412 (1954).

    CAS  Google Scholar 

  • Struck, R.F., Kirk, M.C., Mellett, L.B., Dareer, S.E., Hill, D.L.: Urinary metabolites of the antitumor agent cyclophosphamide. Molec. Pharmacol. 7, 519–529 (1971).

    CAS  Google Scholar 

  • Tardiff, R.G., Dubois, K.P.: Inhibition of hepatic microsomal enzymes by alkylating agents. Arch. int. Pharmacodyn. 177, 445–456 (1969).

    PubMed  CAS  Google Scholar 

  • Thompson, G.R., Laeson, R.E.: The hepatotoxicity of l, 3-bis(2-chloroethyl)-l-nitrosourea (BCNU) in rats. J. Pharmacol. exp. Ther. 166, 104–112 (1969).

    PubMed  CAS  Google Scholar 

  • Teams, E.G., Nadkaeni, M.V.: Studies on the N-dealkylation of nitrogen mustard and trie-thylenemelamine by liver homogenates. Cancer Res. 16, 1069–1075 (1956).

    Google Scholar 

  • Teams, E.G., Nadkabni, M.V., Dequateo, V., Maengwyn-Davies, G.C., Smith, P.K.: Di-methane-sulphonoxybutane (myleran). Preliminary studies on distribution and metabolic fate in the rat. Biochem. Pharmacol. 2, 7–16 (1959).

    Google Scholar 

  • Umae, M.T., Mitchaed, M.: The competitive inhibition of nitroreductase by some analogues of nitrofurantoin. Biochem. Pharmacol. 17, 2057–2060 (1968).

    Google Scholar 

  • Viala, R., Gianetto, R.: The binding of sulfatase by rat-liver particles as compared to that of acid phosphatase. Can. J. Biochem. Physiol. 33, 839–844 (1955).

    PubMed  CAS  Google Scholar 

  • Wada, F., Hieata, K., Nakao, K., Sakamoto, Y.: Participation of P-450 in 7-α hydroxylation of cholesterol. J. Biochem. 64, 415–417 (1968a).

    PubMed  CAS  Google Scholar 

  • Wada, F., Shibata, H., Gotto, M., Sakamoto, Y.: Participation of the microsomal electron transport system involving cytochrome P-450 in co-oxidation of fatty acids. Biochim. biophys. Acta (Amst.) 162, 518–524 (1968b).

    CAS  Google Scholar 

  • Williams, R.T.: Patterns of excretion of drugs in man and other species. Ciba Found. Symp. drug Resp. in Man, 71–91 (1967).

    Google Scholar 

  • Williamson, C.E., Kieby, J.G., Millee, J.L., Sass, S., Keamee, S.P., Seligman, A.M., Witten, B.: Enzyme-alterable alkylating agents. IX. The enzymatic transformation of some nitrogen mustards in the presence of carbon dioxide: implications in respiration. Cancer Res. 26, 323–330 (1966).

    PubMed  CAS  Google Scholar 

  • Wittkop, J.A., Pbough, R.A., Reed, D.J.: Oxidative demethylation of N-methylhydrazines by rat liver microsomes. Arch. Biochem. Biophys. 134, 308–315 (1969).

    PubMed  CAS  Google Scholar 

  • Zahaeko, D.S., Beucknee, H., Oltveeio, V.T.: Antibiotics alter methotrexate metabolism and excretion. Science 166, 887–888 (1969).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Guarino, A.M., Litterst, C.L. (1974). Metabolism of Cancer Chemotherapeutic Agents via Pathways Utilized by Xenobiotics. In: Sartorelli, A.C., Johns, D.G. (eds) Antineoplastic and Immunosuppressive Agents Part I. Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology, vol 38 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65678-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65678-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65680-4

  • Online ISBN: 978-3-642-65678-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics