Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 4))

Abstract

The important role of the soil in the hydrologic cycle can hardly be overemphasized. Particularly crucial to this role is the soil surface zone, where the interaction of atmospheric water with the lithosphere occurs. It is here that the complex partitioning between rainfall (or irrigation), infiltration, runoff, evapotranration, and deep seepage is initiated and sustained. This zone is also a primary site for the management and control by man of that all-important resource, water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, D. D., Franzini, J. B.: Impedance to infiltration by pressure build-up ahead of the wetting front. J. Geophys. Res. 71, 5857–5862 (1966).

    Google Scholar 

  • Amerman, C. R.: Finite difference solutions of unsteady, two-dimensional, partially saturated porous media flow. Ph. D. Thesis. Lafayette, Indiana: Purdue University 1969.

    Google Scholar 

  • Bodman, G. B., Coleman, E. A.: Moisture and energy conditions during downward entry of water into soils. Soil Sci. Soc. Amer. Proc. (1943) 8, 116–122 (1944).

    Article  CAS  Google Scholar 

  • Braester, C.: Linearized solution of infiltration at constant rate. In: Physical aspects of soil, water and salts in ecosystems, pp. 59–63. Eds.: A. Hadas et al. Berlin—Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Bruce, R. R., Whisler, F. D.: Infiltration of water into layered field soils. In: Physical aspects of soil, water and salts in ecosystems, pp. 77–89. Eds.: A. Hadas et al. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Brust, K. J., Van Bavel, C. H. M., Stirk, G. B.: Hydraulic properties of a clay loam soil and the field measurement of water uptake by roots: III. Comparison of field and laboratory data on retention and of measured and culculated conductivities. Soil Sci. Soc. Amer. Proc. 32, 322–36 (1968).

    Article  Google Scholar 

  • Childs, E. C.: An introduction to the physical basis of soil water phenomena. New York-London: J. Wiley and Sons, Inc. 1969.

    Google Scholar 

  • Childs, E. C., Bybordi, M.: The vertical movement of water in stratified porous material. 1. Infiltration. Water Resources Res. 5, 446–459 (1969).

    Article  Google Scholar 

  • Davidson, J. M., Stone, L. R., Nielsen, D. R., LaRue, M. E.: Field measurement and use of soil-water properties. Water Resources Res. 5, 1312–1321 (1969).

    Article  CAS  Google Scholar 

  • Free, G. R., Palmer, V. J.: Interrelationship of infiltration, air movement, and pore size in graded silica sand. Soil Sci. Soc. Amer. Proc. 5, 390–398 (1940).

    Article  Google Scholar 

  • Green, W. H., Ampt, G. A.: Studies on soil physics: I. Flow of air and water through soils. J. Agr. Sci. 4, 1–24 (1911).

    Article  Google Scholar 

  • Hanks, R. J., Bowers, S. A.: Numerical solution of the moisture flow equation for infiltration into layered soils. Soil Sci. Soc. Amer. Proc. 26, 530–534 (1962).

    Article  Google Scholar 

  • Hillel, D.: Soil and Water: Physical principles and processes. New York: Academic Press 1971.

    Google Scholar 

  • Hillel, D., Gardner, W. R.: Transient infiltration into crust-topped profiles. Soil Sci. 109, 69–76 (1970).

    Article  Google Scholar 

  • Holtan, H. N.: A concept for infiltration estimates in watershed engineering. U.S. Dept. Agr., Agr. Res. Service Pub. 41–51 (1961).

    Google Scholar 

  • Holtan, H. N., Creitz, N. R.: Influence of soils, vegetation and geomorphology on elements of the flood hydrograph. Proc. Symp. Floods and Their Computation. Leningrad 1967.

    Google Scholar 

  • Horton, R. E.: An approach toward a physical interpretation of infiltration-capacity. Soil Sci. Soc. Amer. Proc. 5, 399–417 (1940).

    Article  Google Scholar 

  • Huggins, L. F., Monke, E. J.: The mathematical simulation of the hydrology of small watersheds. Lafayette, Indiana: Purdue University Water Resources Research Center, Tech. Rept. No. 1 (1967).

    Google Scholar 

  • Kostiakov, A. N.: On the dynamics of the coefficient of water-percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration. Moscow: Trans. 6th Com. Internat. Soc. Soil Sci. 1932, Part A, pp. 17–21.

    Google Scholar 

  • Morel-Seytoux, H. J., Noblanc, A.: Infiltration predictions by a moving strained coordinates method. In: Physical aspects of soil, water, and salts in ecosystems, pp. 29–42. Eds.: A. Hadas et al. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Nielsen, D. R., Davidson, J. M., Biggar, J. W., Miller, R. J.: Water movement through Panoche clay loam soil. Hilgardia 35, 491–506 (1964).

    Google Scholar 

  • Peck, A. J.: Moisture profile development and air compression during water uptake by bounded porous bodies: 3. Vertical columns. Soil Sci. 100, 44–51 (1965).

    Article  Google Scholar 

  • Philip, J. R.: Numerical solution of equations of the diffusion type with diffusivity concentration-dependent. II. Australian J. Phys. 10, 29–42 (1957a).

    Article  Google Scholar 

  • Philip, J. R.: The theory of infiltration 2. The profile of infinity. Soil Sci. 83, 435–448 (1957b).

    CAS  Google Scholar 

  • Philip, J. R.: The theory of infiltration: 3. Moisture profiles and relation to experiment. Soil Sci. 84, 163–178 (1957c).

    CAS  Google Scholar 

  • Philip, J. R.: The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Sci. 84, 257–264 (1957d).

    Article  Google Scholar 

  • Philip, J. R.: Theory of infiltration. Adv. Hydrosci. 5, 215–296 (1969 a).

    Google Scholar 

  • Philip, J. R.: Hydrostatics and hydrodynamics in swelling soils. Water Resources Res. 5, 1070–1077 (1969b).

    Article  Google Scholar 

  • Richards, L. A.: Capillary conduction of liquids through porous mediums. Physics 1, 318–333 (1931).

    Article  Google Scholar 

  • Richards, L. A.: Report of the subcommittee on permeability and infiltration, committee on terminology, Soil Science Society of America. Soil Sci. Soc. Amer. Proc. 16, 85–88 (1952).

    Article  Google Scholar 

  • Rubin, J.: Theory of rainfall uptake by soils initially drier than their field capacity and its applications. Water Resources Res. 2, 739–749 (1966).

    Article  Google Scholar 

  • Rubin, J.: Theoretical analysis of two-dimensional, transient flow of water in unsaturated and partly unsaturated soils. Soil Sci. Soc. Amer. Proc. 32, 607–615 (1968).

    Article  Google Scholar 

  • Rubin, J., Steinhardt, R.: Soil water relations during rain infiltration: I. Theory. Soil Sci.Soc. Amer. Proc. 27, 246–251 (1963).

    Article  Google Scholar 

  • Skaggs, R. W., Huggins, L. F., Monke, E. J., Foster, G. R.: Experimental evaluation of infiltration equations. Trans. Amer. Soc. Agr. Engrs. 12, 822–828 (1969).

    Google Scholar 

  • Smiles, D. E., Rosenthal, M. J.: The movement of water in swelling materials. Australian J. Soil Res. 6, 237–248 (1968).

    Article  CAS  Google Scholar 

  • Snyder, W. M.: A proposed watershed retention function. J. Irrigation and Drainage Div., Amer. Soc. Civ. Engrs. (IR-1) 97, 193–201 (1971).

    Google Scholar 

  • Swartzendruber, D.: Soil-water behavior as described by transport coefficients and functions. New York: Academic Press. Adv. Agron. 18, 327–370 (1966).

    Article  Google Scholar 

  • Swartzendruber, D.: The flow of water in unsaturated soils. In: Flow through porous media, pp. 215–292. Ed.: R. J. M. De Wiest. New York: Academic Press 1969.

    Google Scholar 

  • Swartzendruber, D., Hillel, D.: Surface-water excess as determined by the infiltration process. Water Resources Res., submitted for publication, 1973.

    Google Scholar 

  • Swartzendruber, D., Huberty, M. R.: Use of infiltration equation parameters to evaluate infiltration differences in the field. Trans. Amer. Geophys. Union. 39, 84–93 (1958).

    Google Scholar 

  • Swartzendruber, D., Skaggs, R. W., Wiersma, D.: Characterization of the rate of water infiltration into soil. Lafayette, Indiana: Purdue University Water Resources Research Center, Tech. Rept. No. 5 (1968).

    Google Scholar 

  • Van Bavel, C. H. M., Stirk, G. B., Brust, K. J.: Hydraulic properties of a clay loam soil and the field measurement of water uptake by roots: I. Interpretation of water content and pressure profiles. Soil Sci. Soc. Amer. Proc. 32, 310–317 (1968 a).

    Article  Google Scholar 

  • Van Bavel, C. H. M., Brust, K. J., Stirk, G. B.: Hydraulic properties of a clay loam soil and the field measurement of water uptake by roots: II. The water balance of the root zone. Soil Sci. Soc. Amer. Proc. 32, 317–321 (1968 b).

    Article  Google Scholar 

  • Wang, F. C., Lakshminarayana, V.: Mathematical simulation of water movement through unsaturated nonhomogeneous soil. Soil Sci. Soc. Amer. Proc. 32, 329–334 (1968).

    Article  Google Scholar 

  • Whisler, F. D., Klute, A.: The numerical analysis of infiltration, considering hysteresis, into a vertical soil column at equilibrium under gravity. Soil Sci. Soc. Amer. Proc. 29, 489–494 (1965).

    Article  Google Scholar 

  • Whisler, F. D., Klute, A.: Analysis of infiltration into stratified soil columns. In: Proc. Symp. Water in the Unsaturated Zone. Wageningen 1966, pp. 451–470. Paris: UNESCO 1969.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Swartzendruber, D., Hillel, D. (1973). The Physics of Infiltration. In: Hadas, A., Swartzendruber, D., Rijtema, P.E., Fuchs, M., Yaron, B. (eds) Physical Aspects of Soil Water and Salts in Ecosystems. Ecological Studies, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65523-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65523-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65525-8

  • Online ISBN: 978-3-642-65523-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics