Skip to main content

Introduction to the Theory of Hypothesis Testing

  • Chapter
  • 845 Accesses

Part of the book series: Die Grundlehren der mathematischen Wissenschaften ((GL,volume 202))

Abstract

As already mentioned, the procedures discussed in Chapter II for the testing of an hypothesis possess without doubt a certain intuitiveness and are rather convincing. However, we have already pointed out that it is desirable to develop a general test theory which depends on few basic assumptions. In particular, we have given no clear definition of the notion of a “test”. We also want to develop criteria for deciding when one of two tests can be viewed as the “better” one.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neyman, J. and E. S. Pearson, Biometrika 20 A, 175–240 and 263–294 (1928). Philos. Trans. Roy. Soc. London, Ser. A, 231, 289-337 (1933).

    Google Scholar 

  2. A standard reference for the theory of tests and confidence regions, which treats numerous details, is the book by Lehmann I.e. Not.11: Testing Statistical Hypotheses, J. Wiley, New York 1959.

    Google Scholar 

  3. We will also write E(φ;γ) for E(φ;Py).

    Google Scholar 

  4. This means that one exploits the given level of significance “as far as possible”.

    Google Scholar 

  5. We will sometimes write P(M,γ) for P γ(M).

    Google Scholar 

  6. This terminology is due to the idea that the random experiment which delivers the sample (x1,...,xn) is the result of n trials each of which has the same probability distribution with parameter a. The correct value of a is unknown and the null hypothesis, which is to be tested, assumes that a=a0. See also II, p. 127.

    Google Scholar 

  7. The case α = 0 is trivial and need not be considered.

    Google Scholar 

  8. Strictly speaking, the assumptions of Theorem 12.2 of I are not fulfilled everywhere since the Jacobian vanishes for r=0, ϑ=0 and ϑ = π. However, it is easy to see that the exceptional sets have measure 0.

    Google Scholar 

  9. For the evaluation of this integral see for example N. Hofreiter and W. Grobner, Integraltafel, Zweiter Teil: Bestimmte Integrale, 2. Aufl. Springer-Verlag, Wien 1961.

    Google Scholar 

  10. This can be also be written as \( \mathop \Sigma \limits_{j = 0}^\infty \frac{1}{{j!}}{\left( {\frac{{|a{|^2}}}{2}} \right)^j}{e^{ - |a{|^2}/2}}\frac{{{z^{(2j + n - 2)/2}}}}{{{2^{(2j + n)/2}}\Gamma \left( {j + \frac{n}{2}} \right)}}{e^{ - z/2}}. \) But for \( z \ge 0,\frac{{{2^{(2j + n - 2)/2}}}}{{{2^{(2j + n)/2}}\Gamma \left( {j + \frac{n}{2}} \right)}}{e^{ - z/2}} \) is the density of a χ2-distribution with 2j+n degrees of freedom.

    Google Scholar 

  11. The first version of this fundamental theorem is in E. S. Pearson, Statist. Res. Mem. Univ. London 1,1–37 (1936).

    Google Scholar 

  12. If k =-∞ define v(M k) = v(Mk+).

    Google Scholar 

  13. k = ∞ requires (also for IIIF) a trivial special argument.

    Google Scholar 

  14. See Dantzig and A. Wald loc. cit. 11.

    Google Scholar 

  15. See L. Schmetterer, Sankhya 25, 207–210 (1963). A much deeper result has been given by W. Sendler, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 18, 183-196 (1971).

    Google Scholar 

  16. This means that-g is convex.

    Google Scholar 

  17. Without explicitly giving non-trivial tests, one can also argue as follows: From \( \mathop {\lim }\limits_{\alpha \to 0 + 0} \,g(\alpha )/\alpha = 1 \) we have from Theorem 3.4, g(α)=α,0⩽ α ⩽ 1. Hence, from the definition of \( \int\limits_R {\phi {f_1}d\mu \le \int\limits_R {\phi {f_0}d\mu } } \) for each test φ∈Φα and O ⩽ α ⩽ 1. For the test φ = cE we thus have μ(E)=0 which contradicts the assumption.

    Google Scholar 

  18. Practically speaking, p⩽p0, resp., p⩾p1 is a more reasonable requirement but we want to consider only simple hypotheses here.

    Google Scholar 

  19. The first systematic investigation of the connection between linear programs and test theory is in E. W. Barankin, Univ. California Publ. Statist. 1, 161–214 (1949–1953).

    MathSciNet  Google Scholar 

  20. See for instance S. Vajda, Theory of Games and Linear Programming, John Wiley, New York 1956.

    MATH  Google Scholar 

  21. We follow essentially a paper by O. Krafft und H. Witting, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7, 289–302 (1967).

    Article  Google Scholar 

  22. To avoid trivial complications we now assume 0 < α < l.

    Google Scholar 

  23. Necessary and sufficient conditions for the existence of product measurable densities can be found in J. Pfanzagl, Sankhya, Ser. A. 31, 13–18 (1969).

    MathSciNet  MATH  Google Scholar 

  24. Φα is defined on p. 178.

    Google Scholar 

  25. See p. 185ff.

    Google Scholar 

  26. Essentially, the following considerations represent only an illustration of the uniqueness claim of Theorem 3.1.

    Google Scholar 

  27. P. R. Halmos and L. J. Savage, Ann. Math. Statist. 20, 225–241 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  28. To justify this conclusion also in the case α = 0 and c = l, one must define 0·∞ = 0.

    Google Scholar 

  29. From this it naturally does not necessarily follow that the set of corresponding probability measures Pr is convex.

    Google Scholar 

  30. J. Pfanzagl, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1, 109–115 (1963).

    Google Scholar 

  31. 4 ⫅ B v-a.e. means that the set of elements of A which do not belong to B form a v-null set. A = B v-a.e. means v(A-B) + v(B-A) = 0.

    Google Scholar 

  32. Here, and occasionally later, we will supress the fact that certain relations hold only &λ-a.e.

    Google Scholar 

  33. See J. Pfanzagl, Sankhya Ser. A 30, 147–156 (1968).

    MathSciNet  Google Scholar 

  34. In practical work, however, alternatives which are “too close” to the null hypothesis are likewise uninteresting.

    Google Scholar 

  35. H. Scheffe, Ann. Math. Statist. 18, 434–438 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  36. This terminology is not restricted to test problems. It will be used analogously for confidence regions (see IV) and theory of estimation (see also V). See also VII. I 2.

    Google Scholar 

  37. The choice of endpoint for this interval is not important, oo can be replaced by an arbitrary real number <γ0.

    Google Scholar 

  38. This μ-null set may depend on γ.

    Google Scholar 

  39. We define here 0· ∞ =0 and-∞ · 0 =-·.

    Google Scholar 

  40. One can also allow l1 = ± ·, l2 = ± ·.

    Google Scholar 

  41. J. Neyman and E. S. Pearson, Statist. Res. Mem. Univ. London 2, 25–57 (1938).

    Google Scholar 

  42. See St. L. Isaacson, Ann. Math. Statist. 22, 217–234 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  43. See p. 60.

    Google Scholar 

  44. For a more precise terminology see 122.

    Google Scholar 

  45. More precisely, this means that for each A∈S0 there is a B∈S0 (1) such that Py((A-B)⋃(B-A))=0 for all γ∈Γ and likewise when the roles of S0 and S0 (1) are interchanged.

    Google Scholar 

  46. In the statistical literature the existence of a sufficient transformation for a set of probability measures over \( ({R_n}{_n}) \) is often proved.

    Google Scholar 

  47. Thus for all real a the inverse image of (-∞, α) under fy belongs to S0 up to a γ-null set.

    Google Scholar 

  48. \( {E_\lambda }({f_\lambda }|{S_0}) \) denotes the conditional expectation w.r.t. the measure γ.

    Google Scholar 

  49. We have shown this only for the case T(R) = Q. However, see I23.

    Google Scholar 

  50. See J. Neyman, Giorn. Ital. Attuari 6, 320–334 (1953) as well as P.R. Halmos and L.J. Savage, l.e.27.

    Google Scholar 

  51. Actually, I, Theorem 18.3 yields this only for n = 1, but’1, Theorem 18.3 can easily be extended to the case where the function f named there has range Rn with n >1.

    Google Scholar 

  52. The assumption that the densities are >0 in all of R1 is made only for convenience. It is enough, for example, that the fy be >0 for all γ∈Γ in a fixed open interval and vanish for all γ outside of this fixed interval.

    Google Scholar 

  53. Essentially due to E. B. Dynkin, Uspehi Mat. Nauk 6,68–90 (1951). See also B. O. Koopman, Trans. Amer. Math. Soc. 39, 399–409 (1936).

    MathSciNet  MATH  Google Scholar 

  54. E. W. Barankin and M. Katz, Sankhya 21, 217–246 (1959) and E.W. Barankin and A. P. Maitra, Sankhya 25, 217–244(1963).

    MathSciNet  MATH  Google Scholar 

  55. J. L. Denny, Proc. Nat. Acad. Sci. U.S.A. 57, 1184–1187 (1967). Ann. Math. Statist. 41, 401–411 (1970). See also O. Barndorff-Nielsen and Karl Pedersen, Math. Scand. 22,197–202 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  56. D. L. Burkholder, Ann. Math. Statist. 32, 1191–1200 (1961) and Ann. Math. Statistics 33, 596–599 (1962). See also T. S. Pitcher, loc. cit. VII7.

    Article  MathSciNet  MATH  Google Scholar 

  57. The importance of this definition in mathematical statistics was clearly presented for the first time in E.L. Lehmann and H. Scheffe, Sankhya 10, 305–340 (1950).

    MathSciNet  MATH  Google Scholar 

  58. See H. Steinhaus—L. Kaczmarz: Theorie der Orthogonalreihen, Monografje Matematyczne VI, Warschau 1935.

    Google Scholar 

  59. D. Voelker und G. Doetsch, Die zweidimensionale Laplace-Transformation. Verlag Birkhauser, Basel 1950, 208.

    MATH  Google Scholar 

  60. An application of Holder’s inequality shows that these expectations always exist.

    Google Scholar 

  61. Introduced by J. Neyman and E.S. Pearson, Philos. Trans. Roy. Soc. London l.c.1.

    Google Scholar 

  62. The first known example of this is in W. Feller, Statist. Res. Mem. Univ. London 2, 117–125 (1938). See also H. Kellerer, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1, 240–246 (1963).

    Google Scholar 

  63. E.L. Lehmann and H. Scheffe, l.c.57.

    Google Scholar 

  64. For an analysis see Lehmann, l.c.2, 134ff. and especially G. Noelle, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 11, 208–229 (1969).

    Google Scholar 

  65. G. B. Dantzig, Ann. Math. Statist. 11, 186–192 (1940) proved that there exists no (non-trivial) test for the mean of a normal distribution with given sample size whose power function is independent of a. fürther examples for similar tests are also found in VI.

    Google Scholar 

  66. W.U. Behrens, Landwirtschaftliche Jahrbucher 48, 807–837 (1929).

    Google Scholar 

  67. Ju. V. Linnik, Statistical problems with nuisance parameters, Translations of Mathematical Monographs Vol. 20, Amer, Math. Soc, Providence, R.L, 1968.

    Google Scholar 

  68. Due to J. Neyman and E. S. Pearson, Biometrika, l.c.1.

    Google Scholar 

  69. See 5.

    Google Scholar 

  70. See V, Lemma 3.2.

    Google Scholar 

  71. Such a discussion is given by P. Hoel, Ann. Math. Statist. 16, 362–368 (1945).

    Article  MathSciNet  MATH  Google Scholar 

  72. For details see H. Scheffe, The Analysis of Variance, John Wiley & Sons-Chapman & Hall, New York-London 1959.

    MATH  Google Scholar 

  73. Frequent use is made of such decompositions in the analysis of variance. For the underlying algebraic relations, see H. B. Mann, Ann. Math. Statist. 31, 1–15 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  74. For a detailed analysis of this model see A.N. Kolmogorov, Proc. Second All-Union Congress Math. Statistics, Sept. 27–Oct. 2, 1948, Acad. Sci. Uzbekistan Soviet Socialist. Republic, Tashkent 1949, 240–268.

    Google Scholar 

  75. K. Pearson, Philos. Mag. 50, Ser. 5, 157–175 (1900).

    Google Scholar 

  76. For the grouping problem see H. B. Mann and A. Wald, Ann. Math. Statist. 13, 306–317 (1942) and H. Witting, Arch. Math. 10, 468-479 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  77. For this and fürther important results see H. Cramer, l.c. I58. The first formulation of such results is in R. A. Fisher, J. Roy. Statist. Soc. 85, 87–94 (1922). Also see W. G. Cochran, Ann. Math. Statist. 23, 315-345 (1952).

    Article  Google Scholar 

  78. A. Wald, Trans. Amer. Math. Soc. 54, 462–482 (1943).

    Article  MathSciNet  Google Scholar 

  79. Strictly speaking, gγ is for the time being not at all defined for γ∈T; only is defined.

    Google Scholar 

  80. G is thus a homomorphic image of G.

    Google Scholar 

  81. The group is then called transitive.

    Google Scholar 

  82. The notion of an invariant test is viewed somewhat more generally in this theorem: φ is called invariant if there exists a μ-null set M such that φ(gx) = φ(x)for all g∈G and each x∈R-M.

    Google Scholar 

  83. See for example A. Weil, L’integration dans les groupes topologiques et ses applications,Actualites scientifiques et industrielles 869–1145, Hermann & Cie, 2nd ed., Paris 1953.

    Google Scholar 

  84. See e.g. E. L. Lehmann, l.c.2, 335. Also O. Wesler, Ann. Math. Statist. 30,1–20 (1959).

    Article  MathSciNet  Google Scholar 

  85. See for example J. Neyman and E. Scott, Econometrica 16,1–32 (1948).

    Google Scholar 

  86. E(n)n;γ) naturally means \( \int\limits_{{R^{(n)}}} {{\phi _n}} dP_\gamma ^{(n)}. \).

    Google Scholar 

  87. See A. Berger, Ann. Math. Statist. 22, 289–293 (1951) and Ch. Kraft, Univ. California Publ. Statist. 2, 125–141 (1953–1958).

    Article  Google Scholar 

  88. S. Kakutani, Ann. of Math. II. Ser. 49, 214–224 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  89. See for details A. Wald, l.c.78.

    Google Scholar 

  90. See J. L. Hodges Jr. and E. L. Lehmann, Proc. Fourth Berkeley Sympos. Math. Statist, and Prob. Vol. I, pp. 307–317, Univ. California Press, Berkeley Calif, 1961.

    Google Scholar 

  91. Note that \( g_n^{(1)} \) is somewhat differently defined as \( g_n^{(2)}. \).

    Google Scholar 

  92. If m = 1, this condition is omitted.

    Google Scholar 

  93. See J.G. Pitman, Lecture Notes on Nonparametric Inference. Columbia University, New York 1949. See also G.E. Noether, Ann. Math. Statist. 26, 64–68 (1955).

    Google Scholar 

  94. See, however, the developments on p. 243. Also J. L. Hodges Jr. and E. L. Lehmann, Ann. Math. Statist. 27, 324–335 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  95. R.R. Bahadur, Ann. Math. Statist. 31, 276–295 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  96. The fundamental paper is A. Wald. Ann. Math. Statist. 16, 117–186 (1945). Also see A. Wald, Sequential Analysis, John Wiley & Sons-Chapman & Hall, New York-London 1947. See also G.A. Barnard, Suppl. J. Roy. Statist. Soc. 8, 1–21 (1946).

    Google Scholar 

  97. For details see A. Wald and J. Wolfowitz, Ann. Math. Statist. 19, 326–339 (1948).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Schmetterer, L. (1974). Introduction to the Theory of Hypothesis Testing. In: Introduction to Mathematical Statistics. Die Grundlehren der mathematischen Wissenschaften, vol 202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65542-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65542-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65544-9

  • Online ISBN: 978-3-642-65542-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics