Skip to main content

Abstract

Knowledge of the base composition of DNA in microorganisms has increased rapidly over the last decade. The main incentive for the efforts made has been the usefulness of the base composition values in microbial taxonomy. Many general features have emerged which may be important for an understanding of the evolution of DNA composition. One of the main characteristics is the broad distribution of base composition among the various organisms. The question is whether this distribution is mainly random or caused by some selective pressures. Another characteristic feature is the heterogeneity in distribution of nucleotides within the individual DNA molecules. The compositional heterogeneity, which may also include differences in base composition between the two complementary strands of the DNA molecules, may be caused by conserved sequences, such as ribosomal RNA cistrons and sequences related to the regulation of replication and transcription. The specific amino acid sequences of the invariable parts of the proteins also create a possibility for heterogeneity in base composition between the DNA corresponding to different genetic markers. The present review gives a brief discussion of some of these problems and attempts to give a complete key to the literature on DNA base composition in mycoplasmas, bacteria and yeasts up to the end of 1971. The methods and problems related to determinations of base compositions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrens, R., Rheinheimer, G.: Über einige sternbildende Bakterien aus der Ostsee. Kieler Meeresforsch. 23, 127–136 (1967).

    Google Scholar 

  • Allen, T. C.: Base composition and genome size of Mycoplasma meleagridis deoxyribonucleic acid. J. gen. Microbiol. 69, 285–286 (1971).

    PubMed  CAS  Google Scholar 

  • Anderson, J. R., Pramer, D., Davis, F. F.: Nucleic acid composition of Nitrosomonas europaea. Biochim. biophys. Acta (Amst.) 108, 155–157 (1965).

    PubMed  CAS  Google Scholar 

  • Auletta, A. E., Kennedy, E. R.: Deoxyribonucleic acid base composition of some members of the Micrococcaceae. J. Bact. 92, 28–34 (1966).

    PubMed  CAS  Google Scholar 

  • Avers, C. J. Billheimer, F. E., Hoffmann, H.-P., Pauli, R. M.: Circularity of yeast mitochondrial DNA. Proc. nat. Acad. Sci. (Wash.) 61, 90–97 (1968).

    PubMed  CAS  Google Scholar 

  • Bacon, M. F., Overend, W. G., Lloyd, P. H., Peacocke, A. R.: The isolation, composition and physicochemical properties of deoxyribonucleic acid from Bordetella pertussis. Arch. Biochem. Biophys. 118, 352–361 (1967).

    PubMed  CAS  Google Scholar 

  • Bak, A. L., Atkins, J. F., Meyer, S. A.: Evolution of DNA base compositions in microorganisms. Science 175, 1391–1393 (1972).

    PubMed  CAS  Google Scholar 

  • Bak, A. L., Black, F. T.: DNA base composition of human T strain mycoplasmas. Nature (Lond.) 219, 1044–1045 (1968).

    PubMed  CAS  Google Scholar 

  • Bak, A. L., Black, F. T., Christiansen, C., Freundt, E. A.: Genome size of mycoplasmal DNA. Nature (Lond.) 224, 1209–1210 (1969).

    PubMed  CAS  Google Scholar 

  • Bak, A. L., Christiansen, C., Christiansen, G.: Circular, repetitive DNA in yeast. Biochim. biophys. Acta (Amst.) 269, 527–530 (1972).

    PubMed  CAS  Google Scholar 

  • Bak, A. L., Christiansen, C., Stenderup, A.: Unusual physical properties of mitochondrial DNA in yeast. Nature (Lond.) 224, 270–271 (1969).

    PubMed  CAS  Google Scholar 

  • Bak, A. L., Christiansen, Stenderup, A.: Bacterial genome size determined by DNA renaturation studies. J. gen. Microbiol. 64, 377–380 (1970).

    PubMed  CAS  Google Scholar 

  • Bak, A. L., Christiansen, G., Christiansen, C., Stenderup, A., Ørskov, I., Ørskov, F.: Circular DNA molecules controlling synthesis and transfer of the surface antigen (K88) in Escherichia coli. J. gen. Microbiol. 73, 373–385 (1972).

    PubMed  CAS  Google Scholar 

  • Bak, A. L., Stenderup, A.: Deoxyribonucleic acid homology in yeasts. Genetic relatedness within the genus Candida. J. gen. Microbiol. 59, 21–30 (1969).

    PubMed  CAS  Google Scholar 

  • Ballard, R. W., Doudoroff, M., Stanier, R. Y., Mandel, M.: Taxonomy of the aerobic pseudomonads: Pseudomonas diminuta and P. vesiculate. J. gen. Microbiol. 53, 349–361 (1968).

    PubMed  CAS  Google Scholar 

  • Ballard, R, Palleroni, N. J., Doudoroff, M., Stanier, R. Y., Mandel, M.: Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola and P. caryophylli. J. gen. Microbiol. 60, 199–214 (1970).

    PubMed  CAS  Google Scholar 

  • Baptist, J. N., Shaw, C. R., Mandel, M.: Zone electrophoresis of enzymes in bacterial taxonomy. J. Bact. 99, 180–188 (1969).

    PubMed  CAS  Google Scholar 

  • Basden II, E.H., Tourtellotte, M. E., Plastridge, W. N., Tucker, J. S.: Genetic relationship among bacteria classified as vibrios. J. Bact. 95, 439–443 (1968).

    PubMed  CAS  Google Scholar 

  • Baumann, P., Baumann, L., Mandel, M.: Taxonomy of marine bacteria: the genus Beneckea. J. Bact. 107, 268–294 (1971).

    PubMed  CAS  Google Scholar 

  • Baumann, P., Baumann, L., Mandel, M., Allen, R. D.: Taxonomy of marine bacteria: Beneckea nigrapulchrituda sp. n. J. Bact. 108, 1380–1383 (1971).

    PubMed  CAS  Google Scholar 

  • Baumann, P., Doudoroff, M., Stanier, R. Y.: Study of the Moraxella group. J. Bact. 95, 58–73 (1968).

    PubMed  CAS  Google Scholar 

  • Bazaral, M., Helinski, D. R.: Characterization of multiple circular DNA forms of colicinogenic factor E1 from Proteus mirabilis. Biochemistry 7, 3513–3519 (1968).

    PubMed  CAS  Google Scholar 

  • Belozersky, A.N., Spirin, A. S.: Chemistry of the nucleic acids of microorganisms. In: Chargaff, E., and J. N. Davidson (eds.), The nucleic acids, vol. 3, p. 147–185. New York and London: Academic Press 1960.

    Google Scholar 

  • Belozersky, A. N., Vanyushin, B. F.: Dokl. Akad. Nauk USSR 135, 197–199 (1960).

    Google Scholar 

  • Belser, W. L.: DNA base composition as an index to evolutionary affinities in marine bacteria. Evolution (Lawrence, Kansas) 18, 177–182 (1964).

    CAS  Google Scholar 

  • Bendich, A.: Methods for characterization of nucleic acids by base composition. Meth. Enzym. 3, 715–723 (1957).

    Google Scholar 

  • Bendich, A. J., McCarthy, B. J.: Ribosomal RNA homologies among distantly related organisms. Proc. nat. Acad. Sci. (Wash.) 65, 349–356 (1970).

    PubMed  CAS  Google Scholar 

  • Bergan, T., Bøvre, K., Hovig, B.: Reisolation of Micrococcus mucilaginosus migula 1900. Acta path. microbiol. scand., Sect. B 78, 85–97 (1970).

    CAS  Google Scholar 

  • Bernardi, G, Carnevali, F., Nicolajeff, A, Piperno, G., Tecce, G.: Separation and characterization of a satellite DNA from a yeast cytoplasmic “petite” mutant. J. molec. Biol. 37, 493–505 (1968).

    PubMed  CAS  Google Scholar 

  • Bernardi, G., Faures, M., Piperno, G., Slonimski, P. P.: Mitochondrial DNA’s from respiratory-sufficient and cytoplasmic respiratory-deficient mutant yeast. J. molec. Biol. 48, 23–42 (1970).

    PubMed  CAS  Google Scholar 

  • Bernardi, G., Timasheff, S. N.: Optical rotatory dispersion and circular dichroism properties of yeast mitochondrial DNA’s. J. molec. Biol. 48, 43–52 (1970).

    PubMed  CAS  Google Scholar 

  • Bicknell, J. N., Douglas, H. C.: Nucleic acid homologies among species of Saccharomyces. J. Bact. 101, 505–512 (1970).

    PubMed  CAS  Google Scholar 

  • Biggins, D. R., Postgate, J. R.: Confusion in the taxonomy of a nitrogen-fixing bacterium currently classified as Mycobacterium flavum 301. J. gen. Microbiol. 65, 119–123 (1971).

    PubMed  CAS  Google Scholar 

  • Billheimer, F. E., Avers, C. J.: Nuclear and mitochondrial DNA from wild-type and petite yeast: Circularity, length and buoyant density. Proc. nat. Acad. Sci. (Wash.) 64, 739–746 (1969).

    PubMed  CAS  Google Scholar 

  • Birnstiel, M. L., Chipchase, M., Speirs, J.: The ribosomal RNA cistrons. Progr. Nucleic Acid Res. Mol. Biol. 11, 351–389 (1971).

    CAS  Google Scholar 

  • Bleeg, H. S., Bak, Christiansen, C., Smith, K. E., Stenderup, A.: Mitochondrial DNA and glucose repression in yeast. Biochem. biophys. Res. Commun. 47, 524–530 (1972).

    PubMed  CAS  Google Scholar 

  • Boháček, J., Kocur, M., Martinec, T.: Deoxyribonucleic acid base composition and taxonomy of the genus Micrococcus. Publ. Fac. Sci. Univ. J. E. Purkyně, Brno, Ser. K 35, 318–322 (1965).

    Google Scholar 

  • Boháček, J., Kocur, M., Martinec, T.: DNA base composition and taxonomy of some micrococci. J. gen. Microbiol. 46, 369–376 (1967).

    Google Scholar 

  • Boháček, J., Kocur, M., Martinec, T.: Deoxyribonucleic acid base composition of some marine and halophilic micrococci. J. appl. Bact. 31, 215–219 (1968).

    Google Scholar 

  • Boháček, J., Kocur, M., Martinec, T.: Deoxyribonucleic acid base composition of Micrococcus roseus. Antonie v. Leeuwenhoek 35, 185–188 (1969).

    Google Scholar 

  • Boháček, J., Kocur, M., Martinec, T.: DNA base composition of some Micrococcaceae. Microbios 6, 85–91 (1970).

    Google Scholar 

  • Boháček, J., Kocur, M., Martinec, T.: Deoxyribonucleic acid base composition of serotype strains of Staphylococcus aureus. J. gen. Microbiol. 68, 109–113 (1971).

    PubMed  Google Scholar 

  • Boháček, J., Mráz, O.: Basengehalt der Desoxyribonukleinsäure bei Arten Pasteurella haemolytica, Actinobacillus lignieresii und Actinobacillus equuli. Zbl. Bakt., I. Abt. Orig. 202, 468–478 (1966).

    Google Scholar 

  • Borkowski, T., Wojcierowski, J., Kulesza, S.: A new rapid electrophoretic method for determination of deoxyribonucleic acid base composition. Analyt. Biochem, 27, 58–64 (1969).

    PubMed  CAS  Google Scholar 

  • Borst, P., Kroon, A.M.: Mitochondrial DNA: physicochemical properties; replication and genetic function. Int. Rev. Cytol. 26, 108–190 (1969).

    Google Scholar 

  • Borst, P., Van Bruggen, E. F. J., Ruttenberg, G. J. C. M.: Size and structure of mitochondrial DNA, p. 51. In: Slater, E. C., J. M. Tager, S. Papa and E. Quagliariello (eds.), Biochemical aspects of the biogenesis of mitochondria. Bari: Adriatica Editrice 1968.

    Google Scholar 

  • Bouisset, L., Breuillaud, J., Michel, G.: Étude de l’ADN chez les actinomycétales. Ann. Inst. Pasteur 104, 756–770 (1963).

    CAS  Google Scholar 

  • Bouisset, L., Breuillaud, J., Michel, G., Larrouy, G.: Bases nucléiques des bactéries application au genre Actinobacterium. Ann. Inst. Pasteur 115, 1063–1081 (1968).

    CAS  Google Scholar 

  • Bøvre, K.: Transformation and DNA base composition in taxonomy, with special reference to recent studies in Moraxella and Neisseria. Acta path. microbiol. scand. 69, 123–144 (1967).

    Google Scholar 

  • Bøvre, K., Fiandt, M., Szybalski, W.: DNA base composition of Neisseria, Moraxella, and Acinetobacter, as determined by measurement of buoyant density in CsCl gradients. Canad. J. Microbiol. 15, 335–338 (1969).

    Google Scholar 

  • Bradley, S. G.: Genetics in applied microbiology. Advanc. appl. Microbiol. 8, 29–59 (1966).

    CAS  Google Scholar 

  • Brennan, P.C., Fritz, T. E., Flynn, R. J.: Role of Pasteurella pneumotropica and Mycoplasma pulmonis in murine pneumonia. J. Bact. 97, 337–349 (1969).

    PubMed  CAS  Google Scholar 

  • Britten, R.J., Kohne, D. E.: Repeated sequences in DNA. Science 161, 529–540 (1968).

    PubMed  CAS  Google Scholar 

  • Brock, T. D., Darland, G. K.: Limits of microbial existence: temperature and pH. Science 169, 1316–1318 (1970).

    PubMed  CAS  Google Scholar 

  • Brock, T. D., Freeze, H.: Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bact. 98, 289–297 (1969).

    PubMed  CAS  Google Scholar 

  • Brock, T. D., Mandel, M.: Deoxyribonucleic acid base composition of geographically diverse strains of Leucothrix mucor. J. Bact. 91, 1659–1660 (1966).

    PubMed  CAS  Google Scholar 

  • Burton, K.: A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62, 315–323 (1956).

    PubMed  CAS  Google Scholar 

  • Burton, K.: Frequencies of nucleotide sequences in deoxyribonucleic acids. Biochem. J. 77, 547–552 (1960).

    PubMed  CAS  Google Scholar 

  • Canale-Parola, E., Mandel, M., Kupfer, D. G.: The classification of Sarcinae. Arch. Mikrobiol. 58, 30–34 (1967).

    PubMed  CAS  Google Scholar 

  • Canale-Parola, E., Udris, Z., Mandel, M.: The classification of free-living spirochetes. Arch. Mikrobiol. 63, 385–397 (1968).

    PubMed  CAS  Google Scholar 

  • Cantoni, C., Hill, L. R., Silvestri, L. G.: Deoxyribonucleic acid base composition of some members of the subgenera Betabacterium and Streptobacterium. Appl. Microbiol. 13, 631–633 (1965).

    PubMed  CAS  Google Scholar 

  • Carnevali, F., Morpurgo, G., Tecce, G.: Cytoplasmic DNA from petite colonies of Saccharomyces cerevisiae: A hypothesis on the nature of the mutation. Science 163, 1331–1333 (1969).

    PubMed  CAS  Google Scholar 

  • Cassuto, E., Stein, M., Chargaff, E.: Complementarity of RNA produced by enzymic transcription of native and denatured B. subtilis DNA. Proc. nat. Acad. Sci. (Wash.) 66, 197–203 (1970).

    PubMed  CAS  Google Scholar 

  • Catlin, B. W., Cunningham, L. S.: Transforming activities and base contents of deoxyribonucleate preparations from various Neisseriae. J. gen. Microbiol. 26, 303–312 (1961).

    PubMed  CAS  Google Scholar 

  • Chargaff, E.: Isolation and composition of the deoxypentose nucleic acids and of the corresponding nucleoproteins. The nucleic acids (ed. Chargaff, E., and J. N. Davidson), vol. l, p. 307–371. New York: Academic Press 1955.

    Google Scholar 

  • Cheung, M. K., Bockrath, R. C.: On the specificity of UV mutagenesis in E. coli. Mutation Res. 10, 521–523 (1970).

    PubMed  CAS  Google Scholar 

  • Christiansen, C., Bak, A. L., Stenderup, A., Christiansen, G.: Repetitive DNA in Yeasts. Nature (Lond.) New Biol. 231, 176–177 (1971).

    CAS  Google Scholar 

  • Christiansen, C., Christiansen, G., Bak, A. L., Stenderup, A.: Extrachromosomal DNA in different enterobacteria. J. Bact. (in press) (1972).

    Google Scholar 

  • Citarella, R. V., Colwell, R. R.: DNA base composition of Achromobacter liquefaciens (Tulecke et al.). Canad. J. Microbiol. 12, 418–420 (1966).

    CAS  Google Scholar 

  • Citarella, R. V., Colwell, R. R.: Polyphasic tyxonomy of the genus Vibrio: poly-nucleotide sequence relationships among selected Vibrio species. J. Bact. 104, 434–442 (1970).

    PubMed  CAS  Google Scholar 

  • Clark, M. C., Hodgson, W. A., Lawrence, C. H.: Composition of DNA from Phytophthora infestans. Canad. J. Microbiol. 14, 482–483 (1967).

    Google Scholar 

  • Claus, D., Bergendahl, J. E., Mandel, M.: DNA base composition of Microcyclus species and organisms of similar morphology. Arch. Mikrobiol. 63, 26–28 (1968).

    PubMed  CAS  Google Scholar 

  • Cohen, S. N., Miller, C. A.: Multiple molecular species of circular R-factor DNA isolated from Escherichia coli. Nature (Lond.) 224, 1273–1277 (1969).

    PubMed  CAS  Google Scholar 

  • Cohen, S. N., Miller, C. A.: Non-chromosomal antibiotic resistance in bacteria. II. Molecular nature of R-factors isolated from Proteus mirabilis and Escherichia coli. J. molec. Biol. 50, 671–687 (1970).

    PubMed  CAS  Google Scholar 

  • Colwell, R. R., Adeyemo, V. I., Kirtland, H. H.: Esterases and DNA base composition analysis of Vibrio cholerae and related Vibrios. J. appl. Bact. 31, 323–335 (1968).

    CAS  Google Scholar 

  • Colwell, R. R., Citarella, R. V., Chen, P. K.: DNA base composition of Cytophaga marinoflava n. sp. determined by buoyant density measurements in cesium chloride. Canad. J. Microbiol. 12, 1099–1103 (1966).

    CAS  Google Scholar 

  • Colwell, R. R., Citarella, R. V., Ryman, I.: Deoxyribonucleic acid base composition and adansonian analysis of heterotrophic, aerobic pseudomonads. J. Bact. 90, 1148–1149 (1965).

    PubMed  CAS  Google Scholar 

  • Colwell, R. R., Mandel, M.: Adansonian analysis and deoxyribonucleic acid base composition of some gram-negative bacteria. J. Bact. 87, 1412–1422 (1964a).

    PubMed  CAS  Google Scholar 

  • Colwell, R. R., Mandel, M.: Base composition of deoxyribonucleic acid of marine and nonmarine vibrios deduced from buoyant-density measurements in cesium chloride. J. Bact. 88, 1816–1817 (1964b).

    PubMed  CAS  Google Scholar 

  • Colwell, R. R., Mandel, M.: Adansonian analysis and deoxyribonucleic acid base composition of Serratia marcescens. J. Bact. 89, 454–461 (1965).

    PubMed  CAS  Google Scholar 

  • Corneo, G., Moore, C., Sanadi, D. R., Grossman, L. I., Marmur, J.: Mitochondrial DNA in yeast and some mammalian species. Science 151, 687–689 (1966).

    PubMed  CAS  Google Scholar 

  • Cox, E. C., Yanofsky, C.: Altered base ratios in the DNA of an Escherichia coli mutator strain. Proc. nat. Acad. Sci. (Wash.) 58, 1895–1902 (1967).

    PubMed  CAS  Google Scholar 

  • Coykendall, A. L.: Base composition of deoxyribonucleic acid isolated from cariogenic streptococci. Arch. oral Biol. 15, 365–368 (1970).

    PubMed  CAS  Google Scholar 

  • Coykendall, A. L.: Genetic heterogeneity in Streptococcus mutans. J. Bact. 106, 192–196 (1971).

    PubMed  CAS  Google Scholar 

  • Craveri, R., Hill, L. R., Manachini, P. L., Silvestri, L. G.: Deoxyribonucleic acid base compositions among thermophilic actinomycetes: the occurrence of two strains with low GC content. J. gen. Microbiol. 41, 335–339 (1965).

    PubMed  CAS  Google Scholar 

  • Cummins, C. S., Johnson, J. L.: Taxonomy of the Clostridia: Wall composition and DNA homologies in Clostridium butyricum and other butyric acid-producing Clostridia. J. gen. Microbiol. 67, 33–46 (1971).

    Google Scholar 

  • Darby, G. K., Jones, A. S., Kennedy, J. F., Walker, R. T.: Isolation and analysis of the nucleic acids and polysaccharides from Clostridium welchii. J. Bact. 103, 159–165 (1970).

    PubMed  CAS  Google Scholar 

  • Darland, G., Brock, T. D.: Bacillus acidocaldarius sp. n., an acidophilic thermophilic spore-forming bacterium. J. gen. Microbiol. 67, 9–15 (1971).

    Google Scholar 

  • Darland, G., Brock, T. D., Samsonoff, W., Conti, S. F.: A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 170, 1416–1418 (1970).

    PubMed  CAS  Google Scholar 

  • De Ley, J.: Effect of mutation on DNA-composition of some bacteria. Antonie v. Leeuwenhoek 30, 281–288 (1964).

    Google Scholar 

  • De Ley, J.: The quick approximation of DNA base composition from absorbancy ratios. Antonie v. Leeuwenhoek 33, 203–208 (1967).

    Google Scholar 

  • De Ley, J.: DNA base composition and taxonomy of some Acinetobacter strains. Antonie v. Leeuwenhoek 34, 109–114 (1968a).

    Google Scholar 

  • De Ley, J.: DNA base composition and classification of some more free-living nitrogen-fixing bacteria. Antonie v. Leeuwenhoek 34, 66–70 (1968b).

    Google Scholar 

  • De Ley, J.: DNA base composition of yellow Erwinia strains. Antonie v. Leeuwenhoek 34, 257–262 (1968c).

    Google Scholar 

  • De Ley, J.: Compositional nucleotide distribution and the theoretical prediction of homology in bacterial DNA. J. theoret. Biol. 22, 89–116 (1969).

    Google Scholar 

  • De Ley, J.: Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bact. 101, 738–754 (1970).

    PubMed  Google Scholar 

  • De Ley, J., Bernaerts, Rassel, A., Guilmot, J.: Approach to an improved taxonomy of the genus Agrobacterium. J. gen. Microbiol. 43, 7–17 (1966a).

    Google Scholar 

  • De Ley, J., Friedman, S.: Deoxyribonucleic acid hybrids of acetic acid bacteria. J. Bact. 88, 937–945 (1964).

    Google Scholar 

  • De Ley, J., Friedman, S.: Similarity of Xanthomonas and Pseudomonas deoxyribonucleic acid. J. Bact. 89, 1306–1309 (1965).

    Google Scholar 

  • De Ley, J., Kersters, K., Khan-Matsubara, J., Shewan, J. M.: Comparative D-gluconate metabolism and DNA base composition in Achromobacter and Alcaligenes. Antonie v. Leeuwenhoek 36, 193–207 (1970).

    Google Scholar 

  • De Ley, J., Kersters, K., Park, I. W.: Molecular-biological and taxonomic studies on Pseudomonas halocrenaea, a bacterium from Permian salt deposits. Antonie v. Leeuwenhoek 32, 315–331 (1966).

    Google Scholar 

  • De Ley, J., Park, I. W., Tijtgat, R., van Ermengem, J.: DNA homology and taxonomy of Pseudomonas and Xanthomonas. J. gen. Microbiol. 42, 43–56 (1966b).

    PubMed  Google Scholar 

  • De Ley, J., Rassel, A.: DNA base composition, flagellation and taxonomy of the genus Rhizobium. J. gen. Microbiol. 41, 85–91 (1965).

    PubMed  Google Scholar 

  • De Ley, J., Schell, J.: Deoxyribonucleic acid base composition of acetic acid bacteria. J. gen. Microbiol. 33, 243–253 (1963).

    Google Scholar 

  • De Ley, J., van Muylem, J.: Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie v. Leeuwenhoek 29, 344–358 (1963).

    CAS  Google Scholar 

  • De Witt, W., Helinski, D. R.: Characterization of colicinogenic factor E1 from a non-induced and a Mitomycin C-induced Proteus strain. J. molec. Biol. 13, 692–703 (1965).

    Google Scholar 

  • Di Cioccio, R. A., Strauss, N.: Annealing studies of transcription in B. subtilis. Biochem. biophys. Res. Commun. 45, 212–218 (1971).

    Google Scholar 

  • Doty, P., Marmur, J., Sueoka, N.: The heterogeneity in properties and functioning of deoxyribonucleic acids. Brookhaven Symp. Biol. 12, 1–16 (1959).

    PubMed  CAS  Google Scholar 

  • Dove, W. F., Davidson, N.: Cation effect on the denaturation of DNA. J. molec. Biol. 5, 467–478 (1962a).

    CAS  Google Scholar 

  • Dove, W. F., Davidson, N.: The thermal inactivation of transforming activity at low ionic strength. J. molec. Biol. 5, 479–486 (1962b).

    CAS  Google Scholar 

  • Dowell, V. R., Jr., Loper, J. C., Hill, E. O.: Constancy of deoxyribonucleic acid base composition in the transition of Sphaerophorus necrophorus from bacilli to large bodies. J. Bact. 88, 1805–1807 (1964).

    PubMed  CAS  Google Scholar 

  • Dubnau, D., Smith, I., Morell, P., Marmur, J.: Gene conservation in Bacillus species. I. Conserved genetic and nucleic acid base sequence homologies. Proc. nat. Acad. Sci. (Wash.) 54, 491–498 (1965).

    PubMed  CAS  Google Scholar 

  • Dugle, D. L., Dugle, J. R.: Presence of two DNA populations in Mycoplasma laidlawii. Canad. J. Microbiol. 17, 433–434 (1971).

    CAS  Google Scholar 

  • Dunn, D. B., Smith, J. D.: The occurrence of 6-methylaminopurine in deoxyrinbonucleic acids. Biochem. J. 68, 627–636 (1958).

    PubMed  CAS  Google Scholar 

  • Dupont, P. F., Hedrick, L. R.: Deoxyribonucleic acid base composition and numerical taxonomy of yeasts in the genus Trichosporon. J. gen. Microbiol. 66, 349–359 (1971).

    PubMed  CAS  Google Scholar 

  • Dutta, S. K., Richman, N., Woodward, V. W., Mandel, M.: Relatedness among species of fungi and higher plants measured by DNA hybridization and base ratios. Genetics 57, 719–727 (1967).

    PubMed  CAS  Google Scholar 

  • Easterling, S. B., Johnson, E. M., Wohlhieter, J. A., Baron, L. S.: Nature of lactose-fermenting Salmonella strains obtained from clinical sources. J. Bact. 100, 35–41 (1969).

    PubMed  CAS  Google Scholar 

  • Eichhorn, G. L.: Metal ions as stabilizers or destabilizers of the deoxyribonucleic acid structure. Nature (Lond.) 194, 474–475 (1962).

    PubMed  CAS  Google Scholar 

  • Eiroma, M., Laine, J. J., Gyllenberg, H. G.: DNA base composition in psychrophilic and mesophilic bacilli. Ann. Med. exp. Fenn. 49, 59–61 (1971).

    PubMed  CAS  Google Scholar 

  • Erikson, R. L., Szybalski, W.: The Cs2SO4 equilibrium density gradient and its application for the study of T-even phage DNA: Glucosylation and replication. Virology 22, 111–124 (1964).

    CAS  Google Scholar 

  • Evreinova, T. N., Bunina, N. V., Kusnetzova, N. Y.: Biokhimiya 24, 912 (1959).

    CAS  Google Scholar 

  • Evreinova, T. N., Tsaplina, I. A., Agre, N. S., Davydova, I. M.: Effect of temperature on nucleic acids of the thermophilic and mesophilic variants of Micromonospora vulgaris. Mikrobiologiya 34, 411–417 (1965).

    CAS  Google Scholar 

  • Falkow, S., Citarella, R. V.: Molecular homology of F-merogenote DNA. J. molec. Biol. 12, 136–151 (1965).

    Google Scholar 

  • Falkow, S., Citarella, R. V., Wohlhieter, J. A., Watanabe, T.: The molecular nature of R-factors. J. molec. Biol. 17, 102–116 (1966).

    PubMed  CAS  Google Scholar 

  • Falkow, S., Ryman, I. R., Washington, O.: Deoxyribonucleic acid base composition of Proteus and providence organisms. J. Bact. 83, 1318–1321 (1962).

    PubMed  CAS  Google Scholar 

  • Farina, G., Bradley, S. G.: Reassociation of deoxyribonucleic acids from Actinoplanes and other actinomycetes. J. Bact. 102, 30–35 (1970).

    PubMed  CAS  Google Scholar 

  • Federova, L. S.: Nucleotide composition of desoxyribonucleic and ribonucleic acids of the agent causing toxic bacteriosis of watermelons. Mikrobiologiya 33, 968–970 (1964).

    Google Scholar 

  • Fredericq, E., Oth, A., Fontaine, F.: The ultraviolet spectrum of deoxyribonucleic acids and their constituents. J. molec. Biol. 3, 11–17 (1961).

    PubMed  CAS  Google Scholar 

  • Freese, E.: On the evolution of the base composition of DNA. J. theoret. Biol. 3, 82–101 (1962).

    CAS  Google Scholar 

  • Freese, E. B., Freese, E.: On the specificity of DNA polymerase. Proc. nat. Acad. Sci. (Wash.) 57, 650–657 (1967).

    PubMed  CAS  Google Scholar 

  • Fried, A. H., Rappaport, H. P.: Partial purification of a region from the Bacillus subtilis genome on the basis of its resistance to heat-induced strand separation. Biochim. biophys. Acta (Amst.) 204, 91–98 (1970).

    PubMed  CAS  Google Scholar 

  • Frontali, C., Hill, L. R., Silvestri, L. G.: The base composition of deoxyribonucleic acids of Streptomyces. J. gen. Microbiol. 38, 243–250 (1965).

    PubMed  CAS  Google Scholar 

  • Garrity, F. L., Detrick, B., Kennedy, E. R.: Deoxyribonucleic acid base composition in the taxonomy of Staphylococcus. J. Bact. 97, 557–560 (1969).

    PubMed  CAS  Google Scholar 

  • Gasser, F., Mandel, M.: Deoxyribonucleic acid base composition of the genus Lactobacillus. J. Bact. 96, 580–588 (1968).

    PubMed  CAS  Google Scholar 

  • Gasser, F., Sebald, M.: Composition en bases nucléiques des bactéries du genre Lactobacillus. Ann. Inst. Pasteur 110, 261–275 (1966).

    CAS  Google Scholar 

  • Gause, G. F.: Alterations of DNA base composition in bacteria. Progr. Nucleic Acid Res. Mol. Biol. 8, 49–71 (1968).

    CAS  Google Scholar 

  • Gause, G. F., Dudnik, Yu. V., Laiko, A. V., Netyksa, E. M.: Induction of mutants with altered DNA composition: Effect of ultraviolet on bacterium paracoli 5099. Science 157, 1196–1197 (1967).

    PubMed  CAS  Google Scholar 

  • Gause, G. F., Laiko, A. V., Bibikova, M. V., Kusovkova, L. I., Selesneva, T. I., Dudnik, Yu. V.: Mutants with altered DNA base composition in Bacterium paracoli — the evidence from a marker. Z. allg. Mikrobiol. 11, 91–95 (1971).

    PubMed  CAS  Google Scholar 

  • Gause, G. G., Loshkareva, N. P., Zbarsky, I. B., Gause, G. F.: Deoxyribonucleic acid base composition in certain bacteria and their mutants with impaired respiration. Nature (Lond.) 203, 598–599 (1964).

    PubMed  CAS  Google Scholar 

  • Geiduschek, E. P.: On the factors controlling the reversibility of DNA denaturation. J. molec. Biol. 4, 467–487 (1962).

    PubMed  CAS  Google Scholar 

  • Gerloff, R. K., Ritter, D. B., Watson, R. O.: Studies on thermal denaturation of DNA from various chlamydiae. J. infect. Dis. 121, 65–69 (1970).

    PubMed  CAS  Google Scholar 

  • Germaine, G. R., Anderson, D. L.: Binding of homologous polymerized deoxyribonucleic acid by Streptomyces griseus. J. Bact. 92, 662–667 (1966).

    PubMed  CAS  Google Scholar 

  • Gibson, T., Scheppe, M. L., Cox, E. C.: Fitness of an Escherichia coli mutator gene. Science 169, 686–688 (1970).

    PubMed  CAS  Google Scholar 

  • Gillis, M., De Ley, J., De Cleene, M.: The determination of molecular weight of bacterial genome DNA from renaturation rates. Europ. J. Biochem. 12, 143–153 (1970).

    PubMed  CAS  Google Scholar 

  • Goldring, E. S., Grossman, L. I., Krupnick, D., Cryer, D. R., Marmur, J.: The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J. molec. Biol. 52, 323–335 (1970).

    PubMed  CAS  Google Scholar 

  • Gourlay, R. N.: Isolation of a virus infecting a strain of Mycoplasma laidlawii. Nature (Lond.) 225, 1165 (1970).

    PubMed  CAS  Google Scholar 

  • Gourlay, R. N., Leach, R. H.: A new mycoplasma species isolated from pneumonic lungs of calves (Mycoplasma dispar sp. nov.). J. med. Microbiol. 3, 111–123 (1970).

    PubMed  CAS  Google Scholar 

  • Granick, S., Gibor, A.: The DNA of chloroplasts, mitochondria, and centrioles. Progr. Nucleic Acid Res. Mol. Biol. 6, 143–186 (1967).

    CAS  Google Scholar 

  • Grossman, L., Levine, S. S., Allison, W.S.: The reaction of formaldehyde with nucleotides and T2 bacteriophage DNA. J. molec. Biol. 3, 47–60 (1961).

    PubMed  CAS  Google Scholar 

  • Grossman, L. I., Cryer, D. R., Goldring, E. S., Marmur, J.: The petite mutation in yeast. III. Nearest-neighbor analysis of mitochondrial DNA from normal and mutant cells. J. molec. Biol. 62, 565–575 (1971).

    PubMed  CAS  Google Scholar 

  • Gruenwedel, D. W., Hsu, C.-H.: Salt effects on the denaturation of DNA. Biopolymers 7, 557–570 (1969).

    CAS  Google Scholar 

  • Guerineau, Grandchamp, C., Paoletti, C., Slonimski, P.: Characterization of a new class of circular DNA molecules in yeast. Biochem. biophys. Res. Commun. 42, 550–557 (1971).

    PubMed  CAS  Google Scholar 

  • Haapala, D. K., Falkow, S.: Physical studies of the drug-resistance transfer factor in Proteus. J. Bact. 106, 294–295 (1971).

    PubMed  CAS  Google Scholar 

  • Haapala, D. K., Rogul, M., Evans, L. B., Alexander, A. D.: Deoxyribonucleic acid base composition and homology studies of Leptospira. J. Bact. 98, 421–428 (1969).

    PubMed  CAS  Google Scholar 

  • Habich, A., Weissmann, C., Libonati, M., Warner, R. C.: Isolation of a fraction of Bacillus megaterium DNA enriched in “minus” sequences. J. molec. Biol. 21, 255–264 (1966).

    PubMed  CAS  Google Scholar 

  • Hamaguchi, K., Geiduschek, E. P.: The effect of electrolytes on the stability of the deoxyribonucleate helix. J. Amer. chem. Soc. 84, 1329–1338 (1962).

    CAS  Google Scholar 

  • Hammond, B. F.: Deoxyribonucleic acid base composition of Rothia dentocariosa as determined by thermal denaturation. J. Bact. 104, 1024–1026 (1970).

    PubMed  CAS  Google Scholar 

  • Hanaoka, M., Kato, Y., Amano, T.: Complementary examination of DNA’s among vibrio species. Biken J. 12, 181–185 (1969).

    PubMed  CAS  Google Scholar 

  • Harm, W.: Biological determination of the germicidal activity of sunlight. Radiat. Res. 40, 63–69 (1969).

    PubMed  CAS  Google Scholar 

  • Haselkorn, R., Doty, P.: The reaction of formaldehyde with polynucleotides. J. biol. Chem. 236, 2738–2745 (1961).

    PubMed  CAS  Google Scholar 

  • Haynes, R. H.: Molecular localization of radiation damage relevant to bacterial inactivation. In: Physical processes in radiation biology. International Symposium on Physical Processes in Radiation Biology, p. 51. New York: Academic Press 1964.

    Google Scholar 

  • Helinski, D. R., Clewell, D. B.: Circular DNA. Ann. Rev. Biochem. 40, 899–942 (1971).

    PubMed  CAS  Google Scholar 

  • Hershberger, C., Mickel, S., Rownd, R.: Asymmetric distribution of guanine plus thymine between complementary strands of deoxyribonucleic acid of members of the Enterobacteriaceae. J. Bact. 106, 238–242 (1971).

    PubMed  CAS  Google Scholar 

  • Hogan, M. A., Colwell, R. R.: DNA base composition and esterase patterns of bacteria isolated from deep sea sediments. J. appL Bact. 32, 103–111 (1969).

    CAS  Google Scholar 

  • Hollenberg, C. P., Borst, P., van Bruggen, E. F. J.: Mitochondrial DNA. V. A 25-µ closed circular duplex DNA molecule in wild-type yeast mitochondria. Structure and genetic complexity. Biochim. biophys. Acta (Amst.) 209, 1–15 (1970).

    PubMed  CAS  Google Scholar 

  • Holt, J. G., Lewin, R. A.: Herpetosiphon aurantiacus gen. et sp. n., a new filamentous gliding organism. J. Bact. 95, 2407–2408 (1968).

    PubMed  CAS  Google Scholar 

  • Hoyer, B. H., King, J. R.: Deoxyribonucleic acid sequence losses in a stable streptococcal L form. J. Bact. 97, 1516–1517 (1969).

    PubMed  CAS  Google Scholar 

  • Hoyer, B. H., McCullough, N. B.: Polynucleotide homologies of Brucella deoxyribonucleic acids. J. Bact. 95, 444–448 (1968).

    PubMed  CAS  Google Scholar 

  • Ikeda, Y., Saito, H., Miura, K.-I, Takagi, J., Aoki, H.: DNA base composition, susceptibility to bacteriophages, and interspecific transformation as criteria for classification in the genus Bacillus. J. gen. appl. Microbiol. 11, 181–190 (1965).

    CAS  Google Scholar 

  • Jackson, J. F., Moriarty, D. J.W., Nicholas, D. J. D.: Deoxyribonucleic acid base composition and taxonomy of thiobacilli and some nitrifying bacteria. J. gen. Microbiol. 53, 53–60 (1968).

    PubMed  CAS  Google Scholar 

  • Jacob, M., Pouyet, G.: Analyse de l’hétérogénéité de composition de deux échantillons d’acide désoxyribonucléique par ultracentrifugation. J. molec. Biol. 24, 355–365 (1967).

    CAS  Google Scholar 

  • Johnson, J.L.: Relationship of deoxyribonucleic acid homologies to cell wall structure. Int. J. system. Bact. 20, 421–424 (1970).

    CAS  Google Scholar 

  • J. L., Anderson, R. S., Ordal, E. J.: Nucleic acid homologies among oxidase-negative Moraxella species. J. Bact. 101, 568–573 (1970).

    PubMed  CAS  Google Scholar 

  • Johnson, J. L., Ordal, E. J.: Deoxyribonucleic acid homology in bacterial taxonomy: Effect of incubation temperature on reaction specificity. J. Bact. 95, 893–900 (1968).

    PubMed  CAS  Google Scholar 

  • Jones, A. S., Tittensor, J. R., Walker, R. T.: The chemical composition of the nucleic acids and other macromolecular constituents of Mycoplasma mycoides var. capri. J. gen. Microbiol. 40, 405–411 (1965).

    PubMed  CAS  Google Scholar 

  • Jones, A. S., Walker, R. T.: Isolation and analysis of the deoxyribonucleic acid of Mycoplasma mycoides var. capri. Nature (Lond.) 198, 588–589 (1963).

    CAS  Google Scholar 

  • Jones, L. A., Bradley, S. G.: Phenetic classification of Actinomycetes. Devel. Indust. Microbiol. 5, 267–272 (1964).

    Google Scholar 

  • Joshi, J. G., Guild, W. R., Handler, P.: The presence of two species of DNA in some halobacteria. J. molec. Biol. 6, 34–38 (1963).

    CAS  Google Scholar 

  • Josse, J., Kaiser, A. D., Kornberg, A.: Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid. J. biol. Chem. 236, 864–875 (1961).

    PubMed  CAS  Google Scholar 

  • Kallen, R. G., Simon, M., Marmur, J.: The occurrence of a new pyrimidine base replacing thymine in a bacteriophage DNA: 5-hydroxymethyl uracil. J. molec. Biol. 5, 248–250 (1962).

    CAS  Google Scholar 

  • Kasamatsu, H., Rownd, R.: Replication of R-factors in Proteus mirabilis: Replication under relaxed control. J. molec. Biol. 51, 473–489 (1970).

    PubMed  CAS  Google Scholar 

  • Kelton, W. H., Mandel, M.: Deoxyribonucleic acid base compositions of mycoplasma strains of avian origin. J. gen. Microbiol. 56, 131–135 (1969).

    PubMed  CAS  Google Scholar 

  • Kerr, S. E., Seraidarian, K.: The separation of purine nucleosides from free purines and the determination of the purines and ribose in these fractions. J. biol. Chem. 159, 211–225 (1945).

    CAS  Google Scholar 

  • Kiehn, E. D., Pacha, R. E.: Characterization and relatedness of marine vibrios pathogenic to fish: Deoxyribonucleic acid homology and base composition. J. Bact. 100, 1248–1255 (1969).

    PubMed  CAS  Google Scholar 

  • Kimura, M.: Evolutionary rate at the molecular level. Nature (Lond.) 217, 624–626 (1968).

    PubMed  CAS  Google Scholar 

  • Kimura, M.: The rate of molecular evolution considered from the standpoint of population genetics. Proc. nat. Acad. Sci. (Wash.) 63, 1181–1188 (1969).

    PubMed  CAS  Google Scholar 

  • King, J. L., Jukes, T. H.: Non-darwinian evolution. Science 164, 788–798 (1969).

    PubMed  CAS  Google Scholar 

  • Kingsbury, D. T.: Estimate of the genome size of various microorganisms. J. Bact. 98, 1400–1401 (1969).

    PubMed  CAS  Google Scholar 

  • Kingsbury, D. T., Weiss, E.: Lack of deoxyribonucleic acid homology between species of the genus Chlamydia. J. Bact. 96, 1421–1423 (1968).

    PubMed  CAS  Google Scholar 

  • Kirby, K. S.: Isolation and fractionation of nucleic acids. Progr. Nucleic Acid Res. Mol. Biol. 3, 1–31 (1964).

    CAS  Google Scholar 

  • Klesius, P. H., Schuhardt, V. T.: Use of lysostaphin in the isolation of highly polymerized deoxyribonucleic acid and in the taxonomy of aerobic Micrococcaceae. J. Bact. 95, 739–743 (1968).

    PubMed  CAS  Google Scholar 

  • Kocur, M., Bergan, T., Mortensen, N.: DNA base composition of Gram-positive cocci. J. gen. Microbiol. 69, 167–183 (1971).

    PubMed  CAS  Google Scholar 

  • Kontomichalou, P., Mitani, M., Clowes, R. C.: Circular R-factor molecules controlling penicillinase synthesis, replicating in Escherichia coli under either relaxed or stringent control. J. Bact. 104, 34–44 (1970).

    PubMed  CAS  Google Scholar 

  • Krieg, R. E., Lockhart, W. R.: Analysis of the thermal transition curves of deoxyribonucleic acid from microorganisms. Canad. J. Microbiol. 16, 989–995 (1970).

    CAS  Google Scholar 

  • Kroon, A. M.: DNA and RNA from mitochondria and chloroplasts (biochemistry). In: Lima-de-Faria, A. (ed.), Handbook of molecular cytology. Amsterdam and London: North Holland Publ. Comp. 1969.

    Google Scholar 

  • Kubinski, H., Opara-Kubinska, Z., Szybalski, W.: Patterns of interaction between polyribonucleotides and individual DNA strands derived from several vertebrates, bacteria and bacteriophages. J. molec. Biol. 20, 313–329 (1966).

    PubMed  CAS  Google Scholar 

  • Kumazawa, N., Yanagawa, R.: DNA base composition of the three types of Corynebacterium renale. Jap. J. vet. Res. 17, 115–120 (1969).

    CAS  Google Scholar 

  • Kužela, Š., Šmigán, P., Kováč, L.: Biochemical characteristics of yeast respiration-deficient mutants differing in buoyant densities of mitochondrial DNA. Experientia (Basel) 25, 1042–1043 (1969).

    PubMed  Google Scholar 

  • La Macchia, E. H., Pelczar, M. J.: Analyses of Deoxyribonucleic acid of Neisseria caviae and other Neisseria. J. Bact. 91, 514–516 (1966).

    Google Scholar 

  • Lanni, F.: Genetic significance of microbial DNA composition. Perspect. BioL Med. Spring 1960, 418–432 (1960).

    Google Scholar 

  • Lawrence, C. H., Clark, M. C.: Characterization of deoxyribonucleic acid from Streptomyces scabies. Canad. J. Biochem. 44, 1685–1688 (1966).

    CAS  Google Scholar 

  • Layne, P., Hu, A. S. L., Balows, A., Davis, B. R.: Extrachromosomal nature of hydrogen sulfide production in Escherichia coli. J. Bact. 106, 1029–1030 (1971).

    PubMed  CAS  Google Scholar 

  • Lee, K. Y., Wahl, R., Barbu, E.: Contenu en bases puriques et pyrimidiques des acides désoxyribonucléiques des bactéries. Ann. Inst. Pasteur 91, 212–224 (1956).

    CAS  Google Scholar 

  • Lee, W. H., Riemann, H.: Correlation of toxic and nontoxic strains of Clostridium botulinum by DNA composition and homology. J. gen. Microbiol. 60, 117–123 (1970a).

    PubMed  CAS  Google Scholar 

  • Lee, W. H., Riemann, H.: The genetic relatedness of proteolytic Clostridium botulinum strains. J. gen. Microbiol. 64, 85–90 (1970b).

    PubMed  CAS  Google Scholar 

  • Lehman, G. W., McTague, J. P.: Melting og DNA. J. chem. Phys. 49, 3170–3179 (1968).

    PubMed  CAS  Google Scholar 

  • Leifson, E., Mandel, M.: Motile marine bacteria. II. DNA base composition. Int. J. system. Bact. 19, 127–137 (1969).

    Google Scholar 

  • Leighton, T. J., Dill, B. C., Stock, J. J., Phillips, C.: Absence of histones from the chromosomal proteins of fungi. Proc. nat. Acad. Sci. (Wash.) 68, 667–680 (1971).

    Google Scholar 

  • Lewin, R.A., Mandel, M.: Saprospira toviformis nov. spec. (Flexibacterales) from a New Zealand seashore. Canad. J. Microbiol. 16, 507–510 (1970).

    CAS  Google Scholar 

  • Liss, A., Maniloff, J.: Isolation of Mycoplasmatales viruses and characterization of MVLl, MVL52, and MVG51. Science 173, 725–727 (1971).

    PubMed  CAS  Google Scholar 

  • Lowry, O. H, Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  • Lynn, R. J., Haller, G.J.: Antigenic and deoxyribonucleic acid base composition of a Mycoplasma and associated diphtheroids. Antonie v. Leeuwenhoek 34, 249–256 (1968).

    CAS  Google Scholar 

  • MacDonald, R. E., MacDonald, S. W.: The physiology and natural relationships of the motile, sporeforming sarcinae. Canad. J. Microbiol. 8, 795–808 (1962).

    Google Scholar 

  • Mahler, H. R., Mehrotra, B. D., Sharp, C. W.: Effects of diamines on the thermal transition of DNA. Biochem. biophys. Res. Commun. 4, 79–82 (1961).

    PubMed  CAS  Google Scholar 

  • Mandel, M.: The interaction of spermine and native deoxyribonucleic acid. J. molec. Biol. 5, 435–441 (1962).

    CAS  Google Scholar 

  • Mandel, M.: Deoxyribonucleic acid base composition in the genus Pseudomonas. J. gen. Microbiol. 43, 273–292 (1966).

    PubMed  CAS  Google Scholar 

  • Mandel, M.: New approaches to bacterial taxonomy: perspective and prospects. Ann. Rev. Microbiol. 23, 239–274 (1969).

    CAS  Google Scholar 

  • Mandel, M., Bergendahl, J. C., Pfennig, N.: Deoxyribonucleic acid base composition of isolates of the genus Chlorobium. J. Bact. 89, 917–918 (1965).

    PubMed  CAS  Google Scholar 

  • Mandel, M., Igambi, L., Bergendahl, J., Dodson, M. L., Scheltgen, E.: Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J. Bact. 101, 333–338 (1970).

    PubMed  CAS  Google Scholar 

  • Mandel, M., Johnson, A., Stokes, J. L.: Deoxyribonucleic acid base composition of Sphaerotilus natans and Sphaerotilus discophorus. J. Bact. 91, 1657–1658 (1966).

    PubMed  CAS  Google Scholar 

  • Mandel, M., Leadbetter, E. R.: Deoxyribonucleic acid base composition of myxobacteria. J. Bact. 90, 1795–1796 (1965).

    PubMed  CAS  Google Scholar 

  • Mandel, M., Leadbetter, E. R., Pfennig, N., Trüper, H. G.: Deoxyribonucleic acid base composition of phototrophic bacteria. Int. J. system. Bact. 21, 222–230 (1971).

    Google Scholar 

  • Mandel, M., Lewin, R. A.: Deoxyribonucleic acid base composition of flexibacteria. J. gen. Microbiol. 58, 171–178 (1969).

    PubMed  CAS  Google Scholar 

  • Mandel, M., Marmur, J.: Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Meth. Enzym. 12, Part B, 195–206 (1968).

    CAS  Google Scholar 

  • Mandel, M., Rowley, D. B.: Configuration and base composition of deoxyribonucleic acid from spores of Bacillus subtilis var. niger. J. Bact. 85, 1445–1446 (1963).

    PubMed  CAS  Google Scholar 

  • Mandel, M., Rownd, R.: Deoxyribonucleic acid base composition in the enterobacteriaceae: An evolutionary sequence? In: Leone, C. A. (ed.), Taxonomic biochemistry and serology, p. 585–597. New York: Ronald Press Co. 1963.

    Google Scholar 

  • Mandel, M., Schildkraut, C. L., Marmur, J.: Use of CsCl density gradient analysis for determining the guanine plus cytosine content of deoxyribonucleic acid. Meth. Enzym. 12, Part B, 184–195 (1968).

    CAS  Google Scholar 

  • Mandel, M., Weeks, O. B., Colwell, R. R.: Deoxyribonucleic acid base composition of Pseudomonas piscicida. J. Bact. 90, 1492–1493 (1965).

    PubMed  CAS  Google Scholar 

  • Margulies, L., Remeza, V., Rudner, R.: Asymmetric template function of microbial deoxyribonucleic acids: Transcription of ribosomal and soluble ribonucleic acids. J. Bact. 103, 560–568 (1970).

    PubMed  CAS  Google Scholar 

  • Margulies, L., Remeza, V., Rudner, R.: Asymmetric template function of microbial deoxyribonucleic acids: Transcription of messenger ribonucleic acid. J. Bact. 107, 610–617 (1971).

    PubMed  CAS  Google Scholar 

  • Marmur, J.: Thermal denaturation of deoxyribonucleic acid isolated from a thermophile. Biochim. biophys. Acta (Amst.) 38, 342–343 (1960).

    PubMed  CAS  Google Scholar 

  • Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. molec. Biol. 3, 208–218 (1961).

    CAS  Google Scholar 

  • Marmur, J., Doty, P.: Heterogeneity in deoxyribonucleic acids. I. Dependence on composition of the configurational stability of deoxyribonucleic acids. Nature (Lond.) 183, 1427–1428 (1959).

    PubMed  CAS  Google Scholar 

  • Marmur, J., Doty, P.: Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. molec. Biol. 5, 109–118 (1962).

    PubMed  CAS  Google Scholar 

  • Marmur, J, Falkow, S., Mandel, M.: New approaches to bacterial taxonomy. Ann. Rev. Microbiol. 17, 329–372 (1963).

    CAS  Google Scholar 

  • Marmur, J., Rownd, R., Falkow, Language="En">S., Baron, L. S., Schildkraut, C., Doty, P.: The nature of intergeneric episomal infection. Proc. nat. Acad. Sci. (Wash.) 47, 972–979 (1961).

    PubMed  CAS  Google Scholar 

  • Marmur, J., Rownd, R., Schildkraut, C. L.: Denaturation and renaturation of deoxyribonucleic acid. Progr. Nucleic Acid. Res. 1, 231–300 (1963).

    CAS  Google Scholar 

  • McCurdy, H. D, Wolf, S.: Deoxyribonucleic acid base composition of fruiting myxobacteriales. Canad. J. Microbiol. 13, 1707–1708 (1967).

    CAS  Google Scholar 

  • McDonald, W. C., Felkner, I. C., Turetsky, A., Matney, T. S.: Similarity in base composition of deoxyribonucleates from several strains of Bacillus cereus and Bacillus anthracis. J. Bact. 85, 1071–1073 (1963).

    PubMed  CAS  Google Scholar 

  • McGee, Z. A., Rogul, M., Falkow, S., Wittler, R. G.: The relationship of Mycoplasma pneumoniae (Eaton agent) to Streptococcus MG: Application of genetic tests to determine relatedness of L-forms and PPLO to bacteria. Proc. nat. Acad. Sci. (Wash.) 54, 457–461 (1965).

    PubMed  CAS  Google Scholar 

  • McGee, Z. A., Rogul, M., Wittler, R. G.: Molecular genetic studies of relationships among mysoplasma, L-forms and bacteria. Ann. N. Y. Acad. Sci. 143, 21–30 (1967).

    PubMed  CAS  Google Scholar 

  • Mehrotra, B. D., Mahler, H. R.: Characterization of some unusual DNAs from the mitochondria from certain “petite” strains of Saccharomyces cerevisiae. Arch. Biochem. Biophys. 128, 685–703 (1968).

    PubMed  CAS  Google Scholar 

  • Mehta, B. M., Hutchison, D. J.: Nucleic acid homology as a measure of genetic compatibility among streptococci and a strain of Diplococcus pneumoniae. Canad. J. Microbiol. 16, 281–286 (1970).

    CAS  Google Scholar 

  • Meselson, M., Stahl, F. W., Vinograd, J.: Equilibrium sedimentation of macromolecules in density gradients. Proc. nat. Acad. Sci. (Wash.) 43, 581–588 (1957).

    PubMed  CAS  Google Scholar 

  • Meyer, S. A., Phaff, H. J.: Deoxyribonucleic acid base composition in yeasts. J. Bact. 97, 52–56 (1969).

    PubMed  CAS  Google Scholar 

  • Meyer, S. A., Phaff, H. J.: Taxonomic significance of the DNA base composition in yeasts. In: Ahearn, D. G. (ed.), Spectrum, monograph series in arts and science, p. 1. Atlanta: Georgia State Univ. 1970.

    Google Scholar 

  • Miller III, A., Sandine, W. E., Elliker, P. R.: Deoxyribonucleic acid base composition of lactobacilli determined by thermal denaturation. J. Bact. 102, 278–280 (1970).

    PubMed  CAS  Google Scholar 

  • Miller III, A., Sandine, W. E., Elliker, P. R.: Deoxyribonucleic acid homology in the genus Lactobacillus. Canad. J. Microbiol. 17, 625–634 (1971).

    Google Scholar 

  • Monson, A. M., Bradley, S. G., Enquist, L. W., Cruces, G.: Genetic homologies among Streptomyces violaceoruber strains. J. Bact. 99, 702–706 (1969).

    PubMed  CAS  Google Scholar 

  • Moore, R. L., McCarthy, B. J.: Comparative study of ribosomal ribonucleic acid cistrons in enterobacteria and myxobacteria. J. Bact. 94, 1066–1074 (1967).

    PubMed  CAS  Google Scholar 

  • Moore, R. L., McCarthy, B. J.: Characterization of the deoxyribonucleic acid of various strains of halophilic bacteria. J. Bact. 99, 248–254 (1969a).

    PubMed  CAS  Google Scholar 

  • Moore, R. L., McCarthy, B. J.: Base sequence homology and renaturation studies of the deoxyribonucleic acid of extremely halophilic bacteria. J. Bact. 99, 255–262 (1969b).

    PubMed  CAS  Google Scholar 

  • Morowitz, H. J., Bode, H. R., Kirk, R. G.: The nucleic acids of mycoplasma. Ann. N.Y. Acad. Sci. 143, 110–114 (1967).

    PubMed  CAS  Google Scholar 

  • Mortimer, R. K., Hawthorne, D. C.: Yeast genetics. In: Rose, A. H., and J. S. Harrison (eds.), The biology of yeasts. London and New York: Academic Press 1969.

    Google Scholar 

  • Moseley, B. E. B., Schein, A. H.: Radiation resistance and deoxyribonucleic acid base composition of Micrococcus radiodurans. Nature (Lond.) 203, 1298–1299 (1964).

    PubMed  CAS  Google Scholar 

  • Mounolou, J. C., Jakob, H., Slonimski, P. P.: Mitochondrial DNA from yeast “petite” mutants: Specific changes of buoyant density corresponding to different cytoplasmic mutations. Biochem. biophys. Res. Commun. 24, 218–224 (1966).

    PubMed  CAS  Google Scholar 

  • Moustacchi, E., Williamson, D. H.: Physiological variations in satellite components of yeast DNA detected by density gradient centrifugation. Biochem. biophys. Res. Commun. 23, 56–61 (1966).

    PubMed  CAS  Google Scholar 

  • Nagley, P., Linnane, A. W.: Mitochondrial DNA deficient petite mutants of yeast. Biochem. biophys. Res. Commun. 39, 989–996 (1970).

    PubMed  CAS  Google Scholar 

  • Nakase, T., Komagata, K.: Taxonomic significance of base composition of yeast DNA. J. gen. appl. Microbiol. 14, 345–357 (1968).

    CAS  Google Scholar 

  • Nakase, T., Komagata, K.: DNA base composition of the genus Hansenula. J. gen. appl. Microbiol. 15, 85–95 (1969).

    CAS  Google Scholar 

  • Nakase, T., Komagata, K.: Significance of DNA base composition in the classification of yeast genus Pichia. J. gen. appl. Microbiol. 16, 511–521 (1970).

    Google Scholar 

  • Nakase, T., Komagata, K.: Significance of DNA base composition in the classification of yeast genus Debaromyces. J. gen. appl. Microbiol. 17, 43–50 (1971a).

    Google Scholar 

  • Nakase, T., Komagata, K.: Further investigation of the DNA base composition of the genus Hansenula. J. gen. appl. Microbiol. 17, 77–84 (1971b).

    Google Scholar 

  • Nakase, T., Komagata, K.: Significance of DNA base composition in the classification of yeast genera Cryptococcus and Rhodotorula. J. gen. appl. Microbiol. 17, 121–130 (1971c).

    Google Scholar 

  • Nakase, T., Komagata, K.: Significance of DNA base composition in the classification of yeast genus Torulopsis. J. gen. appl. Microbiol. 17, 161–166 (1971d).

    Google Scholar 

  • Nakase, T., Komagata, K.: Significance of DNA base composition in the classification of yeast genus Saccharomyces. J. gen. appl. Microbiol. 17, 227–238 (1971e).

    Google Scholar 

  • Nakase, T., Komagata, K.: Significance of DNA base composition in the classification of yeast genus Candida. J. gen. appl. Microbiol. 17, 259–279 (1971f).

    Google Scholar 

  • Nass, M. M. K.: Mitochondrial DNA: Advances, problems and goals. Science 165, 25–35 (1969a).

    PubMed  CAS  Google Scholar 

  • Nass, M. M. K.: Mitochondrial DNA. II. Structure and physicochemical properties of isolated DNA. J. molec. Biol. 42, 529–545 (1969b).

    PubMed  CAS  Google Scholar 

  • Neimark, H.: Heterogeneity among the mycoplasmas and relationships to bacteria. Ann. N.Y. Acad. Sci. 143, 31–37 (1967).

    PubMed  CAS  Google Scholar 

  • Neimark, H. C.: Division of mycoplasmas into subgroups. J. gen. Microbiol. 63, 249–263 (1971).

    Google Scholar 

  • Neimark, H. C., Pène, J. J.: Characterization of pleuropneumonia-like organisms by deoxyribonucleic acid composition. Proc. Soc. exp. Biol. (N.Y.) 118, 517–519 (1965).

    PubMed  CAS  Google Scholar 

  • Nisioka, T., Mitani, M., Clowes, R.: Composite circular forms of R factor deoxyribonucleic acid molecules. J. Bact. 97, 376–385 (1969).

    PubMed  CAS  Google Scholar 

  • Nisioka, T., Mitani, M., Clowes, R. C.: Molecular recombination between R-factor deoxyribonucleic acid molecules in Escherichia coli host cells. J. Bact. 103, 166–177 (1970).

    PubMed  CAS  Google Scholar 

  • Oishi, M.: The transcribing strands of Bacillus subtilis DNA for ribosomal and transfer RNA. Proc. nat. Acad. Sci. (Wash.) 62, 256–261 (1969).

    PubMed  CAS  Google Scholar 

  • Osborn, M., Person, S.: Characterization of revertants of E. coli WU 36-10 and WP2 using amber mutants and an ochre mutant of bacteriophage T4. Mutation Res. 4, 504–507 (1967).

    PubMed  CAS  Google Scholar 

  • Ouellette, C. A., Burris,R. H., Wilson, P. W.: Deoxyribonucleic acid base composition of species of Klebsiella, Azobacter and Bacillus. Antonie v. Leeuwenhoek 35 275–286 (1969).

    CAS  Google Scholar 

  • Owen R. J., Hill, L. R., Lapage, S. P.: Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7, 503–516 (1969).

    PubMed  CAS  Google Scholar 

  • Pace, B., Campbell, L. L.: Homology of ribosomal ribonucleic acid of Desulfovibrio species with Desulfovibrio vulgaris. J. Bact. 106, 717–719 (1971a).

    PubMed  CAS  Google Scholar 

  • Pace, B., Campbell, L. L.: Homology of ribosomal ribonucleic acid of diverse bacterial species with Escherichia coli and Bacillus stearothermophilus. J. Bact. 107, 543–547 (1971b).

    PubMed  CAS  Google Scholar 

  • Panos, C.: Cellular physiology during logarithmic growth of a streptococcal L-form. J. gen. Microbiol. 39, 131–138 (1965).

    PubMed  CAS  Google Scholar 

  • Park, I. W., De Ley, J.: Ancestral remnants in deoxyribonucleic acid from Pseudomonas and Xanthomonas. Antonie v. Leeuwenhoek 33, 1–16 (1967).

    CAS  Google Scholar 

  • Peterson, A. M., Pollock, M. E.: Deoxyribonucleic acid homology and relative genome size in Mycoplasma. J. Bact. 99, 639–644 (1969).

    PubMed  CAS  Google Scholar 

  • Pinder, J. C., Gould, H. J., Smith, I.: Conservation of the structure of ribosomal DNA during evolution. J. molec. Biol. 40, 289–298 (1969).

    PubMed  CAS  Google Scholar 

  • Pintér, M., De Ley, J.: Overall similarity and DNA base composition of some Acinetobacter strains. Antonie von Leeuwenhoek. 35, 209–214 (1969).

    Google Scholar 

  • Pivec, L., Pivcová, H., Šormová, Z.: Plurimodal heterogeneity of base composition of DNA isolated from Bacillus subtilis. Biochim. biophys. Acta (Amst.) 213, 343–351 (1970).

    PubMed  CAS  Google Scholar 

  • Poindexter, J. S.: Biological properties and classification of the Caulobacter group. Bact. Rev. 28, 231–295 (1964).

    PubMed  CAS  Google Scholar 

  • Prauser, H.: New and rare actinomycetes and their DNA base composition. Publ. Fac. Sci. Univ. J. E. Purkyně, Brno, Ser. K 38, 268–270 (1966).

    Google Scholar 

  • Primrose, S. B.: Studies on the deoxyribonucleic acid from Spirillum. Biochim. biophys. Acta (Amst.) 247, 29–37 (1971).

    PubMed  CAS  Google Scholar 

  • Ramaley, R. F., Hixon, J.: Isolation of a nonpigmented, thermophilic bacterium similar to Thermus aquaticus. J. Bact. 103, 527–528 (1970).

    PubMed  CAS  Google Scholar 

  • Reich, P. R., Somerson, N. L., Hybner, C. J., Chanock, R. M., Weissman, S. M.: Genetic differentiation by nucleic acid homology. I. Relationships among Mycoplasma species of man. J. Bact. 92, 302–310 (1966a).

    PubMed  CAS  Google Scholar 

  • Reich, P. R., Somerson, N. L., Rose, J. A., Weissman, S. M.: Genetic relatedness among Mycoplasmas as determined by nucleic acid homology. J. Bact. 91, 153–160 (1966b).

    PubMed  CAS  Google Scholar 

  • Retèl, J., Planta, R. J.: The investigation of the ribosomal RNA sites in yeast DNA by the hybridization technique. Biochim. biophys. Acta (Amst.) 169, 416–429 (1968).

    PubMed  Google Scholar 

  • Riva, S., Barrai, I., Cavalli-Sforza, L., Falaschi, A.: Dependence of the buoyant density of single-stranded DNA on base composition. J. molec. Biol. 45, 367–374 (1969).

    PubMed  CAS  Google Scholar 

  • Rogul, M., Brendle, J. J., Haapala, D. K., Alexander, A. D.: Nucleic acid similarities among Pseudomonas pseudomallei, Pseudomonas multivorans, and Actinobacillus mallei. J. Bact. 101, 827–835 (1970).

    PubMed  CAS  Google Scholar 

  • Rogul, M., McGee, Z. A., Wittler, R. G., Falkow, S.: Nucleic acid homologies of selected bacteria, L forms, and Mycoplasma species. J. Bact. 90, 1200–1204 (1965).

    PubMed  CAS  Google Scholar 

  • Rolfe, R.: Changes in the physical state of DNA during the replication cycle. Proc. nat. Acad. Sci. (Wash.) 49, 386–392 (1963).

    PubMed  CAS  Google Scholar 

  • Rolfe, R., Meselson, M.: The relative homogeneity of microbial DNA. Proc. nat. Acad. Sci. (Wash.) 45, 1039–1043 (1959).

    PubMed  CAS  Google Scholar 

  • Rosenkranz, H. S., Ellner, P. D.: Mutant of Bacterium paracoli 5099 with an altered DNA. Identification as a Flavobacterium. Science 160, 893–894 (1968).

    PubMed  CAS  Google Scholar 

  • Rost, K., Venner, H.: Untersuchungen an Nucleinsäuren. X. Isolierung und Untersuchung von Deoxyribonukleinsäure aus Hefen. Hoppe-Seylers Z. physiol. Chem. 339, 230–237 (1964).

    PubMed  CAS  Google Scholar 

  • Rosypal, S., Rosypalová, A., Hořejš, J.: The classification of micrococci and staphylococci based on their DNA base composition and adansonian analysis. J. gen. Microbiol. 44, 281–292 (1966).

    PubMed  CAS  Google Scholar 

  • Rosypalová, A., Boháček, S., Rosypal, S.: Deoxyribonucleic acid base composition of some Micrococci and Sarcina. Antonie v. Leeuwenhoek 32, 192–196 (1966a).

    Google Scholar 

  • Rosypalová, A., Boháček, J., Rosypal, S.: Deoxyribonucleic acid base composition and taxonomy of violet-pigmented cocci. Antonie v. Leeuwenhoek 32, 105–112 (1966b).

    Google Scholar 

  • Rownd, R., Mickel, S.: Dissociation and reassociation of RTF and r-determinants of the R-factor NR1 in Proteus mirabilis. Nature (Lond.) New Biol. 234, 40–43 (1971).

    CAS  Google Scholar 

  • Rownd, R., Nakaya, R., Nakamura, A.: Molecular nature of the drug-resistance factors of the Enterobacteriaceae. J. molec. Biol. 17, 376–393 (1966).

    PubMed  CAS  Google Scholar 

  • Rudner, R., Karkas, J. D., Chargaff, E.: Separation of B. subtilis DNA into complementary strands. I. Biological properties. Proc. nat. Acad. Sci. (Wash.) 60, 630–635 (1968a).

    PubMed  CAS  Google Scholar 

  • Rudner, R., Karkas, J. D., Chargaff, E.: Separation of B. subtilis DNA into complementary strands. III. Direct analysis. Proc. nat. Acad. Sci. (Wash.) 60, 921–922 (1968b).

    PubMed  CAS  Google Scholar 

  • Rudner, R., Karkas, J. D., Chargaff, E.: Separation of microbial deoxyribonucleic acids into complementary strands. Proc. nat. Acad. Sci. (Wash.) 63, 152–159 (1969).

    PubMed  CAS  Google Scholar 

  • Ryan, J. L., Morowitz, H. J.: Partial purification of native rRNA and tRNA cistrons from Mycoplasma sp. (KID). Proc. nat. Acad. Sci. (Wash.) 63, 1282–1289 (1969).

    PubMed  CAS  Google Scholar 

  • Rytir, V., Hochmannova, J., Sourek, J., Hubacek, J., Malek, I.: Folia microbiol. (Praha) 13, 28 (1968).

    CAS  Google Scholar 

  • Sarfert, E., Venner, H.: Gewinnung und Eigenschaften von DNA aus Zymosarcinen. Z. allg. Mikrobiol. 9, 153–160 (1969).

    PubMed  CAS  Google Scholar 

  • Saunders, G. F., Campbell, L. L.: Deoxyribonucleic acid base composition of Desulfotomaculum nigrificans. J. Bact. 92, 515 (1966).

    PubMed  CAS  Google Scholar 

  • Saunders, G. F., Campbell, L. L., Postgate, J. R.: Base composition of deoxyribonucleic acid of sulfate-reducing bacteria deduced from buoyant density measurements in cesium chloride. J. Bact. 87, 1073–1078 (1964).

    PubMed  CAS  Google Scholar 

  • Schein, A. H.: The deoxyribonucleic acid of Micrococcus radiodurans. Biochem. J. 101, 647–650 (1966).

    PubMed  CAS  Google Scholar 

  • Schildkraut, C., Lifson, S.: Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3, 195–208 (1965).

    PubMed  CAS  Google Scholar 

  • Schildkraut, C. L., Marmur, J., Doty, P.: Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. molec. Biol. 4, 430–443 (1962).

    PubMed  CAS  Google Scholar 

  • Schramek, S.: Isolation and characterization of deoxyribonucleic acid from Coxiella burneti. Acta virol. 12, 18–22 (1968).

    PubMed  CAS  Google Scholar 

  • Schultes, L. M., Evans, J. B.: Deoxyribonucleic acid homology of Aerococcus viridans. Int. J. system. Bact. 21, 207–209 (1971).

    Google Scholar 

  • Schweizer, E., MacKechnie, C., Halvorson, H. O.: The redundancy of ribosomal and transfer RNA genes in Saccharomyces cerevisiae. J. molec. Biol. 40, 261–277 (1969).

    PubMed  CAS  Google Scholar 

  • Sebald, M., Gasser, F., Werner, H.: Teneur GC% et classification. Application au groupe des bifidobactéries et a quelques genres voisins. Ann. Inst. Pasteur 109, 251–269 (1965).

    CAS  Google Scholar 

  • Sebald, M., Véron, M.: Teneur en bases de l’ADN et classification des vibrions. Ann. Inst. Pasteur 105, 897–910 (1963).

    CAS  Google Scholar 

  • Seese, P. G., Welsh, B. C., Jeffries, C. D., Zak, B., Weiner, L. M.: Determination of microbial DNA base pair ratios by agar gel electrophoresis. Proc. Soc. exp. Biol. (N.Y.) 128, 617–620 (1968).

    CAS  Google Scholar 

  • Seidler, R. J., Starr, M. P., Mandel, M.: Deoxyribonucleic acid characterization of bdellovibrios. J. Bact. 100, 786–790 (1969).

    PubMed  CAS  Google Scholar 

  • Setlow, R. B.: Photoproducts in DNA irradiated in vivo. Photochem. Photobiol. 7, 643–649 (1968).

    CAS  Google Scholar 

  • Setlow, R. B., Carrier, W. L.: Pyrimidine dimers in ultraviolet-irradiated DNA’s. J. molec. Biol. 17, 237–254 (1966).

    PubMed  CAS  Google Scholar 

  • Shapiro, L., Grossman, L. I., Marmur, J., Kleinschmidt, A. K.: Physical studies on the structure of yeast mitochondrial DNA. J. molec. Biol. 33, 907–922 (1968).

    PubMed  CAS  Google Scholar 

  • Shaw, C. R.: How many genes evolve? Biochem. Genet. 4, 275–283 (1970).

    CAS  Google Scholar 

  • Shishido, K., Kato, M., Ikeda, Y.: Isolation of thymidylic acid-rich fragments from double stranded deoxyribonucleic acids. J. Biochem. 65, 479–481 (1969).

    PubMed  CAS  Google Scholar 

  • Sigal, N., Senez, J. C., le Gall, J., Sebald, M.: Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bact. 85, 1315–1318 (1963).

    PubMed  CAS  Google Scholar 

  • Sikorska, E. J., Priegnitz, A.: The deoxyribonucleic acids of some BCG substrains. Acta microbiol. pol. 17, 255–262 (1968).

    PubMed  CAS  Google Scholar 

  • Silver, M., Friedman, S., Guay, R., Couture, J., Tanguay, R.: Base composition of deoxyribonucleic acid isolated from Athiorhodaceae. J. Bact. 107, 368–370 (1971).

    PubMed  CAS  Google Scholar 

  • Silvestri, L. G., Hill, L. R.: Agreement between deoxyribonucleic acid base composition and taxometric classification of gram-positive cocci. J. Bact. 90, 136–140 (1965).

    PubMed  CAS  Google Scholar 

  • Simonds, J., Hansen, P.A., Lakshmanan, S.: Deoxyribonucleic acid hybridization among strains of Lactobacilli. J. Bact. 107, 382–384 (1971).

    PubMed  CAS  Google Scholar 

  • Singer, C. E., Ames, B. N.: Sunlight ultraviolet and bacterial DNA base ratios. Science 170, 822–826 (1970).

    PubMed  CAS  Google Scholar 

  • Sinsheimer, R. L.: A single-stranded deoxyribonucleic acid from bacteriophage ϕXl74. J. molec. Biol. 1, 43–53 (1959).

    CAS  Google Scholar 

  • Šlosárek, M.: DNA base composition and adansonian analysis of mycobacteria. Folia microbiol. (Praha) 15, 431–436 (1970).

    Google Scholar 

  • Smith, D., Halvorson, H. O.: The isolation of DNA from yeast. Meth. Enzym. 12, part A, 538–541 (1968).

    Google Scholar 

  • Smith, J. D., Stoker, M. G. P.: The nucleic acids of Rickettsia burneti. Brit. J. exp. Path. 32, 433–441 (1951).

    PubMed  CAS  Google Scholar 

  • Smith, K. C.: The biological importance of U.V.-induced DNA-protein cross-linking in vivo and its probable chemical mechanism. Photochem. Photobiol. 7, 651–660 (1968).

    CAS  Google Scholar 

  • Smith-Sonneborn, J., Green, L., Marmur, J.: Deoxyribonucleic acid base composition of Kappa and Paramecium aurelia, stock 51. Nature (Lond.) 197, 385 (1963).

    PubMed  CAS  Google Scholar 

  • Somerson, N. L., Reich, P. R., Chanock, R. M., Weissman, S. M.: Genetic differentiation by nucleic acid homology. III. Relationships among mycoplasma, L-forms and bacteria. Ann. N.Y. Acad. Sci. 143, 9–20 (1967).

    PubMed  CAS  Google Scholar 

  • Somerson, N. L., Reich, P. R., Walls, B. E., Chanock, R. M., Weissman, S. M.: Genetic differentiation by nucleic acid homology. J. Bact. 92, 311–317 (1966).

    PubMed  CAS  Google Scholar 

  • Starr, M. P., Mandel, M.: DNA base composition and taxonomy of phytopathogenic and other Enterobacteria. J. gen. Microbiol. 56, 113–123 (1969).

    PubMed  CAS  Google Scholar 

  • Stenderup, A., Bak, A. L.: Deoxyribonucleic acid base composition of some species within the genus Candida. J. gen. Microbiol. 52, 231–236 (1968).

    CAS  Google Scholar 

  • Stenesh, J., Roe, B. A., Snyder, T. L.: Studies of the deoxyribonucleic acid from mesophilic and thermophilic bacteria. Biochim. biophys. Acta (Amst.) 161, 442–454 (1968).

    PubMed  CAS  Google Scholar 

  • Stevens, B. J., Moustacchi, E.: ADN satellite γ et molécules circulaires torsadées de petite taille chez la levure Saccharomyces cerevisiae. Exp. Cell Res. 64, 259–266 (1971).

    PubMed  CAS  Google Scholar 

  • Stewart, C. R.: Physical heterogeneity among Bacillus subtilis deoxyribonucleic acid molecules carrying particular genetic markers. J. Bact. 98, 1239–1247 (1969).

    PubMed  CAS  Google Scholar 

  • Storck, R.: Nucleotide composition of nucleic acids of fungi. II. Deoxyribonucleic acids. J. Bact. 91, 227–230 (1966).

    PubMed  CAS  Google Scholar 

  • Storck, R., Alexopoulos, C. J.: Deoxyribonucleic acid of fungi. Bact. Rev. 34, 126–154 (1970).

    PubMed  CAS  Google Scholar 

  • Storck, R., Alexopoulos, C. J., Phaff, H. J.: Nucleotide composition of deoxyribonucleic acid of some species of Cryptococcus, Rhodotorula, and Sporobolomyces. J. Bact 98, 1069–1072 (1969).

    PubMed  CAS  Google Scholar 

  • Sueoka, N.: A statistical analysis of deoxyribonucleic acid distribution in density gradient centrifugation. Proc. nat. Acad. Sci. (Wash.) 45, 1480–1490 (1959).

    PubMed  CAS  Google Scholar 

  • Sueoka, N.: Variation of heterogeneity of base composition of deoxyribonucleic acids: A compilation of old and new data. J. molec. Biol. 3, 31–40 (1961a).

    CAS  Google Scholar 

  • Sueoka, N.: Correlation between base composition of deoxyribonucleic acid and amino acid composition of protein. Proc. nat. Acad. Sci. (Wash.) 47, 1141–1149 (1961b).

    PubMed  CAS  Google Scholar 

  • Sueoka, N.: On the genetic basis of variation and heterogeneity of DNA base composition. Proc. nat. Acad. Sci. (Wash.) 48, 582–592 (1962).

    PubMed  CAS  Google Scholar 

  • Sueoka, N., Marmur, J., Doty, P.: II. Dependence of the density of deoxyribonucleic acids on guanine-cytosine content. Nature (Lond.) 183, 1429–1431 (1959).

    PubMed  CAS  Google Scholar 

  • Suyama, Y., Gibson, J.: Satellite DNA in photosynthetic bacteria. Biochem. biophys. Res. Commun. 24, 549–554 (1966).

    PubMed  CAS  Google Scholar 

  • Suzuki, J., Kitahara, K.: Base compositions of deoxyribonucleic acid in Sporolactobacillus inulinus and other lactic acid bacteria. J. gen. appl. Microbiol. 10, 305–311 (1964).

    Google Scholar 

  • Swift, H., Wolstenholme, D. R.: Mitochondria and chloroplasts: nucleic acids and the problem of biogenesis (genetics and biology). In: Lima-de Faria, A. (ed.), Handbook of molecular cytology, p. 972–1046. Amsterdam-London-New York: North-Holland and Wiley Interscience 1969.

    Google Scholar 

  • Szulmajster, J., Arnaud, M., Young, F. E.: Some properties of a sporulating Bacillus suhtilis mutant containing heavy DNA. J. gen. Microbiol. 57, 1–10 (1969).

    PubMed  CAS  Google Scholar 

  • Szybalski, W.: Effects of elevated temperatures on DNA and on some polynucleotides; Denaturation, renaturation and cleavage of glycosidic and phosphate ester bonds. In: Rose, A. H. (ed.), Thermobiology, p. 73–122. London: Academic Press 1967.

    Google Scholar 

  • Szybalski, W.: Use of cesium sulfate for equilibrium density gradient centrifugation. Meth. Enzym. 12, part B, 330–360 (1968).

    CAS  Google Scholar 

  • Szybalski, W., Kubinski, H., Sheldrick, P.: Pyrimidine clusters on the transcribing strand of DNA and their possible role in the initiation of RNA synthesis. Cold Spr. Harb. Symp. quant. Biol. 31, 123–127 (1966).

    CAS  Google Scholar 

  • Szybalski, W., Mennigmann, H. D.: The recording thermospectrophotometer, an automatic device for determining the thermal stability of nucleic acids. Analyt. Biochem. 3, 267–275 (1962).

    CAS  Google Scholar 

  • Takahashi, H.: An attempt to concentrate ribosomal RNA cistrons in Bacillus subtilis by millipore filtration. Biochim. biophys. Acta (Amst.) 190, 214–216 (1969).

    PubMed  CAS  Google Scholar 

  • Takahashi, H., Ikeda, Y.: The intramolecular heterogeneity of Bacillus subtilis DNA studied by isopycnic CsCl gradient. Biochim. biophys. Acta (Amst.) 213, 523–525 (1970).

    PubMed  CAS  Google Scholar 

  • Takahashi, H., Saito, H., Ikeda, Y.: Species specificity of the ribosomal RNA cistrons in bacteria. Biochim. biophys. Acta (Amst.) 134, 124–133 (1967).

    CAS  Google Scholar 

  • Takahashi, I., Marmur, J.: Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis. Nature (Lond.) 197, 794–795 (1963).

    PubMed  CAS  Google Scholar 

  • Takayama, K., Abe, S., Kinoshita, S.: Taxonomic studies on glutamic acid producing bacteria. III. On the base composition of DNA. J. Agr. Chem. Soc. Jap. 39, 342–346 (1965).

    CAS  Google Scholar 

  • Tewari, K. K., Vötsch, W., Mahler, H. R., Mackler, B.: Biochemical correlates of respiratory deficiency. VI. Mitochondrial DNA. J. molec. Biol. 20, 453–481 (1966).

    PubMed  CAS  Google Scholar 

  • Tonomura, B., Malkin, R., Rabinowitz, J. C.: Deoxyribonucleic acid base composition of clostridial species. J. Bact. 89, 1438–1439 (1965).

    PubMed  CAS  Google Scholar 

  • Treffers, H. P., Spinelli, W., Belser, N. O.: A factor (or mutator gene) influencing mutation rates in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 40, 1064–1071 (1954).

    PubMed  CAS  Google Scholar 

  • Ts’o, P. O. P., Helmkamp, G. K., Sander, C.: Interaction of nucleosides and related compounds with nucleic acids as indicated by the change of helix-coil transition temperature. Proc. nat. Acad. Sci. (Wash.) 48, 686–698 (1962).

    PubMed  Google Scholar 

  • Van der Vliet, P. C., Tonino, G. J. M., Rozijn, T. H.: Studies on the yeast nucleus. III. Properties of a deoxyribonucleoprotein complex derived from yeast. Biochim. biophys. Acta (Amst.) 195, 473–483 (1969).

    PubMed  Google Scholar 

  • Vanyushin, B. F., Belozersky, A. N., Kokurina, N. A., Kadirova, D. X.: 5-methyl-cytosine and 6-methylaminopurine in bacterial DNA. Nature (Lond.) 218, 1066–1067 (1968).

    PubMed  CAS  Google Scholar 

  • Vanyushin, B. F., Buryanov, Ya. J., Belozersky, A. N.: Distribution of N6-methyl-adenine in DNA of T2 phage and its host Escherichia coli B. Nature (Lond.) New Biol. 230, 25–27 (1971).

    CAS  Google Scholar 

  • Varghese, A. J., Patrick, M. H.: Cytosine derived heteroadduct formation in ultraviolet-irradiated DNA. Nature (Lond.) 223, 299–300 (1969).

    PubMed  CAS  Google Scholar 

  • Vasilenko, S. K., Kamzolova, S. G., Knorre, D. G.: Direct spectrophotometry method for quantitative determination of nucleotide composition of ribonucleic acids. Biokhimiya (Eng. Transl.) 27, 116–121 (1962).

    Google Scholar 

  • Venner, H.: Taxonomy of Sarcina on the basis of their DNA base composition. Acta biochim. pol. 14, 31–40 (1967).

    PubMed  CAS  Google Scholar 

  • Verhoef, J., Hoff, A. J., Holtrigter, B., van der Drift, A. C. M.: Deoxyribonucleic acid base composition of Staphylococcus epidermidis and its phages. J. gen. Microbiol. 69, 279–283 (1971).

    PubMed  CAS  Google Scholar 

  • Véron, M.: Taxonomie numérique des vibrions et de certaines bactéries comparables. Ann. Inst. Pasteur 111, 671–709 (1966).

    Google Scholar 

  • Villa, V. D., Storck, R.: Nucleotide composition of nuclear and mitochondrial deoxyribonucleic acid of fungi. J. Bact. 96, 184–190 (1968).

    PubMed  CAS  Google Scholar 

  • Vinograd, J., Hearst, J. E.: Equilibrium sedimentation of macromolecules and viruses in a density gradient. In: Progress in the chemistry of organic natural products, vol. 20, p. 372–422. Berlin-Göttingen-Heidelberg: Springer 1962.

    Google Scholar 

  • Vinograd, J., Lebowitz, J.: Physical and topological proterties of circular DNA. J. gen. Physiol. 49, 103–125 (1966).

    PubMed  CAS  Google Scholar 

  • Vinograd, J., Lebowitz, J., Radloff, R., Watson, R., Laipis, P.: The twisted circular form of polyoma viral DNA. Proc. nat. Acad. Sci. (Wash.) 53, 1104–1111 (1965).

    PubMed  CAS  Google Scholar 

  • Vinograd, J., Morris, J., Davidson, N., Dove, W. F., Jr.: The buoyant behaviour of viral and bacterial DNA in alkaline CsCl. Proc. nat. Acad. Sci. (Wash.) 49, 12–17 (1963).

    PubMed  CAS  Google Scholar 

  • Wagenbreth, D.: Ein Beitrag zur systematischen Einordnung der Knöllchenbakterien durch Bestimmung des relativen Basengehaltes ihrer Desoxyribonucleinsäuren. Flora (Jena) 151, 219–230 (1961).

    CAS  Google Scholar 

  • Walker, P. M. B.: Origin of satellite DNA. Nature (Lond.) 229, 306–308 (1971).

    PubMed  CAS  Google Scholar 

  • Wang, S. Y.: The determination of nucleic acid base composition by chemical reactivity. Meth. Enzym. 12, part B, 178–184 (1968).

    CAS  Google Scholar 

  • Wang, S. Y., Hashagen, J. M.: The determination of the base composition of deoxyribonucleic acids by bromination. J. molec. Biol. 8, 333–340 (1964).

    PubMed  CAS  Google Scholar 

  • Wasilauskas, B. L., Coward, J. E., Ellner, P. D., Rosenkranz, H. S.: More on mutants with altered DNA’s. Mutation Res. 12, 15–19 (1971).

    PubMed  CAS  Google Scholar 

  • Watson, S. W., Mandel, M.: Comparison of the morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria. J. Bact. 107, 563–569 (1971).

    PubMed  CAS  Google Scholar 

  • Wayne, L. G., Gross, W. M.: Base composition of deoxyribonucleic acid isolated from mycobacteria. J. Bact. 96, 1915–1919 (1968).

    PubMed  CAS  Google Scholar 

  • Weed, L. L.: Effects of copper on Bacillus subtilis. J. Bact. 85, 1003–1010 (1963).

    PubMed  CAS  Google Scholar 

  • Weiss, E., Schramek, S., Wilson, N. N., Newman, L. W.: Deoxyribonucleic acid heterogeneity between human and murine strains of Chlamydia trachomatis. Infect. Immun. 2, 24–28 (1970).

    PubMed  CAS  Google Scholar 

  • Welker, N. E., Campbell, L. L.: Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis. J. Bact. 94, 1124–1130 (1967).

    PubMed  CAS  Google Scholar 

  • Wells, R. D., Blair, J. E.: Studies on polynucleotides. LXXI. Sedimentation and buoyant density studies of some DNA-like polymers with repeating nucleotide sequences. J. molec. Biol. 27, 273–288 (1967).

    PubMed  CAS  Google Scholar 

  • Wetmur, J. G., Davidson, N.: Kinetics of renaturation of DNA. J. molec. Biol. 31, 349–370 (1968).

    PubMed  CAS  Google Scholar 

  • Williams, C. O., Wittler, R. G., Burris, C.: Deoxyribonucleic acid base compositions of selected mycoplasmas and L-phase variants. J. Bact. 99, 341–343 (1969).

    PubMed  CAS  Google Scholar 

  • Wohlhieter, J. A., Falkow, S., Citarella, R. V., Baron, L. S.: Characterization of DNA from a Proteus strain harboring an episome. J. molec. Biol. 9, 576–588 (1964).

    PubMed  CAS  Google Scholar 

  • Wright, R. E., Lederberg, J.: Extranuclear transmission in yeast heterokaryons. Proc. nat. Acad. Sci. (Wash.) 43, 919–923 (1957).

    PubMed  CAS  Google Scholar 

  • Wyatt, G. R.: Separation of nucleic acid components by chromatography on filter paper. In: Chargaff, E., and J. N. Davidson (eds.), The nucleic acids, vol. 1, p. 243–265. New York: Academic Press 1955.

    Google Scholar 

  • Wyatt, G. R., Cohen, S. S.: Nucleic acids of rickettsiae. Nature (Lond.) 170, 846–847 (1952).

    PubMed  CAS  Google Scholar 

  • Wyatt, G. R., Cohen, S. S.: The bases of the nucleic acids of some bacterial and animal viruses: The occurrence of 5-hydroxymethylcytosine. Biochem. J. 55, 774–782 (1953).

    PubMed  CAS  Google Scholar 

  • Yamada, K., Komagata, K.: Taxonomic studies on coryneform bacteria. III. DNA base composition of coryneform bacteria. J. gen. appl. Microbiol. 16, 215–224 (1970).

    Google Scholar 

  • Yamagishi, H.: Nucleotide distribution in the DNA of Escherichia coli. J. molec. Biol. 49, 603–608 (1970).

    PubMed  CAS  Google Scholar 

  • Yamagishi, H., Takahashi, I.: Heterogeneity in nucleotide composition of Bacillus subtilis DNA. J. molec. Biol. 57, 369–371 (1971).

    PubMed  CAS  Google Scholar 

  • Yamakawa, T., Doi, R. H.: Preferential transcription of Bacillus subtilis light deoxyribonucleic acid strands during sporulation. J. Bact. 106, 305–310 (1971).

    PubMed  CAS  Google Scholar 

  • Yčas, M.: In: Neuberger, A., and E. L. Tatum (eds.), The biological code. Amsterdam-London: North-Holland Publishing Company 1969.

    Google Scholar 

  • Zelle, M. R., Hollaender, A.: Effects of radiation on bacteria. Radiat. Biol. 2, 365–430 (1955).

    Google Scholar 

  • Zimmer, C., Venner, H.: Untersuchungen an Nucleinsäuren. III. Über die Isolierung der Nucleinsäuren aus Actinomyceten und ihre chemische Zusammensetzung. Hoppe-Seylers Z. physiol. Chem. 333, 20–27 (1963).

    PubMed  CAS  Google Scholar 

  • Zimmer, C., Venner, H.: Untersuchungen an Nucleinsäuren. IV. Thermische Denaturierung von Desoxyribonucleinsäuren aus Actinomyceten. Hoppe-Seylers Z. physiol. Chem. 335, 139–145 (1964).

    PubMed  CAS  Google Scholar 

  • Zyghanov, V. A., Krassykova, N. V.: DNA composition as a criterion for determination of taxonomic position of actinomycetes. Mikrobiologiya 37, 969–971 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag, Berlin · Heidelberg

About this paper

Cite this paper

Bak, A.L. (1973). DNA Base Composition in Mycoplasma, Bacteria and Yeast. In: Arber, W., et al. Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung. Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65531-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65531-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65533-3

  • Online ISBN: 978-3-642-65531-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics