Advertisement

Computer Processing of Electron Micrographs

  • Joachim Frank

Abstract

Within the past few years, image processing methods have been introduced into a number of fields where experimental visual data have to be analyzed. Examples in the biological field are radiotherapy (Selzer, 1968) and cytology (Mendelsohn et al., 1968). The implementation in electron microscopy is presently developing very fast. The present work gives a review of some experiences in computer analysis of electron microscopic image data, and tries to show some prospects for the use of this tool in the near future. An attempt has been made to present the material in a way that is ordered according to typical problems of electron microscopy, rather than according to methods of image analysis.

Keywords

Point Spread Function Fourier Coefficient Cross Correlation Function Fourier Space Algebraic Reconstruction Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, H. C.: Computer Techniques in Image Processing. New York—London: Academic Press 1970 Ch. 2; 1970a Ch. 6; 1970b Ch. 4.Google Scholar
  2. Arndt, U. W., Crowther, R. A., Mallet, J. F. W.: A Computer Linked Cathode Ray- Tube Microdensitometer for X-Ray Crystallography. J. sci. Instrum. Ser 2, 1, 510–516 (1968).PubMedCrossRefGoogle Scholar
  3. Arndt, U. W., Barrington, L. J., Mallet, J. F. W., Twinn, K. E.: A Mechanical Microdensitometer. J. sci. Instrum. Ser 2, 2, 385–387 (1969).PubMedCrossRefGoogle Scholar
  4. Barnes, C. W.: Object Restoration in a Diffraction-Limited Imaging System. J. Opt. Soc. Amer. 56, 575–578 (1966).CrossRefGoogle Scholar
  5. Bellmann, S. H., Bender, R., Gordon, R., Rowe, J. E. (Jr.): Art is Science Being a Defense of Algebraic Reconstruction Techniques for Three Dimensional Electron Microscopy. J. theor. Biol. 32, 205–216 (1971).CrossRefGoogle Scholar
  6. Bender, R., Bellmann, S. H., Gordon, R.: ART and the Ribosome: A Preliminary Report on the Three-Dimensional Structure of Individual Ribosomes Determined by an Algebraic Reconstruction Technique. J. theor. Biol. 29, 483–487 (1970).PubMedCrossRefGoogle Scholar
  7. Bender, R., Rowe, J. E. (Jr.): Microdensitometers and Data Processing for Electron Microscopy. 29th Ann. Proc. Electron Microscopy Soc. Amer., 98–99 (1971).Google Scholar
  8. Billingsley, F. C.: Image Processing for Electron Microscopy II. A Digital System. Advances in Optical and Electron Microscopy Vol. 4. Ed.: Barer and Cosslett, 127–159. London-New York: Academic Press 1971.Google Scholar
  9. Budinger, T. F.: Tranfers Function Theory in Image Evaluation in Biology-Applications in Electron Microscopy and Nuclear Medicine. Ph. D. Thesis, University of California, Berkeley 1971.Google Scholar
  10. Burge, R. E., Garrard, D. F., Browne, M. T.: The Response of Photographic Emulsions to Electrons in the Energy Range 7–60 KeV. J. sei. Instrum. Ser. 2, 2, 707–714 (1968).Google Scholar
  11. Bussler, P.: TO be published (1972).Google Scholar
  12. Butler, P. J. G., Klug, A.: Assembly of the Particle of Tobacco Mosaic Virus from RNA and Disks of Protein. Nature (Lond.) New Biol. 229, 47–50 (1971).CrossRefGoogle Scholar
  13. Cochran, W., Crick, F. H. C, Vand, V.: Structure of Synthetic Polypeptides I. The Transform of Atoms on a Helix. Acta Cryst. 5, 581–586 (1952).CrossRefGoogle Scholar
  14. Cooley, J. W., Tukey, J. W.: An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comput. 19, 297–301 (1965).CrossRefGoogle Scholar
  15. Correspondent: The ART of the Possible. Nature (Lond.) New Biol. 232, 131 (1971).CrossRefGoogle Scholar
  16. Cowley, J. M.: A New Microscope Principle. Phys. Soc. Proc. Sec. B. 66, 1096–1100 (1953).CrossRefGoogle Scholar
  17. Crick, R. A., Misell, D. L.: A Theoretical Consideration of Some Defects in Electron Optical Images. A Formulation of the Problem for the Incoherent Case. J. appl. Physics. 4, 1–20 (1971).Google Scholar
  18. Crowther, R. A.: Procedures for Three-Dimensional Reconstruction of Spherical Viruses by Fourier Synthesis from Electron Micrographs. Phil. Trans. B 261, 221–230 (1971).Google Scholar
  19. Crowther, R. A., Amos, L. A., Finch, J. T., Derosier, D. J., Klug, A.: The Reconstruction of a Three-Dimensional Structure from Projections and Its Application to Electron Microscopy. Nature (Lond.) 226, 421–425 (1970).CrossRefGoogle Scholar
  20. Crowther, R. A., Derosier, D. J., Klug, A.: The Reconstruction of a Three-Dimensional Structure from Projections and Its Application to Electron Microscopy. Proc. roy. Soc. A, 317, 319–340 (1970).Google Scholar
  21. Crowther, R. A., Klug, A.: ART and Science or Conditions for Three-Dimensional Reconstruction from Electron Microscope Images. J. theor. Biol. 32, 199–203 (1971).PubMedCrossRefGoogle Scholar
  22. Davenport, W. B., Root, W.: Random Signals and Noise, 76. New York: McGraw- Hill Book Co. 1958.Google Scholar
  23. Derosier, D. J.: Three-Dimensional Image Reconstruction of Helical Structures. Ber. Bunsenges. Phys. Chem. 74, 1127–1128 (1970).Google Scholar
  24. Derosier, D. J.: Three-Dimensional Image Reconstruction of Helical Structures. Phil. Trans. B 261, 209–210 (1971).Google Scholar
  25. Derosier, D. J., Klug, A.: Reconstruction of Three Dimensional Structures from Electron Micrographs. Nature (Lond.) 217, 130–134 (1968a).CrossRefGoogle Scholar
  26. Derosier, D. J., Klug, A.: Positions of Ribosomal Subunits. Science 163, 1470 (1968b).CrossRefGoogle Scholar
  27. Derosier, D. J., Moore, P. B.: Reconstruction of Three-Dimensional Images from Electron Micrographs of Structures with Helical Symmetry. J. molec. Biol. 52, 355 to 369 (1970).Google Scholar
  28. Durham, A. C. H., Finch, J. T., Klug, A.: States of Aggregation of TMV Virus Protein. Nature (Lond.) New Biol. 229, 37–42 (1971).Google Scholar
  29. Durham, A. C. H., Klug, A.: Polymerisation of TMV Protein and Its Control. Nature (Lond.) New Biol. 229, 42–46 (1971).Google Scholar
  30. Elias, P., Grey, D. S., Robinson, D. Z.: Fourier Treatment of Optical Processes. J. Opt. Soc. Amer. 42, 127–134 (1952).CrossRefGoogle Scholar
  31. Erickson, H. P., Klug, A.: The Fourier Transform of an Electron Micrograph: Effects of Defocusing and Aberrations, and Implications for the Use of Underfocus Contrast Enhancement. Ber. Bunsenges. Phys. Chem. 74, 1129–1137 (1970).Google Scholar
  32. Erickson, H. P., Klug, A.: Measurement and Compensation of Defocusing and Aberrations by Fourier Processing of Electron Micrographs. Phil. Trans. B 261, 105–118 (1971).Google Scholar
  33. Finch, J. T., Klug, A.: Three-Dimensional Reconstruction of the Stacked-Disk Aggregate of Tobacco Mosaic Virus Protein From Electron Micrographs. Phil. Trans. B 261, 211–219 (1971).Google Scholar
  34. Frieder, G., Herman, G. T.: Resolution in Reconstructing Objects from Electron Micrographs. J. theor. Biol. 33, 189–211 (1971).PubMedCrossRefGoogle Scholar
  35. Frank, J.: A Study on Heavy/Light Atom Discrimination in Bright Field Electron Microscopy Using the Computer. Biophys. J. 12, 484–511 (1972).PubMedCrossRefGoogle Scholar
  36. Frank, J., Bussler, P. H., Langer, R., Hoppe, W.: A Computer Program System for Image Reconstruction and Its Application to Electron Micrographs of Biological Objects. VII Intern. Congr. El. Micr., Vol. I, 17—18, Grenoble 1970 a.Google Scholar
  37. Frank, J., Bussler, P. H., Langer, R., Hoppe, W.: Einige Erfahrungen mit der rechnerischen Analyse und Synthese von elektronenmikroskopischen Aufnahmen hoher Auflösung. Ber. Bunsenges. Phys. Chem. 74, 1105–1115 (1970b).Google Scholar
  38. Glaeser, R. M., Limitations to Significant Information in Biological Electron Microscopy as a Result of Radiation Damage. J. Ultrastruct. Res. 36, 466–482 (1971).PubMedCrossRefGoogle Scholar
  39. Glaeser, R. M.: Representative Electron Exposures for Damaging Effect. Microstructures., in press (1972).Google Scholar
  40. Glaeser, R. M., Kuo, I., Budinger, T. F.: Method for Processing of Periodic Images at Reduced Levels of Electron Irradiation. 29th Ann. Proc. Electron Microscopy Soc. Amer. 466–467 (1971).Google Scholar
  41. Glauber, R., Schomaker, V.: The Theory of Electron Diffraction. Phys. Ther. Rev. 89, 667–671 (1953).Google Scholar
  42. Goodman, J. W.: Introduction to Fourier Optics, p. 4. New York: McGraw-Hill 1968.Google Scholar
  43. Gordon, R., Bender, R., Herman, G. T.: Algebraic Reconstruction Techniques (ART) for Three-Dimensional Electron Microscopy and X-Ray Photography. J. theor. Biol. 29, 471–481 (1970).PubMedCrossRefGoogle Scholar
  44. Gordon, R., Bender, R.: New Three-Dimensional Algebraic Reconstruction Techniques (ART). 29th Ann. Proc. Electron Microscopy Soc. Amer. 82–83 (1971).Google Scholar
  45. Gordon, R., Herman, G. T., Reconstruction of Pictures from Their Projections. Quarterly Bulletin of the Center of Theoretical Biology, State University of New York at Buffalo 4 (1), 71–151 (1971).Google Scholar
  46. Hall, C. E.: Introduction to Electron Microscopy, Ch. 9. New York: McGraw-Hill 1953.Google Scholar
  47. Hanszen, K.-J.: Lichtoptische Anordnungen mit LASER-Lichtquellen als Hilfsmittel für die Elektronenmikroskopie. IV Eur. Reg. Conf. El. Micr. Vol. I, Rome, 153–154 (1968).Google Scholar
  48. Hanszen, K.-J.: The Optical Transfer Theory of the Electron Microscope: Fundamental Principles and Applications. Advances in Optical and Electron Microscopy Vol. 4. Ed.: BARER and COSSLETT, 1–84. London-New York: Academic Press 1971.Google Scholar
  49. Hanszen, K.-J., Morgenstern, B.: Die Phasenkontrast- und Amplitudenkontrastübertragung des elektronenmikroskopischen Objektivs. Z. angew. Phys. 19, 215–227 (1965).Google Scholar
  50. Harris, J. L.: Resolving Power and Decision Theory. J. Opt. Soc. Amer. 54, 606–611 (1964a).CrossRefGoogle Scholar
  51. Harris, J. L.: Diffraction and Resolving Power. J. Opt. Soc. Amer. 54, 931–936 (1964b).CrossRefGoogle Scholar
  52. Harris, J. L.: Image Evaluation and Restoration. J. Opt. Soc. Amer. 56, 569–574 (1966).CrossRefGoogle Scholar
  53. Harris, W. W.: Reducing the Effect of Substrate Noise in Electron Images of Biological Objects. Some Biological Techniques in Electron Microscopy. Ed.: Parsons, 147 to 174. New York-London: Academic Press 1970.Google Scholar
  54. Hart, R. G.: Electron Microscopy of Unstained Biological Material: The Polytropic Montage. Science 159, 1464–1467 (1968).PubMedCrossRefGoogle Scholar
  55. Heinemann, K.: In-situ Measurement of Objective Lens Data of a High-Resolution Electron Microscope. Optik, in press (1972).Google Scholar
  56. Herman, G. T., Rowland, S.: Resolution in ART: An Experimental Investigation of the Resolving Power of An Algebraic Reconstruction Technique. J. theor. Biol. 33, 213–223 (1971).PubMedCrossRefGoogle Scholar
  57. Hildebrand, F. B.: Introduction to Numerical Analysis, 258. New York: McGraw-Hill Book Co., Inc. 1956.Google Scholar
  58. Hoppe, W.: Ein neuer Weg zur Erhöhung des Auflösungsvermögens des Elektronenmikroskops. Naturwissenschaften 48, 736–737 (1961).CrossRefGoogle Scholar
  59. Hoppe, W.: Das Endlichkeitspostulat und das Interpolationstheorem der dreidimensionalen elektronenmikroskopischen Analyse aperiodischer Strukturen. Optik 29, 617 bis 621 (1969).Google Scholar
  60. Hoppe, W.: Principles of Electron Structure Research at Atomic Resolution Using Conventional Electron Microscopes for the Measurements of Amplitudes and Phases. Acta Cryst. A26, 414–426 (1970a).CrossRefGoogle Scholar
  61. Hoppe, W.: Principles of Structure Analysis at High Resolution Using Conventional Electron Microscopes and Computers. Ber. Bunsenges. Phys. Chem. 74, 1090–1100 (1970b).Google Scholar
  62. Hoppe, W.: The Use of Zone Correction Plates and Other Techniques for Structure Determination of Aperiodic Objects at Atomic Resolution Using a Conventional Electron Microscope. Phil. Trans. B 261, 71–74 (1971a).Google Scholar
  63. Hoppe, W.: Zur Abbildungkomplexer Bildfunktionen in der Elektronenmikroskopie. Z. Naturforsch. 26a, 1155–1168 (1971b).Google Scholar
  64. Hoppe, W., Langer, R.: Numerical Calculations of the Images of Single Atoms in Electron Microscopes. Intern. Conf. Electr. Diffr. and Crystal Defects., Melbourne, 10–5 (1965).Google Scholar
  65. Hoppe, W., Langer, R., Frank, J., Feltynowski, A.: Bilddifferenzverfahren in der Elektronenmikroskopie. Naturwissenschaften 56, 267–272 (1969).PubMedCrossRefGoogle Scholar
  66. Hoppe, W., Langer, R., Hirt, A., Frank, J.: An Equipment for Structure Research at High Resolution Using an Electron Microscope as a Tool, VII Int. Conf. E.. Micr. Vol. II, Grenoble, 5–6 (1970).Google Scholar
  67. Hoppe, W., Langer, R., Thon, F.: Verfahren zur Rekonstruktion komplexer Bildfunktionen in der Elektronenmikroskopie. Optik 30, 538–545 (1970).Google Scholar
  68. Huang, T. S.: Combined Use of Digital Computers and Coherent Optics in Image Processing. SPIE Computerized Imaging Techniques Symp., Washington, D. C. (1967).Google Scholar
  69. Jahnke, E., Emde, F., Lösch, F.: Tables of Higher Functions. New York: McGraw- Hill 1960.Google Scholar
  70. Jones, R. C.: New Methods of Describing and Measuring the Granularity of Photographic Materials. J. Opt. Soc. Amer. 45, 799–808 (1955).CrossRefGoogle Scholar
  71. Klug, A.: Optical Diffraction and Filtering and Three-Dimensional Reconstructions from Electron Micrographs. Phil. Trans. B261, 173–179 (1971).CrossRefGoogle Scholar
  72. Klug, A., Crick, F. H. C, Wyckoff, H. W.: Diffraction by Helical Structures. Acta Cryst. 11, 199–213 (1958).CrossRefGoogle Scholar
  73. Klug, A., Berger, J. E.: An Optical Method for the Analysis of Periodicities in Electron Micrographs and Some Observations on the Mechanics of Negative Staining. J. molec. Biol. 10, 565–569 (1964).PubMedCrossRefGoogle Scholar
  74. Klug, A., Derosier, D. J.: Optical Filtering of Electron Micrographs. Reconstruction of One-Sided Images. Nature (Lond.) 212, 29–32 (1966).CrossRefGoogle Scholar
  75. Lake, J. A.: Reconstruction of Three Dimensional Structures from Electron Micrographs of Sectioned Helices. Proc. First Europ. Biophysics Congress, Baden 6, 453 to 457 (1971a).Google Scholar
  76. Lake, J. A.: Reconstruction of Three-Dimensional Structures from Electron Micrographs: The Equivalence of Two Methods. 29th Ann. Proc. Electron Microscopy Soc. Amer. 90–91 (1971b).Google Scholar
  77. Lake, J. A., Slayter, H. S.: Three Dimensional Fourier Analysis of the Ribonuclein Particle (Ribosome) Helix of Entamoeba invadens. 28th Ann. Proc. Electron Microscopy Soc. Amer. 266–267 (1970a).Google Scholar
  78. Lake, J. A., Slayter, H. S.: Three-Dimensional Structure of the Chromatoid Body of Entamoeba invadens. Nature 227, 1032–1037 (1970b).PubMedCrossRefGoogle Scholar
  79. Langer, R., Frank, J., Feltynowski, A., Hoppe, W.: Anwendung des Bilddifferenzverfahrens auf die Untersuchung von Strukturänderungen dünner Kohlefolien bei Elektronenbestrahlung. Ber. Bunsenges. Phys. Chem. 74, 1120–1126 (1970a).Google Scholar
  80. Langer, R., Frank, J., Feltynowski, A., Hoppe, W.: Application of the Difference Image Method to the Study of Structural Changes in Carbon Foils. VII Intern. Cong. El. Micr. Vol. I, Grenoble, 19–20 (1970b).Google Scholar
  81. Levi, L.: On Image Evaluation and Enhancement. Optica Acta 17, 59–76 (1970).CrossRefGoogle Scholar
  82. Markham, R., Frey, S., Hills, G. J.: Methods for Enhancement of Image Detail and Accentuation of Structure in Electron Microscopy. Virology 20, 88–102 (1963).CrossRefGoogle Scholar
  83. Marriage, A., Pitts, E.: Relation Between Granularity and Autocorrelation. J. Opt. Soc. Amer. 46, 1019–1027 (1956).CrossRefGoogle Scholar
  84. Mendelsohn, L., Mayall, B. H., Prewitt, J. M. S., Bostrom, R. C, Holcomb, W. G.: Digital Transformation and Computer Analysis of Microscopic Images. Advances in Optical and Electron Microscopy Vol. 2. Ed.: BARER and COSSLETT, 77. London-New York: Academic Press 1968.Google Scholar
  85. Misell, D. L., Crick, R. A.: An Estimate of the Effect of Chromatic Aberration in Electron Microscopy. J. appl. Physiol. 4, 1668–1674 (1971).Google Scholar
  86. Moody, M. F.: Application of Optical Diffraction to Helical Structures in the Bacteriophage Tail. Phil. Trans B261, 181–195 (1971).CrossRefGoogle Scholar
  87. Moore, P. B., Derosier, D. J.: Deconvolution. J. molec. Biol. 50, 293–295 (1970).CrossRefGoogle Scholar
  88. Moore, P. B., Huxley, H. E., Derosier, D. J.: Three-Dimensional Reconstruction of F-Actin, Thin Filaments and Decorated Thin Filaments. J. molec. Biol. 50, 279–292 (1970).PubMedCrossRefGoogle Scholar
  89. Morgan, R. S.: Structure of Ribosomes of Chromatoid Bodies: Three-Dimensional Fourier Synthesis at Low Resolution. Science 162, 670–671 (1968).PubMedCrossRefGoogle Scholar
  90. Nathan, R.: Computer Enhancement of Electron Micrographs. 28th Ann. Proc. Electron Microscopy Soc. Amer., 28–29 (1970).Google Scholar
  91. Nathan, R.: Image Processing: Enhancement Procedures. Advances in Optical and Electron Microscopy Vol. 4. Ed.: Barer and Cosslet, 85–125. London-New York: Academic Press 1971.Google Scholar
  92. O’Neill, E. L.: Introduction to Statistical Optics, Reading, Mass.: Addison-Wesley 1963.Google Scholar
  93. Papoulis, A.: Systems and Transforms with Applications in Optics. New York: McGraw- Hill 1968.Google Scholar
  94. Parsons, D. F.: Problems in High Resolution Electron Microscopy of Biological Materials in Their Natural State. Some Biological Techniques in Electron Microscopy. Ed.: PARSONS, 1–68. New York-London: Academic Press 1970.Google Scholar
  95. Porchet, J. R., Günthard, H. H.: Optimum Sampling and Smoothing Conditions for Digitally Recorded Spectra. J. sei. Instr. 3, 261–264 (1970).CrossRefGoogle Scholar
  96. Ramachandran, G. N., Lakshminarayanan, A. V.: Three-Dimensional Reconstruction from Radiographs and Electron Micrographs: Application of Convolutions instead of Fourier Transforms. Proc. Nat. Acad. SCi. (U.S.A.) 68, 2236–2240 (1971).CrossRefGoogle Scholar
  97. Reimer, L.: Elektronenoptischer Phasenkontrast. II Berechnung mit komplexen Atomstreuamplituden für Atome und Atomgruppen. Z. Naturforsch. 24a, 377–389 (1969).Google Scholar
  98. Riddle, H. N., Siegel, B. M.: Thin Pyrolytic Graphite Films for Electron Microscope Substrates. 29th Ann. Proc. Electron Microscopy Soc. Amer. 226–227 (1971).Google Scholar
  99. Röhler, R.: Informationstheorie in der Optik. Optik und Feinmechanik in Einzeldarstellungen Bd. 6. Ed.: Günther, Wiss. Verlagsgesellschaft 1967, p. 171.Google Scholar
  100. Sayre, D.: The Calculation of Structure Factors by Fourier Summation. Acta Cryst. 4, 362–367 (1951).CrossRefGoogle Scholar
  101. Scherzer, O.: The Theoretical Resolution Limit of the Electron Microscope. J. appl. Physics. 20, 20–29 (1949).CrossRefGoogle Scholar
  102. Schiske, P.: Zur Frage der Bildrekonstruktion durch Fokusreihen. IV Eur. Reg. Conf. El. Micr. Vol. I , Rome, 145–146 (1968).Google Scholar
  103. Selzer, R.: The Use of Computers to Improve Biomedical Image Quality. Amer.Fed. of Information Processing Societies (AFIPS) Fall Joint Computer Conference. 817 to 834 (1968).Google Scholar
  104. Septier, A.: The Struggle to Overcome Spherical Aberration in Electron Optics. Advances in Optical and Electron Microscopy. Vol. 1. Ed.: Barer and Cosslet, 204–274. London-New York: Academic Press 1966.Google Scholar
  105. Shannon, C. E.: Communications in the Presence of Noise. Proc. I.R.E.N.Y. 37, 10–21 (1949).CrossRefGoogle Scholar
  106. Thomson, M. G. R., Jacobsen, E. H.: Quadrupole-Octopole and Foil Lens Corrector Systems. 29th Ann. Proc. Electron Microscopy Soc. Amer. 16–17 (1971).Google Scholar
  107. Thon, F.: Elektronenmikroskopische Untersuchungen an dünnen Kohlefolien. Z. Naturforsch. 20a, 154–155 (1965).Google Scholar
  108. Thon, F., Siegel, B. M.: Experiments with Optical Image Reconstruction of High Resolution Electron Micrographs. Ber. Bunsenges. Phys. Chem. 74, 1116–1120 (1970).Google Scholar
  109. Thon, F., Willasch, D.: High Resolution Electron Microscopy Using Phase Plates. 29th Ann. Proc. Electron Microscopy Soc. Amer. 38–39 (1971).Google Scholar
  110. Unwin, P. N. T.: Phase Contrast and Interference Microscopy with the Electron Microscope. Phil. Trans. B261, 95–104 (1971).CrossRefGoogle Scholar
  111. Vainshtein, B. K.: Finding the Structure of Objects from Projections. Soviet Physics- Crystallography 15, 781–787 (1971). Transl. from Kristallografiya 15, 894–902 (1970).Google Scholar
  112. Vainshtein, B. K., Barynin, V. V., Gurskaya, G. V.: The Hexagonal Crystalline Structure of Catalase and Its Molecular Structure. Soviet Physics-Doklady 13, 838 to 841 (1969). Transl. from Doklady Akademii Nauk SSSR 182, 569–572 (1968).Google Scholar
  113. Valentine, R. G., Wrigley, N. G.: Graininess in the Photographic Recording of Electron Microscope Images. Nature (Lond.) 203, 713–715 (1964).CrossRefGoogle Scholar
  114. Vander Lugt, A.: Signal Detection by Complex Spatial Filtering. IEEE Trans. Inform. Theory IT-10, 139–145 (1964).Google Scholar
  115. Vander Lugt, A.: A Review of Optical Data-Processing Techniques. Optica Acta 15, 1–33 (1968).CrossRefGoogle Scholar
  116. Welton, T. A.: Computational Correction of Aberrations in Electron Microscopy. 29th Ann. Proc. Electron Microscopy So. Amer. 94–95 (1971).Google Scholar
  117. Wiener, N.: The Extrapolation, Interpolation and Smoothing of Stationary Time Series, 175. New York: J. Wiley and Sons 1949.Google Scholar
  118. Whittaker, E. T.: On the Functions Which Are Represented by the Expansions of the Interpolation Theory. Proc. roy. Soc. Edinb. A 35, 181 (1915).Google Scholar
  119. Zeitler, E.: Contrast of Single Atoms in an Aberration-Free Electron Microscope. VI Int. Conf. El. Micr., Kyoto, 43–44 (1966).Google Scholar
  120. Zeitler, E.: Resolution in Electron Microscopy. Advances in Electronics and Electron Physics Vol. 25. Ed.: L. Marton, 277–332. New York-London: Academic Press 1968.Google Scholar
  121. Zeitler, E., Bahr, G. F.: Contrast and Mass Thickness. Lab. Invest. 14, 946–954 (1965).PubMedGoogle Scholar
  122. Zeitler, E., Olsen, H.: Complex Scattering Amplitudes in Elastic Electron Scattering. Phys. Rev. 162, 1439–1447 (1967).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • Joachim Frank

There are no affiliations available

Personalised recommendations