Skip to main content

Theory of Regression and the Sampling Theory of Multidimensional Normal Distributions

  • Chapter
  • 837 Accesses

Part of the book series: Die Grundlehren der mathematischen Wissenschaften ((GL,volume 202))

Abstract

Let ξ p+11,...,ξ p+1n , p⩽1 np+2 be r.v.’s possessing the following properties: E p+1i ) exists for 1⩾in and

$$ E({\xi _{p + 1i}}) = {\beta _0} + {\beta _1}{x_{1i}} + ... + {\beta _p}{x_{pi.}} $$
(1.1)

Further let the covariance matrix of (ξ p+11,...,ξ p+1n ) exist and be denoted by U = (u ij )\( _{1n}^{1n} \). Here, the x ji, 1⩾jp, 1⩾in are given real numbers and the βi0⩾ip, as well as the u ij, 1⩾i, jn, real parameters. The βi satisfy -<∞βi<∞ and the u ij need only satisfy the trivial restriction that U be positive semi-definite. To be more precise, we should denote the right side of (1.1) by E p+1i0,...,βp) or even by E p+1i0,...,βp, uij, 1⩾i,jn) but the abbreviated notation should cause no misunderstanding. Our task is to construct unbiased estimates for each βi0⩾ip. In order to bring this problem into the general framework of V.1, we let the sample space be given by \( ({R_n},{\mathfrak{B}_n}) \) and the set of joint distributions of (ξ p+11,...,ξ p+1n ) be so restricted by the parameters β0,...,βp, uij,1⩾i,jn that (1.1) holds and (uij)\( _{1n}^{1n} \) n is positive semi-definite. To obtain the estimates we make use of Gauss’ method of least squares, which is closely connected with the MLP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The bj provided they exist, will in general also depend on the xq, xp. Since, however, we view these n-tuples here as given, we suppress this dependence.

    Google Scholar 

  2. From the extensive literature on the method of least squares we indicate only: A. C. Aitken, Proc. Roy. Soc. Edinburgh Sect. A, 55, 42–48 (1935), B.J. van Ijzeren, Statistica Rijswijk 8, 21–45 (1954), O. Kempthorne.

    Google Scholar 

  3. See B.J. van Ijzeren, l.c.2.

    Google Scholar 

  4. See A. N. Kolmogorov, Uspehi. Mat. Nauk 1, 57–70 (1946).

    MathSciNet  MATH  Google Scholar 

  5. A. Markov, Wahrscheinlichkeitsrechnung, 2nd ed., Leipzig-Berlin 1912. Also see F.N. David and J. Neyman, l.c. V.1 and L. Schmetterer, l.c. V.5, second paper listed.

    Google Scholar 

  6. It should cause no difficulty when the symbol 0 denotes both the (p + 1)-dimensional null-vector and zero itself.

    Google Scholar 

  7. See H. Scheffe, l.c. III72

    Google Scholar 

  8. For clarity, we now write S(xp+x) instead of S.

    Google Scholar 

  9. The r.v. M (p+1) as well as M(p+1) and M(p+1)/M1 (p+1) are undefined on a set of probability zero, i.e., on the set where the denominator in the definition vanishes.

    Google Scholar 

  10. This distribution was first found by J. Wishart, Biometrika 20A, 32–52 (1928). The induction proof here is due essentially to P. L. Hsu, Proc. Cambridge Philos. Soc. 35, 336–338 (1939).

    Google Scholar 

  11. Note that here, as was not the case in 1 and 2, the symbols xi and ξidenote k-dimensional vectors.

    Google Scholar 

  12. C.R. Rao, Sankhya 9, 343–366 (1949).

    MathSciNet  MATH  Google Scholar 

  13. The matrix \( ({W_{ij}})_{1k}^{1k} \) exists iff \( |{w_{ij}}|_{1k}^{1k} \ne 0. \). The matrix \( ({w_{ij}})_{1k}^{1k} \) is positive-semi-definite.

    Google Scholar 

  14. This distribution was first discovered by H. Hotelling, Ann. Math. Statist. 2, 360–378 (1931). Also see H. Hotelling, Proceedings of 2nd Berkeley Symposium on Mathematical Statistics and Probability 1951, pp. 23–41 University of California Press, Berkeley and Los Angeles.

    Google Scholar 

  15. A comparison with the F-distribution shows that \( \frac{{n - k}}{{\left( {n - 1} \right)k}}{T^2} \) possesses an F-distribution with (k, n-k) degrees of freedom.

    Google Scholar 

  16. \( ({d_{ij}})_{1k}^{1k} \) denotes t n e inverse of the covariance matrix D-1.

    Google Scholar 

  17. R.A. Fisher, Ann. Eugenics 7, 179–188 (1936); P.C. Mahalanobis, Proc. Nat. Inst. Sci. India 2, 49–55 (1936).

    Article  Google Scholar 

  18. We refer only to P. C. Mahalanobis, Sankhya 9,237–239 (1949) and papers by C. R. Rao, such as Biometrika 35, 58–79 (1948); Sankhya, l.c.12; Sankhya 10, 257–268 (1950).

    Google Scholar 

  19. Communicated by R. Borges.

    Google Scholar 

  20. The notation here is so chosen that Xj is a k-dimensional vector but xj is the real number \( \frac{1}{{{n_1}}}\sum\limits_{i = 1}^{{n_1}} {{x_{ji}}} \) and similarly for the yji.

    Google Scholar 

  21. SeeC.R. Rao, l.c.12.

    Google Scholar 

  22. That is the regression function of ξp+1 w.r.t.(ξ1,...,ξp), say.

    Google Scholar 

  23. G.U. Yule, Proc. Roy. Soc. London Ser. A, 79, 182–193 (1907).

    Article  MATH  Google Scholar 

  24. It would perhaps be more consistent in the sense of the notation used in 1 and 2 to write bp+11.2...p instead of bp+11.2...p.

    Google Scholar 

  25. This terminology clearly points out the fact that one can calculate these quantities from a sample.

    Google Scholar 

  26. See M. S. Bartlett, Proc. Roy. Soc. Edinburgh Sect. A, 53, 260–283 (1932–1933). For a extension of this method see R.A. Wijsman, Ann. Math. Statist. 28, 415–422 (1957) and A.M. Kshirsagar, Ann. Math. Statist. 30, 239–241 (1959).

    Google Scholar 

  27. The symbol (ui.k...1) stands for the (p-K+1)-dimensional r.v. (up+1.k...1,...,uk+1.k...1).

    Google Scholar 

  28. First found by V. Romanovskij, Bull. Acad. Sci. Leningrad (6) 20, 643–648 (1926) and K. Pearson, Proc. Roy. Soc. London Ser. A, 112,1–14 (1926).

    Google Scholar 

  29. It is not entirely correct to use the symbol K2 p+1 here, but this should cause no confusion.

    Google Scholar 

  30. This distribution was first found by R.A. Fisher, Proc. Roy. Soc. London Ser. A, 121, 654–673 (1928).

    Article  MATH  Google Scholar 

  31. R.A. Fisher pointed this out in this and other connections. See R.A. Fisher, Metron 3, 90–104 (1925).

    Google Scholar 

  32. R.A. Fisher, Biometrika 10, 507–521 (1915).

    Google Scholar 

  33. A.T. James, Ann. Math. Statist. 25, 40–75 (1954); A.G. Constantine and A.T. James, Ann. Math. Statist. 29, 1146–1166 (1958); A.T. James, Ann. Math. Statist. 31, 151–158 (1960) and A.T. James, Ann. Math. Statist. 32, 874–882 (1961), and others.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Schmetterer, L. (1974). Theory of Regression and the Sampling Theory of Multidimensional Normal Distributions. In: Introduction to Mathematical Statistics. Die Grundlehren der mathematischen Wissenschaften, vol 202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65542-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65542-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65544-9

  • Online ISBN: 978-3-642-65542-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics