Temporal Transfer Properties of the Afferent Visual System Psychophysical,Neurophysiological and Theoretical Investigations

  • W. A. Van De Grind
  • O.-J. Grüsser
  • H.-U. Lunkenheimer
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 3 / 3 A)

Abstract

The afferent visual system (a.v.s.) includes all those stuctures of the retina and the brain which are mainly concerned with the sensory functions of vision and not with the polysensory integration of other modalities into the visual system or with visuo-motor control mechanisms. With this definition, the a.v.s. of vertebrates includes the optical apparatus of the eye, the retina, the pathways from the eye to the brain and in mammals the geniculate body, the primary visual cortex and part of the optic tectum. In the present report, we include also the description of the temporal response characteristics of neurons of the secondary and tertiary visual cortex. We do not give, however, a description of the special “feature extracting” properties of some of these cortical neuronal systems which are relevant to the analysis of visual patterns and which are described in another chapter of this volume (Stone and Freeman, Chap. 2, p. 153). Also excluded is the description of responses of tectal neurons, which are mentioned in two other chapters of this handbook (Sprague, Berlucchi, and Rizzolatti, 1973; Grüsser and Grüsser-Cornehls, 1973).

Keywords

Fatigue Attenuation Caffeine Neurol Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, Z.: Influence of adaptation on the strength frequency curve of human eyes, as determined with electrically produced flickering phosphenes. Tohoku J. exp. Med. 54, 37–44 (1951).PubMedGoogle Scholar
  2. Aiba, S.: The effects of dexamphetamine, sodium amobarbital and meprobamate on critical frequency of flicker under two different surround illuminations. Psychopharmacology 1, 89–101 (1959).Google Scholar
  3. Akimoto, H., Creutzfeldt, O.: Reaktionen von Neuronen des optischen Cortex nach elektri–scher Reizung unspezifischer Thalamuskerne. Arch. Psychiat. Nervenkr. 196, 496–519 (1958).Google Scholar
  4. Allen, F.: The variation of visual sensory reflex action with intensity of stimulation. J. opt. Soc. Amer. IB, 383–430 (1926).Google Scholar
  5. Alpern, M., Hendley, C.D.: Visual functions as indices of physiological changes in acid–base balance of the blood. Amer. J. Optom. 29, 301–314 (1952).PubMedGoogle Scholar
  6. Alpern, M., Hendley, C.D., Spencer, R.W.: Variation of critical flicker frequency in the nasal visual field. Arch. Ophthal. 50, 50–63 (1953).Google Scholar
  7. Alpern, M., Hendley, C.D., Spencer, R.W., Sugiyama, S.: Photic driving of the critical flicker frequency. J. Opt. Soc. Amer. 51, 1379–1385 (1961).Google Scholar
  8. Amecke-Mönninghof, E., Buettner, U.W.: Die Wechselwirkung von rezeptivem Feld¬zentrum und rezeptiver Feldperipherie retinaler Neurone der Katze. I. Phasische Reizung im Zentrum. Pflügers Arch. ges. Physiol. 319, R 152 (1970).Google Scholar
  9. Amecke-Mönninghof, E., Buettner, U.W.: Die Wechselwirkung zwischen Feldzentrum und Feldperipherie von retinalen Neuronen der Katze. II. Phasische Reizung in der Peripherie. Pflügers Arch. ges. Physiol. 319, R 152 (1970).Google Scholar
  10. Anderson, D.A., Huntington, J., Simonson, E.: Critical fusion frequency as a function of exposure time. J. opt. Soc. Amer. 56, 1607–1611 (1966).Google Scholar
  11. Arden, G., Liu, Y.-M.: Some types of response of single cells in the rabbit lateral geniculate body to stimulation of the retina by light and to electrical stimulation of the optic nerve. Acta physiol. scand. 48, 36–48 (1960 a).PubMedGoogle Scholar
  12. Arden, G., Liu, Y.–M.: Some responses of the lateral geniculate body of the rabbit to flickering light stimuli. Acta physiol. scand. 48, 49–62 (1960b).PubMedGoogle Scholar
  13. Arduini, A.: Specific and non–specific components in the activity of a relay nucleus: the lateral geniculate. Arch. ital. Biol. 107, 715–722 (1969).Google Scholar
  14. Arnold, H.: Optische Verschmelzungsfrequenz und ermüdende Beanspruchung. Arbeits¬physiologie 15, 62–78 (1953).Google Scholar
  15. Arnold, H., Wacholder, K.: Weitere Untersuchungen über optische Verschmelzungsfrequenz und ermüdende körperliche Beanspruchung. Arbeitsphysiologie 15, 139–148 (1953).PubMedGoogle Scholar
  16. Baader, E.G.: Über die Empfindlichkeit des Auges gegen Lichtwechsel. Med. Diss., Univ. Freiburg i. Br. 1891.Google Scholar
  17. Baker, C.H.: The dependence of binocular fusion on timing of peripheral stimuli and on central process. Canad. J. Psychol. 6, 84–91 (1952 a).PubMedGoogle Scholar
  18. Baker, C.H.: The dependence of binocular fusion on timing of peripheral stimuli and on central process. 2. Asymmetrical flicker. Canad. J. Psychol. 6, 123–130 (1952b).PubMedGoogle Scholar
  19. Baker, C.H.: The dependence of binocular fusion on timing of peripheral stimuli and on central process. III. Cortical flicker. Canad. J. Psychol. 6, 151–163 (1952c).PubMedGoogle Scholar
  20. Baker, C.H., Bott, E.A.: Studies on visual flicker and fusion. II. Effects of timing of visual stimuli on binocular fusion and flicker. Canad. J. Psychol. 5, 9–17 (1951).PubMedGoogle Scholar
  21. Ball, R. J., Bartley, S. H.: Effects of intermittent monochromatic illumination on visual acuity. Amer. J. Optom. 47, 519–525 (1970).PubMedGoogle Scholar
  22. Barlow, H.B.: Optic nerve impulses and Weber’s law. Cold Spr. Harb. Symp. quant. Biol. 80, 539–546 (1965).Google Scholar
  23. Barlow, H.B., Fitzhugh, R., Kuffler, S. W.: Change of organization in the receptive fields of the cat’s retina during dark adaptation. J. Physiol. (Lond.) 187, 338–354 (1957).Google Scholar
  24. Barnett, A.: Electrically produced flicker in darkness. Amer. J. Physiol. 183, 205–206 (1941).Google Scholar
  25. Bartley, S.H.: The neural determination of critical flicker frequency. J. exp. Psychol. 21, 678–686 (1937).Google Scholar
  26. Bartley, S.H.: Subjective brightness in relation to flash rate and the light-dark ratio. J. exp. Psychol. 28, 313–319 (1938).Google Scholar
  27. Bartley, S.H.: Some factors in brightness discrimination. Psychol. Rev. 40, 337–358 (1939).Google Scholar
  28. Bartley, S.H.: Brightness enhancement in relation to target intensity. J. Psychol. 32, 57–62 (1951).Google Scholar
  29. Bartley, S.H.: Brightness comparison when one eye is stimulated intermittently and the other eye steadily. J. Psychol. 34, 165–167 (1952).Google Scholar
  30. Bartley, S.H.: Light adaptation and brightness enhancement. Perceptual and Motor Skills 7, 85–92 (1957).Google Scholar
  31. Bartley, S.H.: Some facts and concepts regarding the neurophysiology of the optic pathway. Arch. Ophthal. 00, 775–791 (1958).Google Scholar
  32. Bartley, S.H., Ball, R.J.: Effects of intermittent illumination on visual acuity. Amer. J. Optom. 45, 458–464 (1968).PubMedGoogle Scholar
  33. Bartley, S.H., Nelson, T.M.: Certain chromatic and brightness changes associated with rate of inter– mittency of photo stimulation. J. Psychol. 50, 323–332 (1960).Google Scholar
  34. Bartley, S.H., Nelson, T.M.: A further study of pulse–to–cycle fraction and critical flicker frequency. A decisive theoretical test. J. opt. Soc. Amer. 51, 41–45 (1961).Google Scholar
  35. Bartley, S.H., Nelson, T.M.:Some relations between sensory end results and neural activity in the optic pathway. J. Psychol. 55, 121–143 (1963).Google Scholar
  36. Bartley, S.H., Nelson, T.M., Ronney, J. E.: The sensory parallel of the reorganization period in the cortical response in intermittent retinal stimulation. J. Psychol. 52, 137–147 (1961).Google Scholar
  37. Bartley, S.H., Nelson, T.M., Soules, E.M.: Visual acuity under conditions of intermittent illumination productive of paradoxical brightness. J. Psychol. 55, 153–163 (1963).Google Scholar
  38. Bartley, S.H., Paczewitz, G., Valsi, E.: Brightness enhancement and the stimulus cycle. J. Psychol. 43, 187–192 (1957).Google Scholar
  39. Bartley, S.H., Wilkinson, F.R.: Brightness enhancement when entoptic stray light is held constant. J. Psychol. 33, 301–305 (1952).Google Scholar
  40. Basler, A.: Über die Verschmelzung von zwei nacheinander erfolgenden Lichtreizen. Pflügers Arch. ges. Physiol. 143, 245–251 (1911).Google Scholar
  41. Baumgartner, G. : Die Reaktionen der Neurone des zentralen visuellen Systems der Katze im simultanen Helligkeitskontrast. IN: Jung, R., Kornhuber, H. H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, S. 296–313. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  42. Baumgartner, G., Brown, J.L., Schulz, A.: Responses of single units of the cat visual system to rectangular stimulus patterns. J. Neurophysiol. 28, 1–18 (1965).PubMedGoogle Scholar
  43. Baumgartner, G., Brown, J.L., Schulz, A., Hakas, P.: Reaktionen einzelner Opticusneurone und corticaler Nervenzellen der Katze im Hell–Dunkel–Grenzfeld (Simultankontrast). Pflügers Arch. ges. Physiol. 270, 29 (1959).Google Scholar
  44. Baumgartner, G., Brown, J.L., Schulz, A., Hakas, P., Hakas, P.: Die Neurophysiologie des simultanen Helligkeitskontrastes. Reziproke antagonistischer Neuronengruppen des visuellen Systems. Pflügers Arch. ges. Physiol. 274, 489–510 (1962).Google Scholar
  45. Baylor, D. A., Puortes, M. G.F.: Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207, 77–92 (1970).Google Scholar
  46. Bayly, E. J.: Spectral analysis of pulse frequency modulation in the nervous system. IEEE Trans. BME-15, 257–265 (1968).Google Scholar
  47. Bayly, E. J.: Spectral analysis of pulse frequency modulation. In: Systems analysis approach to neuro-physiological problems. Conf. Proc. Lab. Neurophysiol. Univ. Minnesota, 48–60 (1969).Google Scholar
  48. Beck, A.: Anstieg der Verschmelzungsfrequenz bei Erregung im Elektroretinogramm. Klin. Wschr. 29, 446–448 (1951).PubMedGoogle Scholar
  49. Benham, C.H.: The artiflcal spectrum top. Nature (Lond.) 51, 200 (1895).Google Scholar
  50. Berg, O.: A study of the effect of evipan on the flicker fusion intensity in brain injuries. Acta psychiat. (Kbh.) Suppl. 58, 1–116 (1949).Google Scholar
  51. Berger, C.: Area of retinal image and flicker fusion frequency. Acta physiol. scand. 28, 224–233 (1953).PubMedGoogle Scholar
  52. Berger, C.: Illumination of surrounding field and flicker fusion frequency with foveal images of different sizes. Acta physiol. scand. 30, 161–170 (1954).PubMedGoogle Scholar
  53. Bielck, G.G.: De raritate luminis. Medical doctor thesis, 12 p. Introduced by J. A. SEGNER. Göttingen: Vandenhoek 1740.Google Scholar
  54. Bishop, G.H., O’leary, J.L.: Electrical activity of the lateral geniculate of cats following optic nerve stimuli. J. Neurophysiol. 3, 308–322 (1940).Google Scholar
  55. Bishop, P.O.: Synaptic transmission. An analysis of the electric activity of the lateral geniculate nucleus in the cat after optic nerve stimulation. Proc. Roy. Soc. 141 B, 362–392 (1953).Google Scholar
  56. Bishop, P.O.: Properties of afferent synapses and sensory neurons in the lateral geniculate nucleus. Int. Rev. Neurobiol. 6, 191–255 (1964).PubMedGoogle Scholar
  57. Bishop, P.O., Burke, W., Davis, R.: The identification of single units in central visual pathway. J. Physiol. (Lond.) 162, 409–431 (1962).Google Scholar
  58. Bishop, P.O., Burke, W., Davis, R., Jeremy, D., Mcleod, J. G.: Phenomenon of repetitive firing in lateral geniculate of cat. J. Neurophysiol. 16, 437–447 (1953).PubMedGoogle Scholar
  59. Bjerver, K., Goldberg, L.: Effect of alcohol ingestion on driving ability. Quart. J. Stud. Alcohol II, 1–30 (1950).Google Scholar
  60. Bleck, F.C., Craig, E.A.: Brightness enhancement and hue: I. The effect of Munsell–hue targets. J. Psychol. 59, 243–250 (1965).PubMedGoogle Scholar
  61. Bleck, F.C., Craig, E.A.: Brightness enhancement and hue: II. Hue shift as a function of steady and intermittent photic stimulation. J. Psychol. 59, 251–258 (1965).PubMedGoogle Scholar
  62. Bornschein, H.: Vergleichende Elektrophysiologie der Retina. In: Jung, R., Kornhuber, H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems. Berlin-Göttingen- Heidelberg: Springer 1961.Google Scholar
  63. Bornschein, H.: Physiologische Aspekte des Flimmerelektroretinogramms: Komponenten und Frequenzcharakteristik. Docum. Ophthal. 18, 85–100 (1964).PubMedGoogle Scholar
  64. Bornschein, H., Lahoda, R.: Harmonie analysis of human flicker electroretinogram. Proc. 3rd Int. Conf. Med. Electronics 342–344 (1960).Google Scholar
  65. Bornschein, H., Lahoda, R., Schubert, G.: Das photopische Flimmer–Elektroretinogramm des Menschen. Z. Biol. 106, 229–238 (1953).PubMedGoogle Scholar
  66. Bornschein, H., Lahoda, R., Schubert, G., Szegvary, G.: Flimmerelektroretinographische Studie bei einem Säuger mit reiner Zapfennetzhaut (Citellus citellus). Z. Biol. 110, 285–290 (1958).PubMedGoogle Scholar
  67. Borsellino, A., Fuortes, M.G.F.: Responses to single photons in visual cells of Limulus. J. Physiol. (Lond.) 196, 507–539 (1968).Google Scholar
  68. Borsellino, A., Fuortes, M.G.F., Smith, T.G.: Visual responses in Limulus. Cold Spr. Harb. Symp. quant. Biol. 30, 429–443 (1965).Google Scholar
  69. Borsellino, A., Fuortes, M.G.F., Poppele, R. E., Terzuolo, C. A.: Transfer functions of the slowly adapting stretch receptor organ of Crustacea. Cold Spr. Harb. Symp. quant. Biol. 30, 581 (1965).Google Scholar
  70. Botjman, M. A.: History and present status of quantum theory in vision. In: Rosenblith, W. A. (Ed.): Sensory Communication, pp. 377–401. Cambridge, Massachusetts: M.I.T. Press 1961.Google Scholar
  71. Bouman, M. A.: My image of the retina. Quart. Rev. Biophys. 2, 25–64 (1969).Google Scholar
  72. Bouman, M. A., Doesschate, J. Ten: Adaptation and the electrical excitability of the eye. Docum. Ophthal. 26, 240–247 (1969).PubMedGoogle Scholar
  73. Botjman, M. A., Doesschate, J.Ten, Velden, H. A. Van Der: Electrical stimulation of the human eye by means of periodical rectangular stimuli. Docum. Ophthal. 5–6, 151–167 (1951).Google Scholar
  74. Bourassa, Ch.M., Bartley, S.H.: Some observations on the manipulation of visual acuity by varying the rate of intermittent stimulation. J. Psychol. 59, 319–328 (1965).Google Scholar
  75. Boycott, B.B., Dowling, J.E.: Organization of the primate retina: light microscopy. Proc. roy. Soc. Lond. B 255, 109–184 (1969).Google Scholar
  76. Boynton, R-M., Stuhr, J. F., Ikeda, M.: Study of flicker by increment threshold technique. J. opt. Soc. Amer. 51, 196–201 (1961).Google Scholar
  77. Brewster, D.: On the influence of successive impulses of light upon the retina. Phil. Mag. (Lond. Edinb.) 4, 241–245 (1834).Google Scholar
  78. Brindley, G.S.: The site of electrical excitation of the human eye. J. Physiol. (Lond.) 127, 189–200 (1955).Google Scholar
  79. Brindley, G.S.: Beats produced by simultaneous stimulation of the human eye with intermittent light and intermittent or alternating current. J. Physiol. (Lond.) 164, 157–167 (1962).Google Scholar
  80. Brindley, G.S.: Physiology of the retina and the visual pathway. London: Edward Arnold 1960.Google Scholar
  81. Brindley, G.S., Ducroz, J.J., Rushton, W.A.H.: The flicker fusion frequency of the blue sensitive mechanism of colour vision. J. Physiol. (Lond.) 183, 497–500 (1966).Google Scholar
  82. Brink, G. Van Den, Reijnues, G.A.: Spatial and temporal facilitation in vision. Vision Res. 6, 533–551 (1966).PubMedGoogle Scholar
  83. Broca, A., Sulzer, D.: La sensation lumineuse en fonction du temps. C. R. Acad. Sci. (Paris) 184, 831–834 (1902).Google Scholar
  84. Broekhuijsen, M.L., Veringa, F.T.: Sinusoidal current and perceived brightness II. Vision Res. 12, 363 (1971).Google Scholar
  85. Brown, J.L.: Harmonic analysis of visual stimuli below fusion frequency. Science 137, 686–688 (1962).PubMedGoogle Scholar
  86. Brown, J.L.: Flicker and intermittent stimulation. Chapter 10. In: Graham, C.H. (Ed.): Vision and Visual Perception, p. 251. New York-London–Sydney: John Wiley and Sons 1965.Google Scholar
  87. Brown, K.T., Wiesel, T.N.: Intraretinal recording with micropipette electrodes in the intact cat eye. J. Physiol. (Lond.) 149, 537–562 (1959).Google Scholar
  88. Brücke, E.: Über den Nutzeffekt intermittierender Netzhautreizungen. Sitzungsber. K. Akad. Wissensch., math.-naturwiss. Klasse. Wien 49, II, 128–153 (1864).Google Scholar
  89. Büttner, Ch.. Büttner, U., Eysel, U., Grüsser, O.-J., Lunkenheimer, H.-U., Schaible, D. Spatial Summation In The Receptive Fields Of Cat’s Retinal Ganglion Cells. I. Summation Within The Rf-Center. Proceedings Of The First European Biophysics Congress 1971, Baden, Austria, Ed. Broda, E., Locker, A., Springen-Lederer, H. Separatum, Verlag Der Wiener Medizinischen Akademie, 257–261 (1971).Google Scholar
  90. Büttner, Ch.. Büttner, U., Grüsser, O.- J.: Die Frequenzeigenschaften der off-Inhibition im rezeptiven Feld-zentrum retinaler on-Zentrum Neurone der Katze. Pflügers Arch. ges. Physiol. 312, 133 (1969).Google Scholar
  91. Büttner, Ch.. Büttner, U., Grüsser, O.- J.: Interaction of excitation and direct inhibition in the receptive field center of retinal neurons. Pflügers Arch. ges. Physiol. 322, 1–21 (1971).Google Scholar
  92. Büttner, Ch.. Büttner, U., Grüsser, O.- J.: Summation of excitation and inhibition in the receptive field center of retinal neurons. Biokybernetik III, Symposion Leipzig 1969, pp. 197–201. Ed. Drischel, H., Tiedt, N. Jena: VEB Gustav Fischer 1971.Google Scholar
  93. Büttner, Ch.. Büttner, U., Grüsser, O.-J., Rackensperger, W., Vierkant, J.: Die Summation von zwei unabhängig von¬einander ausgelösten Erregungen im rezeptiven Feldzentrum retinaler Neurone der Katze. I. Internat. Symposion Biokybernetik Leipzig (1967). Wiss. Z. Karl-Marx-Universität Leipzig 2, 178–182 (1968).Google Scholar
  94. Büttner, U., Grüsser, O.-J.: Zeitliche und räumliche Einflüsse auf die Erregungsintegration im rezeptiven Feld retinaler Neurone der Katze. Pflügers Arch. ges. Physiol. 291, 88 (1966).Google Scholar
  95. Büttner, U., Grüsser, O.-J.: Quantitative Untersuchungen der räumlichen Erregungssummation im rezeptiven Feld retinaler Neurone der Katze. I. Reizung mit 2 synchronen Lichtpunkten. Kybernetik 3, Bd. 4, 81–94 (1968).PubMedGoogle Scholar
  96. Büttner, U., Grüsser, O.-J.: Spatial summation within the RF-center of retinal neurons. The effect of the distance of two light stimuli, unpubl. (1971).Google Scholar
  97. Burckhardt, Ch.W.: From flicker-fusion to color vision. Biologica Computer Laboratory Report 1–41, Dept. El. Eng., Univ. of Illinois Urbana, 111. (1966).Google Scholar
  98. Burke, W., Sefton, A.J.: Discharge patterns of principle cells and interneurons in lateral geniculate nucleus of rat. J. Physiol. (Lond.) 187, 201–212 (1966).Google Scholar
  99. Burke, W., Sefton, A.J.: Inhibitory mechanisms in lateral geniculate nucleus of rat. J. Physiol. (Lond.) 187, 231–246 (1966).Google Scholar
  100. Byzov, A.L.: Horizontale Retina-Zellen als Regulatoren der synaptischenÜbertragung(russ.). Fiziol. Zh. SSSR 53, 1115–1124 (1967).PubMedGoogle Scholar
  101. Cajal, S. Ramon Y: Die Retina. Translated by GREEFF. Wiesbaden: Bergmann 1896.Google Scholar
  102. Campbell, F. W., Cooper, G.F., Enroth Cugell Ch.: The spatial selectivity of the visual cells of the cat. J. Physiol. (Lond.) 208, 223–235 (1969).Google Scholar
  103. Campbell, F. W., Cooper, G.F., Enroth Cugell Ch., Robson, J. G.: The attenuation characteristics of the visual system determined by measurements of flicker threshold, brightness and pupilomotor effect of modulated light. Docum. Ophthal. 28, 83–84 (1964).Google Scholar
  104. Campenhausen, Ch. Von: Über den Ursprungsort von musterinduzierten Flickerfarben im visuellen System des Menschen. Z. vergl. Physiol. 61, 355–360 (1968).Google Scholar
  105. Campenhausen, Ch. Von: The color of Benham’s top under metameric illumination. Vision Res. 9, 677–682 (1969).Google Scholar
  106. Campenhausen, Ch. Von: Musterinduzierte Flickerfarben. Untersuchungen zur Psychophysik des Farbensehens. Verh. dtsch. Zool. Ges. 64, 227–234 (1970).Google Scholar
  107. Cervetto, L.: Analysis of the pigeon’s electroretinogram. Arch. ital. Biol. 106, 194–203 (1968)PubMedGoogle Scholar
  108. Christian, P., Haas, R.: Über ein Farbenphänomen (polyphäne Farben). Sitzungsber. Heidel¬berg, Akad. Wiss. Math.-naturw. Klasse 1948, 1–28.Google Scholar
  109. Clark, W.E. Le Gros: The visual centres of the brain and their connexions. Physiol. Rev. 22, 205–232 (1942).Google Scholar
  110. Clausen, J.: Visual sensations (phosphenes) produced by AC sine wave stimulation, 101 p. Copenhagen ( Bergen ): Ejnar Munksgaard 1955.Google Scholar
  111. Clausen, J., Vanderbilt, C.: Visual beats caused by simultaneous electrical and photic stimulation. Amer. J. Psychol. 70, 577–585 (1957).PubMedGoogle Scholar
  112. Cleland, B.G., Dubin, M.W., Levick, W.R.: Simultaneous recording of input and output of lateral geniculate neurons. Nature, New Biology 231, 191–192 (1971a).Google Scholar
  113. Cleland, B.G., Dubin, M.W., Levick, W.R.: Sustained and transient neurones in the cat’s retina and the lateral geniculate nucleus. J. Physiol. (Lond.) 217, 473–496 (1971b).Google Scholar
  114. Cleland, B.G., Dubin, M.W., Levick, W.R., Enroth-Cugell, C.: Cat retinal ganglion cell responses to changing light intensities: Sinusoidal modulation in the time domain. Acta physiol. scand. 68, 365–381 (1966).Google Scholar
  115. Cleland, B.G., Dubin, M.W., Levick, W.R., Enroth-Cugell, C.: Quantitative aspects of sensitivity and summation in the cat retina. J. Physiol. (Lond.) 198, 17–38 (1968).Google Scholar
  116. Cleland, B.G., Dubin, M.W., Levick, W.R., Enroth-Cugell, C.: Quantitative aspects of gain and latency in the cat retina. J. Physiol. (Lond.) 206, 73–91 (1970).Google Scholar
  117. Cobb, P. W.: Some comments on the Ives theory of flicker. J. opt. Soc. Amer. 24, 91–98 (1934a).Google Scholar
  118. Cobb, P. W.: The dependence of flicker on the dark–light ratio of the stimulus cycle. J. opt. Soc. Amer. 24, 107–113 (1934b).Google Scholar
  119. Cohen, J., Gordon, D. A.: The Prevost-Fechner-Benham subjective colors. Psychol. Bull. 46, 97–138 (1949).PubMedGoogle Scholar
  120. Cornehls, U.: Reaktionen einzelner Neurone im optischen Cortex der Katze nach elektrischen Doppelreizen des Nervus opticus. Pflügers Arch. ges. Physiol. 268, 52 (1958).Google Scholar
  121. Cornehls, U., Grüsser, O.-J.: Ein elektronisch gesteuertes Doppellichtreizgerät. Pflügers Arch. ges. Physiol. 270, 78–79 (1959).Google Scholar
  122. Creed, R.S., Rtjch, T.C.: Regional variations in sensitivity to flicker. J. Physiol. (Lond.) 74, 407–423 (1932).Google Scholar
  123. Creutzfeldt, O.D.: Functional synaptic organization in the lateral geniculate body and its implication for information transmission. From: Structure and functions of inhibitory neuronal mechanisms. Proc. of the 4th Internat. Meeting of Neurobiologists, Stockholm, Sept- 1966. Oxford-New York: Pergamon Press 1968.Google Scholar
  124. Creutzfeldt, O.D., Akimoto, H.: Konvergenz und gegenseitige Beeinflussung von Impulsen aus der Retina und den unspezifischen Thalamuskernen an einzelenen Neuronen des optischen Cortex. Arch. Psychiat. Nervenkr. 196, 520–538 (1958).PubMedGoogle Scholar
  125. Creutzfeldt, O.D., Akimoto, H., Grüsser, O.-J.: Beeinflussung der Flimmerreaktion einzelner corticaler Neurone durch elektrische Reize unspezifischer Thalamuskerne. Excerpta med. (Amst.) Int. Congr. Ser. 11, 148 (1957).Google Scholar
  126. Creutzfeldt, O.D., Akimoto, H., Grüsser, O.-J., Grüsser, O.-J.: Beeinflussung der Flimmerreaktion einzelner corticaler Neurone durch elektrische Reize unspezifischer Thalamuskerne. In: Bogaert, L.V., Radermecker, J. (Eds.): Proc. 1st Int. Congr. Neurol. Sei. Vol. 3, Electroencephalography, Clinical Neurophysiology and Epilepsy, pp. 349–355. London-New York-sParis: Pergamon 1959.Google Scholar
  127. Creutzfeldt, O.D., Akimoto, H., Grüsser, O.-J., Grüsser, O.-J., Sakmann, B., Scheich, H.: Zusammenhang zwischen Struktur und Funktion der Retina. Aus: Kybernetik 1968, Hrsg. Marko, H., Färber, G. München: Oldenbourg.Google Scholar
  128. Crozier, W. J., Wolf, E.: Theory and measurement of visual mechanisms. IV. Critical intensities for visual flicker, monocular and binocular. J. gen. Physiol. 24, 505–534 (1941 a).PubMedGoogle Scholar
  129. Crozier, W. J., Wolf, E.: Theory and measurement of visual mechanisms. V. Flash duration and critical intensity for response to flicker. J. gen. Physiol. 24, 635–654 (1941b).PubMedGoogle Scholar
  130. Crozier, W. J., Wolf, E. Zerrahn-Wolf, G.: Intensity and critical frequency for visual flicker. J. gen. Physiol. 21, 203–221 (1937).PubMedGoogle Scholar
  131. De Valois, H.: Discussion to Bartley, S.H. Arch. Ophthal. 60, 775–791 (1958).Google Scholar
  132. De Valois, R.L., Abramow, I., Mead, W.R.: Single cell analysis of wavelength discrimination at the lateral geniculate nucleus of the macaque. J. Neurophysiol. 30, 415–433 (1967).PubMedGoogle Scholar
  133. De Voejr.D.: A nonlinear model of sensory adaptation in the eye of the wolf spider. In: Bernhard, C.G. (Ed.): The Functional Organization of the Compound Eye, pp. 309–328. Oxford: Pergamon 1966.Google Scholar
  134. De Voejr. D.: Nonlinear transient responses from light–adapted wolf spider eyes to changes in background illumination. J. gen. Physiol. 50, 1961–1992 (1967a).Google Scholar
  135. De Voejr. D.: A nonlinear model for transient responses from light–adapted wolf spider eyes. J. gen. Physiol. 50, 1993–2030 (1967b).Google Scholar
  136. Dodge, F.A., Jr, Shapley, R.M., Knight, B.W.: Linear systems analysis of the Limulus retina. Behav. Sci. 15, 24–36 (1970).PubMedGoogle Scholar
  137. Dodt, E.: Ergebnisse der Flimmerelektroretinographie. Med. Habilitationsschrift, Freiburg i. Br. Dez. 1953.Google Scholar
  138. Dodt, E.: Ergebnisse Flimmer–Elektroretinographie. Experientia (Basel) 10, 330–339 (1954).Google Scholar
  139. Dodt, E.: Erregung und Hemmung retinaler Neurone bei intermittierender Belichtung. Docum. Ophthal. 18, 259–274 (1964).PubMedGoogle Scholar
  140. Dodt, E., Enroth, C.: Retinal flicker response in cat. Acta physiol. scand. 30, 375–390 (1953).Google Scholar
  141. Dodt, E., Enroth, C., Lith, G.M.H. Van, Schmidt, B.: Electroretinographic evaluation of the photopic mal¬function in a totally color blind. Vision Res. 7, 231–241 (1967).PubMedGoogle Scholar
  142. Dodt, E., Enroth, C., Lith, G.M.H.Van, Schmidt, B., Walther, J. B.: Der photopische Dominator im Flimmer–ERG der Katze. Pflügers Arch, ges. Physiol. 266, 175–186 (1958).Google Scholar
  143. Dodt, E., Enroth, C., Lith, G.M.H. Van, Schmidt, B., Walther, J. B., Wirth, A.: Differentiation between rods and cones by flicker electroretinography in pigeon and guinea pig. Acta physiol. scand. 30, 80–89 (1953).PubMedGoogle Scholar
  144. Doorn, A. J. Van, Koenderink, J. J., Bouman, M. A.: The influence of the retinal inhomogeneity on the perception of spatial patterns. Kybernetik 10, 223–230 (1972).PubMedGoogle Scholar
  145. Dowling, J.E.: Organization of vertebrate retinas. Invest. Ophthal. 9, 655–680 (1970).PubMedGoogle Scholar
  146. Dowling, J.E., Boycott, B.B.: Neural connections of the retina: fine structure of the inner plexiform layer. Cold Spr. Harb. Symp. quant. Biol. 30, 393–402 (1965).Google Scholar
  147. Dowling, J.E., Boycott, B.B.: Organization of the primate retina: Electron microscopy. Proc. roy. Soc. Lond. B 166, 80–111 (1966).Google Scholar
  148. Dowling, J.E., Boycott, B.B., Werblin, F.S.: Synaptic organization of the vertebrate retina. Vision Res. Suppl. 3, 1–15 (1971).PubMedGoogle Scholar
  149. Ebbecke, U.: Über das Augenblicksehen. Pflügers Arch. ges. Physiol. 185, 181–195 (1920a).Google Scholar
  150. Ebbecke, U.: Über das Sehen im Flimmerlicht. Pflügers Arch. ges. Physiol. 185, 196–223 (1920b).Google Scholar
  151. Eckhorn, R., Pöpel, B.: A contribution to neuronal network analysis in cat LGB: Simultaneous recordings of maintained activity. Int. J. Neurosci. (in press, 1972).Google Scholar
  152. Eckmiller, R.: Electronic analog models of the retina and the visual system. In: Grüsser, O.-J., Klinke, R. (Eds.): Zeichenerkennung durch biologische und technische Systeme, S. 143–151. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  153. Eckmiller, R.: Properties of an electronic simulation network of the vertebrate retina and the first layer in the lateral geniculate nucleus. Proc. of the First European Biophysics Congr. 1971, Baden, Austria, Broda, E., Locker, A., Springer-Lederer, H. (Eds.): Separatum, Verlag der Wiener Medizinischen Akademie 267–271 (1971).Google Scholar
  154. Eckmiller, R., Grüsser, O.-J.: Electronic simulation of the neuronal network of the vertebrate retina. Kybernetik, in prep. 1972/1973.Google Scholar
  155. Enroth, Ch.: Spike frequency and flicker fusion frequency in retinal ganglion cells. J. Physiol. (Lond.) 117, 18–21 (1952).Google Scholar
  156. Enroth, Ch.: The mechanism of flicker and fusion studied on single retinal elements in the dark-adapted eye of the cat. Acta physiol. scand. 27, Suppl. 100, 1–67 (1952).Google Scholar
  157. Enroth-Cugell, Ch., Pinto, L.: Algebraic summation of centre and surround inputs to retinal ganglion cells of the cat. Nature (Lond.) 226, 458–459 (1970).Google Scholar
  158. Enroth-Cugell, Ch., Pinto, L.: Properties of the surround response mechanism of cat retinal ganglion cells and centre-surround interaction. J. Physiol. (Lond.) 220, 403–439 (1972).Google Scholar
  159. Enroth-Cugell, Ch., Pinto, L.: Pure central responses from off-centre cells and pure surround responses from on–centre cells. J. Physiol. (Lond.) 220, 441–464 (1972).Google Scholar
  160. Enroth-Cugell, Ch., Pinto, L., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.) 187, 517–552 (1966).Google Scholar
  161. Enzer, N., Simonson, E., Ballard, C.: The effect of small doses of alcohol on the central nervous system. Amer. J. Clin. Pathol. 14, 333–341 (1944).Google Scholar
  162. Erlick, D., Landis, C.: The effect of intensity, light-dark ratio, and age on the Flicker-Fusion threshold. Amer. J. Psychol. 65, 375–388 (1952).PubMedGoogle Scholar
  163. Ernst, W.: The dependence of critical flicker frequency and the rod threshold on the state of adaptation of the eye. Vision Res. 8, 889–900 (1968).PubMedGoogle Scholar
  164. Exner, S.: Über die zu einer Gesichtswahrnehmung nötige Zeit. Sitzungsber. Kaiserl. Akad. Wissensch. 58, II, 601–631 (1868).Google Scholar
  165. Exner, S.: Bemerkungen über intermittierende Netzhautreizung. Pflügers Arch. ges. Physiol. 3, 214–240 (1870).Google Scholar
  166. Eysel, U.: Computer simulation of the impulse pattern of muscle spindle afferents under static and dynamic conditions. Kybernetik 8, 171–179 (1971).PubMedGoogle Scholar
  167. Eysel, U., Flynn, J.T., Gaedt, Chr.: Spatial summation of excitation and inhibition in receptive fields of neurons in the lateral geniculate body of the cat and the influence of visual deprivation. Pflügers Arch. ges. Physiol. 327, 82–94 (1971).Google Scholar
  168. Eysel, U., Flynn, J.T., Gaedt, Chr., Grüsser, O.-J.: The impulse pattern of muscle spindle afferents. A statistical analysis of the response to static and sinusoidal stimulation. Pflügers Arch. ges. Physiol. 315, 1–26 (1970).Google Scholar
  169. Eysel, U., Flynn, J.T., Gaedt, Chr., Grüsser, O.-J., Grüsser, O.-J.: Neurophysiological basis of pattern recognition in the cat’s visual system. In: Grüsser, O.-J., Klinke, R. (Eds.): Zeichenerkennung durch biologische und technische Systeme, S. 59–80. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  170. Eysel, U., Flynn, J.T., Gaedt, Chr., Grüsser, O.-J., Pecci-Saavedra, J.: The signal transmission by degenerating synapses of the cat’s lateral geniculate nucleus. Brain Res. (in preparation 1972 ).Google Scholar
  171. Fechner, G.T.: Über eine Scheibe zur Erzeugung von subjectiven Farben. Poggendorf Ann. Physik. Chem. 45, 227–232 (1838).Google Scholar
  172. Feilchenfeld, H.: Über die Sehschärfe im Flimmerlicht. Z. Psychol. 35, 1–7 (1904).Google Scholar
  173. Feinberg, I.: Critical flicker frequency in amblyopia ex anopsia. Amer. J. Ophthal. 42, 473–481 (1956).PubMedGoogle Scholar
  174. Ferry, E.S.: Persistence of vision. Amer. J. Sci. 44, 192–207 (1892).Google Scholar
  175. Fick, A.: Die Lehre vom Lichtsinn. In: Hermanns Handbuch der Physiologie der Sinnes-organe, Vol. III/l, pp. 139–234. Leipzig: F. C. W. Vogel 1879.Google Scholar
  176. Fiorentini, A., Maffei, L.: Transfer characteristics of excitation and inhibition in the human visual system. J. Neurophysiol. 23, 285–292 (1970).Google Scholar
  177. Fischer, B.: Optische und neuronale Grundlagen der visuellen Bildübertragung: Einheitliche mathematische Behandlung des retinalen Bildes und der Erregbarkeit von retinalen Ganglienzellen mit Hilfe der linearen Systemtheorie. Vision Res. 12, 1125–1144 (1972).PubMedGoogle Scholar
  178. Fischer, B., Freund, H.-J.: Eine mathematische Formulierung für Reiz-Reaktionsbeziehungen retinaler Ganglienzellen. Kybernetik 7, 160–166 (1970).PubMedGoogle Scholar
  179. Fischer, B., Freund, H.-J., May, H.-U.: Invarianzen in der Katzenretina: Gesetzmäßige Beziehungen zwischen Empfindlichkeit, Größe und Lage reeeptiver Felder von Ganglienzellen. Exp. Brain Res. 11, 448–464 (1970).PubMedGoogle Scholar
  180. Foerster, M.H., Grind, W.A. Van De: Intracellularly recorded discrete waves and ganglion cell responses in the intact eye of the cat. Vision Res. in prep. (1973).Google Scholar
  181. Foerster, M.H., Grind, W.A. Van De., Grüsser, O.-J.: The response of horizontal cells of the cat’s retina to flicker stimulation. Vision Res., in preparation (1972/1973).Google Scholar
  182. Foerster, M.H., Grind, W.A. Van De., Grüsser, O.-J.: Der Einfluß der Narkosetiefe auf die Entladungsmuster retinaler Neurone der Katze. Pflügers Arch. ges. Physiol. 294, 53 (1967).Google Scholar
  183. Foerster, M.H., Grind, W.A. Van De., Grüsser, O.-J.: Responses of retinal ganglion cells of the cat at different depths of barbiturate anesthesia. unpubl. work (1969)Google Scholar
  184. Foerster, M.H., Grüsser, O.J., Lunkenheimer, H.-U.: Responses of cat’s retinal ganglion cells to sinusoidally modulated light. The effect of the depth of modulation. In preparation (1973).Google Scholar
  185. Foley, P. J.: Interrelationships of background area, target area and target luminance in their effect on the critical flicker frequency of the human fovea. J. opt. Soc. Amer. 51, 737–740 (1961).Google Scholar
  186. Foley, P. J.: Critical flicker frequency and phased surrounds. J. opt. Soc. Amer. 53, 497–498 (1963).Google Scholar
  187. Foley, P. J., Kazdan, J.: Area-intensity relations within the fovea for flickering white and part-spectrum targets. J. opt. Soc. Amer. 54, 547–550 (1964).Google Scholar
  188. Forsyth, D.M.: Use of a Fourier model in describing the fusion of complex visual stimuli. J. opt. Soc. Amer. 50, 337–341 (1960).Google Scholar
  189. Forsyth, D.M., Brown, C.R.: Nonlinear property of the visual system at fusion. Science 134, 612–614 (1961).PubMedGoogle Scholar
  190. Forsyth, D.M., Brown, C.R., Brown, C.R.: Visual system at fusion. Science 135, 794–795 (1962).PubMedGoogle Scholar
  191. Forsyth, D.M., Brown, C.R., Brown, C.R., Chap Anís, A.: Counting repeated light flashes as a function of their number, their rate of presentation and retinal location stimulated. J. exp. Psychol. 56, 385–391 (1958).Google Scholar
  192. Freund, H.-J., Grünewald, G.: Räumliche Summation und Hemmungsvorgänge im recepti- ven Feldzentrum von Retinaneuronen der Katze. Exp. Brain Res. 8, 37–52 (1969).Google Scholar
  193. Freund, H.-J., Grünewald, G., Baumgartner, G.: Räumliche Summation im receptiven Feldzentrum von Neuronen des Geniculatum laterale der Katze. Exp. Brain Res. 8, 53–65 (1969).PubMedGoogle Scholar
  194. Freund, H.-J., Grünewald, G., Baumgartner, G., Lauff, D., Grunewald, G.: Binoculare Interaktion im Corpus geniculatum laterale der Katze. Pflügers Arch. ges. Physiol. 297, 85 (1967).Google Scholar
  195. Frühauf, A.: Critical flicker fusion during the action of different drugs. I. Caffeine and meprobamate (including a full description of the method). Psychopharmacology 21, 382–389 (1971).Google Scholar
  196. Fry, G. A.: Color sensations produced by intermittent white light and the three component theory of color vision. Amer. J. Psychol. 47, 464–469 (1935).Google Scholar
  197. Fry, G. A., Bartley, S. H.: The effect of steady stimulation of one part of the retina upon the critical flicker frequency in another. J. exp. Psychol. 19, 351–356 (1936).Google Scholar
  198. Fukada, Y.: Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. Vision Res. 11, 209–226 (1971).PubMedGoogle Scholar
  199. Fukada, Y., Motokawa, K., Norton, A.C., Tasaki, K.: Functional significance of conduction velocity in the transfer of flicker information in the optic nerve of the cat. J. Neurophysiol. 29, 698–714 (1966).PubMedGoogle Scholar
  200. Fukada, Y., Motokawa, K., Norton, A.C., Tasaki, K., Saito, H.-A.: The relationship between response characteristics to flicker stimulation and receptive field organization in the cat’s optic nerve fibers. Vision Res. 11, 227–240 (1971).PubMedGoogle Scholar
  201. Fuortes, M.G.F., Hodgkin, A. L.: Changes in time scale and sensitivity in the ommatidia of Limulus. J. Physiol. (Lond.) 172, 239–263 (1964).Google Scholar
  202. Furman, G. G.: Comparison of models for subtractive and shunting lateral inhibition in receptor neuron fields. Kybernetik 2, 257–274 (1965).PubMedGoogle Scholar
  203. Gaedt, Ch.: Die Abhängigkeit der Kontrastaktivierung retinale Neurone von der Frequenz des Reizlichtes. Med. Dissertation, Physiologisches Institut, Berlin 1968.Google Scholar
  204. Gaedt, Ch., Grüsser, O.-J.: The dependence of simultaneous contrast activation of retinal neurons on the temporal frequency of the stimuli (unpubl. work 1966 ).Google Scholar
  205. Gaedt, Ch., Grüsser, O.-J., Lunkenheimer, H.-U.: Die Abhängigkeit der Kontrastaktivierung retinaler Neurone von der Belichtungsfrequenz. Pflügers Arch. ges. Physiol. 291, 87 (1966).Google Scholar
  206. Galifret, Y., Pieron, H.: Etude des frequences critiques de fusion pour les stimulations chromatiques intermitentes á brillance constante. Année Psychol. 45 /46, 1–15 (1948).Google Scholar
  207. Gastaut, H., Corriol, J.H.: Sur la forme des ondes induites sur le cortex cérébral par les stimulations lumineuses rhythmées. C. R. Soc. Biol. 142, 351–353 (1948).Google Scholar
  208. Gebhard, J.W., Duffy, M.M., Mowbray, G.H., Byham, C.L.: Visual sensitivity to the rate of electrically produced intermittence. J. opt. Soc. Amer. 46, 851–860 (1956).Google Scholar
  209. Gebhard, J.W., Duffy, M.M., Mowbray, G.H., Byham, C.L., Mowbray, G. H.: On discriminating in the rate of visual flicker and auditory flutter. Amer. J. Psychol. 72, 521–529 (1959).PubMedGoogle Scholar
  210. Gebhard, J.W., Duffy, M.M., Mowbray, G.H., Byham, C.L., Mowbray, G. H., Byham, C.L.: Difference-limens for photic intermittence. Quart. J. exp. Psychol. 7, 49–55 (1955).Google Scholar
  211. Geratewohl, S. J., Taylor, W.F.: The effect of intermittent light on the readability of printed matter under conditions of decreasing contrast. J. exp. Psychol. 46, 278–282 (1953).Google Scholar
  212. Gibbins, K., Howarth, C. I.: Prediction of the effect of the light–time fraction on the critical flicker frequency: an insight from Fourier analysis. Nature (Lond.) 190, 330–331 (1961).Google Scholar
  213. Gibbins, K., Howarth, C. I.: The effect of intermittent illumination on the visual acuity threshold. Quart. J. Exp. Psychol. 14, 167–175 (1962).Google Scholar
  214. Glad, A., Magntjssen, S.: Darkness enhancement in intermittent light: An experimental demonstration. Vision Res. 12, 111–115 (1972).PubMedGoogle Scholar
  215. Glees, P.: The termination of optic fibres in the lateral geniculate body of the cat. J. Anat. (Lond.) 75, 434–440 (1941).Google Scholar
  216. Glotzner, F., Grtisser, O.-J.: Membranpotential und Entladungsfolgen corticaler Zellen, EEG und corticales DC-Potential bei generalisierten Krampfanfallen. Arch. Psychiatr. Nervenkr. 210, 313–339 (1968).PubMedGoogle Scholar
  217. Glotzner, F., Grtisser, O.-J., Tweel, L.H. Van Der: A source for modulated light. Phys. Med. Biol. 3, 164–173 (1958).Google Scholar
  218. Gon, J.J., Denier Van Der, Strackee, J.: Gezichtsscherpte-Een fysisch-fysiologische studie. Thesis Univ. Amsterdam. The Netherlands (1959).Google Scholar
  219. Gouras, P.: Duplex function in the grey squirrel’s electroretinogram. Nature (Lond.) 203, 767–768 (1964).Google Scholar
  220. Gon, J.J., Denier Van Der, Strackee, J.: Identification of cone mechanisms in monkey ganglion cells. J. Physiol. (Lond.) 199, 533–547 (1968).Google Scholar
  221. Gon, J.J., Denier Van Der, Strackee, J.: The function of the midget cell system in primate color vision. Vision Res. Suppl. 3, 397–410 (1971).Google Scholar
  222. Gon, J.J., Denier Van Der, Strackee, J., Gunkel, R.D.: The resonant frequencies of rod and cone electroretinograms. Invest. Ophthal. 1, 122–126 (1962).Google Scholar
  223. Gon, J.J., Denier Van Der, Strackee, J., Gunkel, R.D., Gunkel, R.D.: The frequency response of normal, rod achromat and nyctalope ERGs to sinusoidally monochromatic light stimulation. Docum. Ophthal. 18, 137–150 (1964).Google Scholar
  224. Govi, G.: L’ottica di Claudeo Tolomeo. G. B. Paravia 171 p. (1885).Google Scholar
  225. Graham, C.H., Granit, R.: Comparative studies on the peripheral and central retina. VI. Inhibition, summation and synchronization of impulses in the retina. Amer. J. Physiol. 98, 664–673 (1931).Google Scholar
  226. Graham, C.H., Granit, R., Kemp, E.H.: Brightness discrimination as a function of the duration of the increment intensity. J. gen. Physiol. 21, 635–650 (1938).PubMedGoogle Scholar
  227. Graham, N.: Spatial frequency channels in the human visual system: Effects of luminance and pattern drift rate. Vision Res. 12, 53–68 (1972).PubMedGoogle Scholar
  228. Granit, R.: Interaction between distant areas in the human eye. J. Physiol. (Lond.) 69, XVII (1930a).Google Scholar
  229. Granit, R.: Comparative studies on the peripheral and central retina. I. Amer. J. Physiol. 94, 41–50 (1930b).Google Scholar
  230. Granit, R.: Sensory mechanisms of the retina. London: Oxford University Press 1947.Google Scholar
  231. Granit, R.: The organization of the vertebrate retinal elements. Ergebn. Physiol. 46, 31–70 (1950).Google Scholar
  232. Granit, R.: Receptors and sensory perception, pp. 280–291. New Haven: Yale University Press 1955.Google Scholar
  233. Granit, R.: The visual pathway. Part III of H. Davson. The eye, Vol. 2, 536–763. New York-London: Academic Press 1962.Google Scholar
  234. Granit, R., Ammon, W. Von: Comparative studies on the peripheral and central retina. III. Amer. J. Physiol. 95, 229–241 (1930).Google Scholar
  235. Granit, R., Ammon, W. Von, Hammond, E.L.: Comparative studies on the peripheral and central retina V. Amer. J. Physiol. 98, 654–663 (1931).Google Scholar
  236. Granit, R., Ammon, W. Von, Hammond, E.L., Harper, P.: Comparative studies on the peripheral and central retina II. Amer. J. Physiol. 95, 211–228 (1930).Google Scholar
  237. Green, D.G.: Sinusoidal flicker characteristics of the color sensitive mechanisms of the eye. Vision Res. 9, 591–601 (1969).PubMedGoogle Scholar
  238. Grind, W. A. Van De, Grusser, O.-J.: On neuronal pulse encoders (in preparation 1973 ).Google Scholar
  239. Grind, W. A. Van De, Grusser, O.-J., Koenderink, J. J., Bouman, M.A.: Models of the processing of quantum signals by the human peripheral retina. Kybernetik 6, 213–227 (1970).PubMedGoogle Scholar
  240. Grind, W. A. Van De, Koenderink, J. J., Heyde, G.L. Van Der, Landman, H.A.A., Botr-Man, M. A.: Adapting coincidence scalers and neural modelling studies of vision. Kyberne¬tik 8, 85–105 (1971a).Google Scholar
  241. Grind, W. A. Van De, Grusser, Landman, H.A.A., Bouman, M.A.: The concepts of scaling and refractoriness in psychophysical theories of vision. Kybernetik 8, 105–122 (1971b).PubMedGoogle Scholar
  242. Grüsser, O.-J.: Reaktionen einzelner corticaler und retinaler Neurone der Katze auf Flimmer¬licht und ihre Beziehungen zur subjektiven Sinnesphysiologie. Med. Diss. Freiburg i. Br. 1956.Google Scholar
  243. Grüsser, O.-J.: Lichtreaktionen einzelner Neurone des optischen Systems und ihre Beziehungen zur sub–jektiven Sinnesphysiologie. Klin. Wschr. 35, 199 (1957).Google Scholar
  244. Grüsser, O.-J.: Receptorpotentiale einzelner retinaler Zapfen der Katze. Naturwissenschaften 44, 522 (1957).Google Scholar
  245. Grüsser, O.-J.: Rezeptorabhängige Potentiale der Katzenretina und ihre Reaktionen auf Flimmerlicht. Pflügers Arch. ges. Physiol. 271, 511–525 (1960).Google Scholar
  246. Grüsser, O.-J.: Rezeptorabhängige R-Potentiale der Katzenretina. IN: Jung, R., Kornhuber, H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, S. 56–61. Berlin-Göttingen- Heidelberg: Springer 1961.Google Scholar
  247. Grüsser, O.-J.: Anatomische und physiologische Grundlagen des Binocularsehens. Habilitationsschrift, Berlin (1963).Google Scholar
  248. Grüsser, O.-J.: Beispiele für eine systemtheoretische Analyse der Netzhautfunktion. Pflügers Arch. ges. Physiol. 289, R 85 (1966).Google Scholar
  249. Grüsser, O.-J.: The frequency response of the retinal ganglion cell responses to sinusoidal light stimulation of the receptive field. Paper given at the Symposion on “Theory of temporal factors in vision and visual perception”, June, 1966, Rochester, N. Y.Google Scholar
  250. Grüsser, O.-J.: Die Intensitätsfunktion retinaler Neurone der Katze. Pflügers Arch. ges. Physiol. 307, R 143 (1969).Google Scholar
  251. Grüsser, O.-J.: The intensity function of single neurons of the cat’s retina measured with sinusoidally modulated testfields of different area and frequency. Unpubl. work (1969).Google Scholar
  252. Grüsser, O.-J.: A quantitative analysis of spatial summation of excitation and inhibition within the recep¬tive field of retinal ganglion cells of cata. Vision Res. Suppl. 3, 103–127 (1971).PubMedGoogle Scholar
  253. Grüsser, O.-J.: Informationstheorie und die Signalverarbeitung in den Sinnesorganen und im Nerven¬system. Naturwissenschaften 59, 436–447 (1972).PubMedGoogle Scholar
  254. Grüsser, O.-J., Creutzfeldt, O.: Untersuchungen mit Flimmerlicht an einzelnen Neuronen des optischen Cortex. X. Internat. Congress of Physiological Sciences Bruessel, abstr. 388 (1956).Google Scholar
  255. Grüsser, O.-J., Creutzfeldt, O.: Eine neurophysiologische Grundlage des Brü cke-Bar t ley-Effektes: Maxima der Impuls-frequenz retinaler und corticaler Neurone bei Flimmerlicht mittlerer Frequenzen. Pflügers Arch. ges. Physiol. 263, 668–681 (1957).Google Scholar
  256. Grüsser, O.-J., Grüsser-Cornehls, U.: Microelectrode recordings from single units of the cat’s central visual system. In part unpublished work (1958–1960).Google Scholar
  257. Grüsser, O.-J., Grüsser-Cornehls, U.: Mikroelektrodenuntersuchungen zur Konvergenz vestibulärer und retinaler Afferenzen an einzelnen Neuronen des optischen Cortex der Katze. Pflügers Arch. ges. Physiol. 270, 227–238 (1960).Google Scholar
  258. Grüsser, O.-J., Grüsser-Cornehls, U.: Neuronal discharge and evoked potential in the primary visual cortex of cats. V. Inter¬nat. Congr. EEG and Clin. Neurophysiol. 1961, Excerpta Med. Internat. Congr. Ser. 37, abstr. 6 (1961).Google Scholar
  259. Grüsser, O.-J., Grüsser-Cornehls, U.: Neurophysiologische Grundlagen des Binocularsehens. Arch. Psychiat. Nervenkr. 207, 296–317 (1965).PubMedGoogle Scholar
  260. Grüsser, O.-J., Grüsser-Cornehls, U.: Neurophysiologie des Bewegungssehens. Bewegungsempfindliche und richtungs¬spezifische Neurone im visuellen System. Ergebn. Physiol. 61, 178–265 (1969).PubMedGoogle Scholar
  261. Grüsser, O.-J., Grüsser-Cornehls, U.: Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations. This handbook, Vol. VII/3A, p. 334–428 (1973).Google Scholar
  262. Grüsser, O.-J., Grüsser-Cornehls, U.: HAMASAKI, D.I.: Responses of neurons in the cat’s visual system to moving light-dark patterns. Proc. Int. Union. Physiol. Sciences, Vol. IX. 25. Int. Congress, Munich 1971, Nr. 652.Google Scholar
  263. Grüsser, O.-J., Grützner, A.: Reaktionen einzelner Neurone des optischen Cortex der Katze nach elektri–schen Reizserien des Nervus opticus. Arch. Psychiat. Nervenkr. 197, 405–432 (1958).PubMedGoogle Scholar
  264. Grüsser, O.-J., Hellner, K. A., Grüsser-Cornehls, U.: Die Informationsübertragung im afferenten visuellen System. Kybernetik 1, 175–192 (1962).Google Scholar
  265. Grüsser, O.-J., Licker, M., Lunkenheimer, H.-U.: The effect of steady illumination of the RF-periphery on the flicker response from the RF–center of cat’s retinal ganglion cells. Vision Res. (in preparation (1972).Google Scholar
  266. Grüsser, O.-J., Lüttgert, M.: Spatial summation of inhibition in the RF-periphery of ganglion cells of the cat retina. Pflügers Arch. ges. Physiol, (in preparation ) 1972.Google Scholar
  267. Grüsser, O.-J., Rackensperger, W.: Dynamic interaction of signals from the RF–center and the RF-periphery of single retinal ganglion cells of cats. Pflügers Arch. ges. Physiol, (in preparation 1972 ).Google Scholar
  268. Grüsser, O.-J., Lunkenheimer, U.: Intracellular responses of cat’s S-potentials to diffuse sinusoidally modulated flicker stimuli, unpubl. (1966).Google Scholar
  269. Grüsser, O.-J., Lunkenheimer, U.: Responses of single retinal on–center and off–center ganglion cells of the cat to sinusoidal light stimuli of different frequency modulation, area and background area. Unpubl. work, Berlin 1965–1969.Google Scholar
  270. Grüsser, O.-J., Lunkenheimer, U.: Lüttgert, M., Rackensperger, W., Wuttke, W.: Spatial summation in the receptive fields of cat’s retinal ganglion cells. II. Summation within the RF-periphery. Proc. of the First European Biophysics Congress 1971, Baden, Austria, ed. E. Broda, A. Locker, H. Springer-Lederer, Separatum, pp. 263–266. Verlag der Wiener Med. Akad. 1971.Google Scholar
  271. Grüsser, O.-J., Rabelo, C.: Reaktionen einzelner retinaler Neurone nach Lichtblitzen. I. Einzelblitze und Lichtblitze wechselnder Frequenz. Pflügers Arch. ges. Physiol. 265, 501–529 (1958).Google Scholar
  272. Grüsser, O.-J., Rabelo, C.: Die Wirkung von Flimmerreizen mit Lichtblitzen an einzelnen corticalen Neuronen. Electroenc. clin. Neurophysiol. 3, 371–375 (1959).Google Scholar
  273. Grüsser, O.-J., Reidemeister, C.: Flimmerlichtuntersuchungen an der Katzenretina. II. Off–Neurone und Besprechung der Ergebnisse. Z. Biol. 111, 254–270 (1959).Google Scholar
  274. Grüsser, O.-J., Saur, G.: Monoculare und binoculare Lichtreizung einzelner Neurone im Geniculatum laterale der Katze. Pflügers Arch. ges. Physiol. 271, 595–612 (1960).Google Scholar
  275. Grüsser, O.-J., Schaible, D., Vierkant-Glathe, J.: A quantitative analysis of the spatial summation of excitation within the receptive field centers of retinal neurons. Pflügers Arch. ges. Physiol. 319, 101–121 (1970).Google Scholar
  276. Grüsser, O.-J., Vesper, J.: Responses of retinal ganglion cells at and above the critical flicker frequency. Unpubl. work 1970. Vision Res. (in preparation 1973 ).Google Scholar
  277. Grüsser-Cornehls, U., Grüsser, O.-J.: Mikroelektrodenuntersuchungen am Geniculatum laterale der Katze: Nervenzell- und Axonentladungen nach elektrischer Opticusreizung. Pflügers Arch. ges. Physiol. 271, 50–63 (1960).Google Scholar
  278. Grüsser-Cornehls, U., Grüsser, O.- J.: Reaktionsmuster der Neurone im zentralen visuellen System von Fischen, Kaninchen und Katzen auf monoculare und binoculare Lichtreize. In: Jung, R., Kornhuber, H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, S. 275–286. Berlin-Göttingen-Heidelberg: 1971.Google Scholar
  279. Grützner, A., Grüsser, O.-J., Baumgartner, G.: Reaktionen einzelner Neurone im optischen Cortex der Katze nach elektrischer Reizung des Nervus opticus. Arch. Psychiat. 197, 377–404 (1958).Google Scholar
  280. Guillery, R. W.: A study of golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. J. comp. Neurol. 128, 21–50 (1966).PubMedGoogle Scholar
  281. Guillery, R. W.: The laminar distribution of retinal fibers in the dorsal lateral geniculate nucleus of the cat: a new interpretation. J. comp. Neurol. 138, 339–368 (1970).Google Scholar
  282. Halstead, W.C.: A note on the Bartley–effect in the estimation of equivalent brightness. J. exp. Psychol. 28, 524–528 (1941).Google Scholar
  283. Hanitzsch, R., Lützow, A. Von: Das Flimmer–ERG der isolierten Warmblüternetzhaut. Albrecht v. Graefes Arch. klin. exp. Ophthal. 173, 217–224 (1967).Google Scholar
  284. Harmon, L. D.: Studies with artificial neurons, 1: Properties and functions of an artificial neuron. Kybernetik 1, 89–101 (1961).PubMedGoogle Scholar
  285. Harmon, L. D., Levinson, J., Bergeijk, W.A.Van: Analog models of neural mechanism. IRE Trans. 8, 107–112 (1962).Google Scholar
  286. Harter, M.R., White, C.T.: Perceived number and evoked cortical potentials. Science 156, 406–408 (1967).PubMedGoogle Scholar
  287. Hartline, H.K.: Impulses in single optic nerve fibres of the vertebrate retina. Amer. J. Physiol. 118, 59 (1935).Google Scholar
  288. Hartline, H.K.: The response of single optic nerve fibres of the vertebrate eye to illumination of the retina. Amer. J. Physiol. 121, 400–415 (1938).Google Scholar
  289. Hartline, H.K.: The receptive fields of the optic nerve fibres. Amer. J. Physiol. 130, 690–699 (1940a).Google Scholar
  290. Hartline, H.K.: The effects of spatial summation in the retina on the excitation of the fibres of the optic nerve. Amer. J. Physiol. 180, 700–711 (1940b).Google Scholar
  291. Hartline, H.K., Ratliff, F.: Inhibitory interaction in the retina of Limulus. Handbook of Sensory Physio¬logy, Vol. VII/Part IB. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  292. Harvey, L. O.: Flicker sensitivity and apparent brightness as a function of surround luminance. J. Opt. Soc. Amer. 60, 860–864 (1970a).Google Scholar
  293. Harvey, L. O.: Critical flicker frequency as a function of viewing distance, stimulus size and luminance. Vision Res. 10, 55–63 (1970b).PubMedGoogle Scholar
  294. Hayhow, W. R.: The cytoarchitecture of the lateral geniculate body in the cat in relation to the distribution of crossed and uncrossed optic fibers. J. comp. Neurol. 110, 1–64 (1958).PubMedGoogle Scholar
  295. Hecht, S.: Rods, cones and the chemical basis of vision. Physiol. Rev. 17, 239–290 (1937).Google Scholar
  296. Hecht, S., Shlaer, S.: Intermittent stimulation by light. V. The relation between intensity and critical frequency for different parts of the spectrum. J. gen. Physiol. 19, 965–979 (1936).Google Scholar
  297. Hecht, S., Shlaer, S., Verrijp, C.D.: Intermittent stimulation by light II. The measurement of critical fusion frequency for the human eye. J. gen. Physiol. 17, 237–249 (1933).PubMedGoogle Scholar
  298. Hecht, S., Shlaer, S., Verrijp, C.D., Smith, E. L.: Intermittent stimulation by light VI. Area and the relation between critical frequency and intensity. J. gen. Physiol. 19, 979–991 (1936).PubMedGoogle Scholar
  299. Hecht, S., Shlaer, S., Verrijp, C.D., Smith, E. L., Verrijp, C.D.: Intermittent stimulation by light III. The relation between intensity and OFF for different retinal locations. J. gen. Physiol. 17, 251–265 (1933a).PubMedGoogle Scholar
  300. Hecht, S., Shlaer, S., Verrijp, C.D., Smith, E. L., Verrijp, C.D., Verrijp, C.D.: Intermittent stimulation by light. IV. A theoretical interpretation of the quantitative data of flicker. J. gen. Physiol. 17, 266–282 (1933b).Google Scholar
  301. Heck, J.: The flicker electroretinogram of the human eye. Acta physiol. scand. 89, 158–166 (1957).Google Scholar
  302. Helmholtz, H.Von: Handbuch der physiologischen Optik. 2nd Ed., 1008 p. Leipzig: L. Voss 1896.Google Scholar
  303. Henkes, H. E., Tweel, L. H. Van Der: Flicker. Proceedings of the symposion on the physiology of flicker, September 1963. Docum. Ophthal. (Den Haag) 18, 1–540 (1964).Google Scholar
  304. Hilz, R.: Der Einfluß von Leuchtdichte, Beobachtungsabstand, Darbietungszeit und anderen Parametern auf die Erkennbarkeit von Rechteckgittern. Dissertation, Technische Hochschule München (1965).Google Scholar
  305. Horst, G.J.C. Van Der: Chromatic flicker. J. opt. Soc. Amer. 59, 1213–1217 (1969a).Google Scholar
  306. Horst, G.J.C. Van Der: Fourier analysis and color discrimination. J. opt. Soc. Amer. 59, 1670–1676 (1969b).Google Scholar
  307. Horst, G.J.C. Van Der, Bouman, M.A.: Spatio temporal chromaticity discrimination. J. opt. Soc. Amer. 59, 1482–1488 (1969).Google Scholar
  308. Horst, G.J.C. Van Der, Bouman, M.A., Muts, W.: Hue shift and brightness enhancement of flickering light. Vision Res. 9, 953–963 (1969).PubMedGoogle Scholar
  309. Hrachovina, V., Schmidt, B.: Electroretinogram fusion frequency and retinal illumination of some vertebrate eyes. 6. ISCERG Symposium, pp. 279–282. Leipzig: VEB G. Thieme 1968.Google Scholar
  310. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. (Lond.) 148, 574–591 (1959).Google Scholar
  311. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).Google Scholar
  312. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two non–striate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965).PubMedGoogle Scholar
  313. Hughes, G.W., Maffei, L.: Retinal ganglion cell response to sinusoidal light stimulation. J. Neurophysiol. 29, 333–352 (1966).PubMedGoogle Scholar
  314. Hylkema, B.S.: Fusion frequency with intermittent light under various circumstances. Acta Ophthal. (Kbh.) 20, 159–180 (1942a).Google Scholar
  315. Hylkema, B.S.: Examination of the visual field by determining the fusion frequency. Acta opthal. (Kbh.) 20, 181–193 (1942b).Google Scholar
  316. Hylkema, B.S.: De versmeltingsfrequentie bij intermitteerend licht (Thesis) Univ. of Amsterdam, the Netherlands. Amsterdam, van Gorcum and Comp. 1942 c.Google Scholar
  317. Iked A, M., Boynton, R.M.: Negative flashes, positive flashes and flicker examined by incre¬ment threshold technique. J. opt. Soc. Amer. 55, 560–566 (1965).Google Scholar
  318. Iked A, M., Boynton, R.M., Fujii, T.: Diphasic nature of the visual response as inferred from the summation index of n flashes. J. opt. Soc. Amer. 56, 1129–1132 (1966).Google Scholar
  319. Ireland, F.H.: A comparison of critical flicker frequencies under conditions of monocular and binocular stimulation. J. exp. Psychol. 40, 282–286 (1950).PubMedGoogle Scholar
  320. Ives, H. E.: Critical frequency relations in scotopic vision. J. opt. Soc. Amer. 6, 254–268 (1922a).Google Scholar
  321. Ives, H. E.: A theory of intermittent vision. J. opt. Soc. Amer. 6, 343–361 (1922b).Google Scholar
  322. Jahn, T.L.: Brightness enhancement in flickering light. Psychol. Rev. 51, 76–84 (1944).Google Scholar
  323. Johannesma, P L M.: Diffusion models for the stochastic activity of neurons. In: CAianiello, E.R. (Ed.): Neural Networks, pp. 116–144. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  324. Jones, R.W., Li, C. C., Meyer, A. U., Pinter, R. B.: Pulse modulation in physiological systems, phenomenological aspects. IRE Trans. BME-8, 59–67 (1961).Google Scholar
  325. Jung, R.: Coordination of specific and nonspecific afferent impulses at single neurons of the visual cortex. In: Jasper, H.H., Proctor, L.D., Knighton, R.S., Noshay, W.S., Costello R.T. (Eds.): Reticular Formation of the Brain, pp. 423–434. Boston-Toronto: Little, Brown & Co. 1958.Google Scholar
  326. Jung, R.: Mikrophysiologie des optischen Cortex: Koordination der Neuronenentladungen nach optischen, vestibulären und unspezifischen Afferenzen und ihre Bedeutung für die Sinnes-physiologie. Med. Jap. 5, 693–698 (1959).Google Scholar
  327. Jung, R.: Korrelationen von Neuronentätigkeit und Sehen. IN: Jung, R., Kornhuber, H.H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, S. 410–435. Berlin-Göttingen- Heidelberg: Springer 1961.Google Scholar
  328. Jung, R., Baumgarten, R. Von, Baumgartner, G.: Mikroableitungen von einzelnen Nervenzellen im optischen Cortex der Katze: Die lichtaktivierten B-Neurone. Arch. Psychiat. Nervenkr. 189, 521–539 (1952).PubMedGoogle Scholar
  329. Jung, R., Baumgartner, G.: Hemmungsmechanismen und bremsende Stabilisierung an einzelnen Neuronen des optischen Cortex. Ein Beitrag zur Koordination corticaler Erregungsvor¬gänge. Pflügers Arch. ges. Physiol. 261, 434–456 (1955).Google Scholar
  330. Jung, R., Creutzfeldt, O., Grüsser, O.-J.: Die Mikrophysiologie kortikaler Neurone und ihre Be–deutung für die Sinnes- und Hirnfunktionen. Dtsch. med. Wschr. 82, 1050–1059 (1957).PubMedGoogle Scholar
  331. Jung, R., Creutzfeldt, O., Grüsser, O.-J.: The microphysiology of cortical neurones. Its significance for sensory and cerebral functions. German Med. Monthly 3, 269–276 (1958).Google Scholar
  332. Kaneko, A.: Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J. Physiol. (Lond.) 207, 623–633 (1970).Google Scholar
  333. Kaneko, A.: Physiological studies of single cells and their morphological identification. Vision Res. Suppl. 3, 17–26 (1971).PubMedGoogle Scholar
  334. Kaneko, A., Hashimoto, H.: Recording site of the single cone response determined by an electrode marking technique. Vision Res. 7, 847–851 (1967).PubMedGoogle Scholar
  335. Kaneko, A., Hashimoto, H.: Electrophysiological study of single neurons in the inner nuclear layer of the carp retina. Vision Res. 9, 37–55 (1969).PubMedGoogle Scholar
  336. Kappauf, W. E.: Flicker discrimination in the cat. Psychol. Bull. 33, 597–598 (1936).Google Scholar
  337. Karrer, R.: Visual beat phenomena as an index to the temporal characteristics of perception. J. exp. Psychol. 75, 372–378 (1967).PubMedGoogle Scholar
  338. Karrer, R.: Visual beats: Phenomenology and preliminary data as a function of age. Psychon. Sci. 11, 269–270 (1968).Google Scholar
  339. Karrer, R.: Visual beats: differential brightness of the stimuli and estimation of brightness. Vision Res. 9, 429–433 (1969).PubMedGoogle Scholar
  340. Karrer, R., Clausen, J.: Visual beats: preliminary observations of perceived rate as a function of retinal locus stimulated. Percept. Psychophys. 5, 163–165 (1969).Google Scholar
  341. Kato, H., Yamamoto, M., Nakahama, H.: Intracellular recordings from the lateral geniculate neurons of cats. Jap. J. Physiol. 21, 307–323 (1971).Google Scholar
  342. Keesey, U.T.: Variables determining flicker sensitivity in small fields. J. opt. Soc. Amer. 60, 390–398 (1970).Google Scholar
  343. Keesey, U.T.: Comparison of human visual cortical potentials evoked by stabilized and unstabilized targets. Vision Res. 11, 657–670 (1971).PubMedGoogle Scholar
  344. Kelly, D.H.: Effects of sharp edges in a flickering field. J. opt. Soc. Amer. 49, 730–732 (1959).Google Scholar
  345. Kelly, D.H.: J0-stimulus patterns for visual research. J. opt. Soc. Amer. 50, 1115 (1960).Google Scholar
  346. Kelly, D.H.: Visual signal generator. Rev. Sci. Instr. 32, 50–55 (1961a).Google Scholar
  347. Kelly, D.H.: Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements. J. opt. Soc. Amer. 51, 422–429 (1961b).Google Scholar
  348. Kelly, D.H.: Visual responses to time-dependent stimuli. II. Single channel model of the photopic visual system. J. opt. Soc. Amer. 51, 747–754 (1961c).Google Scholar
  349. Kelly, D.H.: Flicker fusion and harmonic analysis. J. opt. Soc. Amer. 51, 917–919 (1961d).Google Scholar
  350. Kelly, D.H.: Information capacity of a single retinal channel. IRE Trans, on I.T. 221–226 (1962a).Google Scholar
  351. Kelly, D.H.: Visual responses to time-dependent stimuli. III. Individual variations. J. opt. Soc. Amer. 52, 89–95 (1962b).Google Scholar
  352. Kelly, D.H.: Visual responses to time dependent stimuli. IV. Effects of chromatic adaptation. J. opt. Soc. Amer. 52, 940–947 (1962c).Google Scholar
  353. Kelly, D.H.: Sine waves and flicker fusion. Docum. Ophthal. (Den Haag) 18, 16–35 (1964).Google Scholar
  354. Kelly, D.H.: Frequency doubling in visual responses. J. opt. Soc. Amer. 56, 1628–1633 (1966).Google Scholar
  355. Kelly, D.H.: Studies of visual perception. Contract DAAK02-67-C-0146 (1967).Google Scholar
  356. Kelly, D.H.: Flickering patterns and lateral inhibition. J. opt. Soc. Amer. 59, 1361–1370 (1969a).Google Scholar
  357. Kelly, D.H.: Diffusion model of linear flicker responses. J. opt. Soc. Amer. 59, 1665–1670 (1969b).Google Scholar
  358. Kelly, D.H.: Effects of sharp edges on the visibility of sinusoidal gratings. J. opt. Soc. Amer. 60, 98–103 (1970).Google Scholar
  359. Kelly, D.H.: Theory of flicker and transient responses. I. Uniform fields. J. opt. Soc. Amer. 61, 537–546 (1971a).Google Scholar
  360. Kelly, D.H.: Theory of flicker and transient responses. II. Counterphase gratings. J. opt. Soc. Amer. 61, 632–640 (1971b).Google Scholar
  361. Kelly, D.H.: Adaptation effects on spatio-temporal sine-wave thresholds. Vision Res. 12, 89–101 (1972 a).PubMedGoogle Scholar
  362. Kelly, D.H.: Flicker. Handbook of Sensory Physiol. Vol. VII /4, pp. 273–302. Berlin-Heidelberg-New York: Springer 1972b.Google Scholar
  363. Knight, B.W.: Frequency response for sampling integrator and for voltage to frequency con¬verter. In: Systems analysis approach to neurophysiological problems. Conf. Proc. Lab. Neurophysiol. Univ. Minnesota, 61–72 (1969).Google Scholar
  364. Knight, B.W., Toyoda, J.-L, Dodge, Jr., F. A.: A quantitative description of the dynamics of excitation and inhibition in the eye of Limulus. J. gen. Physiol. 56, 421–437 (1970).PubMedGoogle Scholar
  365. Knoll, M., Welpe, E.: Vergleich von Anregungsbedingungen, Formklassen und Bewegungs¬arten optischer und elektrischer Phosphene. Elektromedizin 13, 128–134 (1968).Google Scholar
  366. Koenderick, J. J.: The concept of the transfer function of an integral pulse frequency modula¬tor. In preparation, 1972.Google Scholar
  367. Knoll, M., Welpe, E., Grind, W. A. Van De, Bouman, M.A.: Models of retinal signal processing at high luminan¬ces. Kybernetik 6, 227–237 (1970).Google Scholar
  368. Grind, W. A. Van De, Bouman, M.A.: Foveal information processing at photopic luminances. Kybernetik8, 128–144 (1971).Google Scholar
  369. Grind, W. A. Van De, Bouman, M.A.: Opponent color coding: a mechanistic model and a new metric for color space. Kybernetik 10, 78–98 (1972).PubMedGoogle Scholar
  370. Kohn, H., Salisbury, I.: Electroencephalographic indications of brightness enhancement. Vision Res. 7, 461–468 (1967).PubMedGoogle Scholar
  371. Korn, A., Scheich, H.: Übertragungseigenschaften der Katzenretina. Kybernetik 8, 179–188 (1971).PubMedGoogle Scholar
  372. Kries, J. Von: Über die Wahrnehmung des Flimmerns durch normale und durch total farb¬blinde Personen. Z. Sinnesphysiol. 32, 113–117 (1903).Google Scholar
  373. Kries, J. Von: Die Gesichtsempfindungen. In: NAGEL, W. (Hrsg.): Handbuch der Physiologie des Men¬schen, Vol. III, S. 105–282. Braunschweig: F. Vieweg u. Sohn 1905.Google Scholar
  374. Kuffler, S. W.: Neurons in the retina: organization, inhibition and excitation problems. Cold Spr. Harb. Symp. quant. Biol. 17, 281–292 (1952).Google Scholar
  375. Discharge Patterns And Functional Organization Of Mammalian Retina. J. Neurophysiol. 16, 37–68 (1953).PubMedGoogle Scholar
  376. Kugelmass, S., Landis, C.: Relation of area and luminance to the threshold for critical flicker fusion. Amer. J. Physiol. 68, 1–19 (1955).Google Scholar
  377. Kuhnt, U., Creutzfeldt, O.D.: Decreased post–synaptic inhibition in the visual cortex during flicker stimulation. Electroenceph. clin. Neurophysiol. 30, 79–82 (1971).Google Scholar
  378. Kuiper, J.A., Leutscher-Hazelhoff, J.T.: Linear and nonlinear responses from the compound eye Calliphora erythrocephala. Cold Spr. Harb. Symp. quant. Biol. 30, 418–428 (1965).Google Scholar
  379. Kulikowski, J.J.: Some stimulus parameters affecting spatial and temporal resolution of human vision. Vision Res. 11, 83–93 (1971a).PubMedGoogle Scholar
  380. Kulikowski, J.J.: Effect Of Eye Movements On The Contrast Sensitivity Of Spatio-Temporal Patterns. Vision Res. 11, 261–273 (1971B).PubMedGoogle Scholar
  381. Kulikowski, J.J.: Campbell, F.W., Robson, J.G.: Spatial and temporal frequency characteristics of human photopic vision. Proc. of the 2nd Int. Biophys. Congress Vienna 1966.Google Scholar
  382. Landis, C.: An annotated bibliography of flicker fusion phenomena covering the period 1740–1952. Armed Forces National Research Council, Vision Committee Secretariat, 3433, Mason Hall, University of Michigan, 130 p. Ann. Arbor Michigan (1953).Google Scholar
  383. Landis, C.: Determinants Of The Critical Flicker-Fusion Threshold. Physiol. Rev. 34, 259–286 (1954).PubMedGoogle Scholar
  384. Landis, C., Dillon, D., Leopold, J., Rutschmann, J.: Changes in the level of blood sugar and sensory and motor performance brought about by insulin coma therapy. J. Psychol. 45, 275–285 (1958).Google Scholar
  385. Landis, C., Hamwi, V.: The effect of certain physiological determinants on the flicker fusion threshold. J. appl. Physiol. 6, 566–572 (1954).PubMedGoogle Scholar
  386. Landis, C.: Hamwi, V.: Critical flicker frequency, age and intelligence. Amer. J. Psychol. 09, 459–461 (1956).Google Scholar
  387. Landis, C., Zubin, J.: The effect of thonzylamine hydrochloride and phénobarbital on certain psychological functions. J. Lab. clin. Med. 38, 873–880 (1951).PubMedGoogle Scholar
  388. Lange, H. De: Experiments on flicker and some calculations on an electrical analogue of the foveal systems. Physica 18, 935–950 (1952).Google Scholar
  389. Lange, H. De: Een Onderzoek Van Het Flikkerverschijnsel En Een Mogelijke Verklaring Van Een Naar Voren Gekomen Resonantie-Effekt T. Ned. Radio Gen. 18, 1–31 (1953).Google Scholar
  390. Lange, H. De: Relationship Between Cff And A Set Of Low–Frequency Characteristics Of The Eye. J. Opt. Soc. Amer. 44, 380–389 (1954).Google Scholar
  391. Lange, H. De: Attenuation Characteristics And Phase–Shift Characteristics Of The Human Fovea-Cortex Systems In Relation To Flicker-Fusion Phenomena. Doctoral Dissertation, Techn. Univ. Delft. The Netherlands (1957).Google Scholar
  392. Lange, H. De: Research Into The Dynamic Nature Of The Human Fovea-Cortex Systems With Intermittent And Modulated Light. I. Attenuation Characteristics With White And Colored Light. J. Opt. Soc. Amer. 48, 777–784 (1958A).Google Scholar
  393. Lange, H. De: Research Into The Dynamic Nature Of The Human Fovea-Cortex Systems With Intermittent And Modulated Light. Ii. Phase Shift In Brightness And Delay In Color Perception. J. Opt. Soc. Amer. 48, 784–789 (1958B).Google Scholar
  394. Lange, H. De: Eye’s Response At Flicker Fusion To Square–Wave Modulation Of A Test Field Surrounded By A Large Steady Field Of Equal Mean Luminance. J. Opt. Soc. Amer. 51, 415–421 (1961).Google Scholar
  395. Lasareff, P.: Theorie der Lichtreizung der Netzhaut beim Dunkelsehen. Pflügers Arch. ges. Physiol. 154, 459–469 (1913).Google Scholar
  396. Lasareff, P.: Zur Theorie Der Adaptation Der Netzhaut Beim Dâmmerungssehen. Pflügers Arch. Ges. Physiol. 155, 310–317 (1914).Google Scholar
  397. Lasareff, P.: Untersuchungen Iiber Die Ionentheorie Der Reizung. Iv. Die Theorie Der Erscheinungen Des Flimmerns Beim Dunkelsehen. Pflügers Arch. Ges. Physiol. 196, 177–184 (1922).Google Scholar
  398. Lejeune, A.: L’optique de Claude Ptolémée dans la version latinée d’après l’arabe de l’émir Eugène de Sicile. Publ. Univ. de Louvain, Louvain 1956, 358 p.Google Scholar
  399. Lennox-Buchthal, M. A.: Single unit studies and the mechanism of flicker fusion. Docum. ophthal. (Den Haag) 18, 245–258 (1964).Google Scholar
  400. Levick, W.R., Oyster, C.W., Davis, D.L.: Evidence that Mcllwain’s periphery effect is not a stray light artifact. J. Neurophysiol. 28, 555–559 (1965).PubMedGoogle Scholar
  401. Levinson, J.: Fusion of complex flicker II. Science 131, 1438–1440 (1960).PubMedGoogle Scholar
  402. Levinson, J.: Nonlinear And Spatial Effects In The Perception Of Flicker. Docum. Ophthal. (Den Haag) 18, 36–55 (1964).Google Scholar
  403. Levinson, J.: One-Stage Model For Visual Temporal Integration. J. Opt. Soc. Amer. 56, 95–97 (1966).Google Scholar
  404. Levinson, J.: Flicker Fusion Phenomena. Science 160, 21–28 (1968).PubMedGoogle Scholar
  405. Levinson, J., Harmon, L. D.: Studies with artificial neurons. III. Mechanism of Flicker-Fusion. Kybernetik 1, 107–117 (1961).PubMedGoogle Scholar
  406. Lichtenstein, M., White, C.T., Siegfried, J. B.: Apparent rate of flicker at various retinal loci and number of perceived flashes per unit time: a paradox. Percept. Motor Skills 17, 523–536 (1963).PubMedGoogle Scholar
  407. Lipetz, L.E.: The relation of physiological and psychological aspects of sensory intensity. This handbook Vol. 1, 191–225 (1971).Google Scholar
  408. Lloyd, V. V.: A comparison of critical fusion frequencies for different areas in the fovea and periphery. Amer. J. Psychol. 65, 346–357 (1951).Google Scholar
  409. Lloyd, V. V., Landis, C.: Role of the light-dark ratio as a determinant of the Flicker-Fusion threshold. J. opt. Soc. 50, 332–336 (1960).Google Scholar
  410. Lohmann, H.: Über die Sichtbarkeitsgrenze und die optische Unterscheidbarkeit sinusförmiger Wechselströme. Z. Sinnesphysiol. 69, 27–40 (1940).Google Scholar
  411. Lopez Da Silva, F. H.: Dynamic characteristics of visual evoked potentials. Inst. Med. Physics. Utrecht, The Netherlands, Report (1970).Google Scholar
  412. Lunkenheimer, H.-U.: Untersuchungen über den Einfluß der Umfeldbelichtung auf die Ant¬wort retinaler Neurone der Katze auf sinusförmige Belichtung der RF-Peripherie (unpubl. manuscript, Berlin 1968 ).Google Scholar
  413. Lunkenheimer, H.-U.: Grüsser, O.-J.: Nicht-lineare Übertragungseigenschaften retinaler Neurone der Katze. Pflügers Arch. ges. Physiol. 291, 88 (1966).Google Scholar
  414. Lunkenheimer, H.-U., Rackensperger, W., Schwanz, E., Grüsser, O.-J.: Reaktionen retinaler Neurone der Katze auf Sinuslicht: der Einfluß von Modulationsgrad, Beleuchtungsstärke und Reizfeld¬größe. Pflügers Arch. ges. Physiol. 289, 1282 (1966).Google Scholar
  415. Luria, S.M., Sperling, H.G.: Phase relations in flicker fusion. J. opt. Soc. Amer. 52, 1051–1057 (1962).Google Scholar
  416. Lythgoe, R. J., Tansley, K.: The relation of the critical frequency of flicker to the adaptation of the eye. Proc. roy. Soc. London 105 B, 60–92 (1929).Google Scholar
  417. Macnichol, E. J., Svaetichin, G.: Electric responses from the isolated retinas of fishes. Amer. J. Ophthal. 46, 26–46 (1958).PubMedGoogle Scholar
  418. Maffei, L.: Inhibitory and facilitatory spatial interactions in retinal receptive fields. Vision Res. 8, 1187–1194 (1968).PubMedGoogle Scholar
  419. Maffei, L.: Spatial And Temporal Averages In Retinal Channels. J. Neurophysiol. 31, 283–287 (1968).PubMedGoogle Scholar
  420. Maffei, L.: Cervetto, L.: Dynamical interactions in retinal receptive fields. Vision Res. 8, 1299–1303 (1968).PubMedGoogle Scholar
  421. Maffei, L., Cervetto, L., Fiorentini, A.: Transfer characteristics of excitation and inhibition in cat retinal ganglion cells. J. Neurophysiol. 33, 276–284 (1970).PubMedGoogle Scholar
  422. Maffei, L., Cervetto, L., Rizzolatti, G.: Transfer properties of the lateral geniculate body. J. Neurophysiol. 30, 333–340 (1967).PubMedGoogle Scholar
  423. Maffei, L.: Fiorentini, A.: Retinogeniculate convergence and analysis of contrast. J. Neurophysiol. 35, 65–72 (1972).PubMedGoogle Scholar
  424. Maffei, L. Moruzzi, G., Rizzolatti, G.: Geniculate unit responses to sine-wave photic stimulation during wakefulness and sleep. Science 149, 563–564 (1965 a).PubMedGoogle Scholar
  425. Maffei, L., Moruzzi, G., Rizzolatti, G.: Influence of sleep and wakefulness on the response of lateral geniculate units to sine wave photic stimulation. Arch. ital. Biol. 103, 596–608 (1965 b).PubMedGoogle Scholar
  426. Maffei, L.: Poppele, R.E.: Transient and steady state electroretinal responses. Vision Res. 8, 229–246 (1968).PubMedGoogle Scholar
  427. Maffei, L., Rizzolatti, G.: Transfer properties of the lateral geniculate body. J. Neurophysiol. 30, 333–340 (1967).PubMedGoogle Scholar
  428. Marbe, K.: Tatsachen und Theorie des Talbot’schen Gesetzes. Pflügers Arch. ges. Physiol. 97, 335–393 (1903).Google Scholar
  429. Marchiafava, P. L.: Binocular reciprocal interaction upon optic fiber endings in the lateral geniculate nucleus of the cat. Brain Res. 2, 188–192 (1966).PubMedGoogle Scholar
  430. Marimont, R. B.: Numerical studies of the Fuortes–Hodgkin Limulus model. J. Physiol. (Lond.) 179, 489–497 (1965).Google Scholar
  431. Marks, L.E.: Apparent depth of modulation as a function of frequency and amplitude of temporal modulations of luminance. J. opt. Soc. Amer. 60, 970–977 (1970).Google Scholar
  432. Matin, L.: Fourier treatment of some experiments in visual flicker. Science 136, 983–9Google Scholar
  433. Matin, L.: Critical duration, the differential luminance threshold, critical flicker frequency and visual adaptation: A theoretical treatment. J. opt. Soc. Amer. 58, 404–415 (1968).Google Scholar
  434. Mcdonald, H.S.: J. opt. Soc. Amer. 50, 1128 (1960).Google Scholar
  435. Mcilwain, J.T.: Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity. J. Neurophysiol. 27, 1154–1173 (1964).PubMedGoogle Scholar
  436. Mcilwain, J.T.: Some Evidence Concerning The Physiological Basis Of The Periphery Effect In The Cat’s Retina. Exp. Brain Res. 1, 265–271 (1966).PubMedGoogle Scholar
  437. Mcilwain, J.T.: Creutzfeldt, O.D.: Microelectrode study of synaptic excitation and inhibition in the lateral geniculate nucleus of the cat. J. Neurophysiol. 30, 1–21 (1967).Google Scholar
  438. Meneghini, K.A., Hamasaki, D.: The electroretinogram of the Iguana and Tokay Gecko. Vision Res. 7, 243–251 (1967).PubMedGoogle Scholar
  439. Meyer, J. J.: Examination of subjects with cranio cerebral trauma using a visual perception test: the de Lange curve. Schweiz. Arch. Neurol. Neurochir. Psychiat. 108, 213–221 (1971).Google Scholar
  440. Meyer-Schwickerath, G., Magun, R.: Über selektive elektrische Erregbarkeit verschiedener Netzhautanteile. Arch. Ophthal. 151, 693–700 (1951).Google Scholar
  441. Miller, R.F., Dowling, J.E.: Intracellular responses of the Müller (Glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J. Neurophysiol. 33, 323–341 (1970).PubMedGoogle Scholar
  442. Minkowski, M.: Experimentelle Untersuchungen über die Beziehungen der Großhirnrinde und der Netzhaut zu den primären optischen Zentren, besonders zum Corpus geniculatum externum. Arb. Hirnanat. Inst. Zürich 7, 255–362 (1913).Google Scholar
  443. Minkowski, M.: Über Den Verlauf, Die Endigung Und Die Zentrale Repräsentation Von Gekreuzten Und Ungekreuzten Sehnervenfasern Bei Einigen Säugetieren Und Beim Menschen. Schweiz. Arch. Neurol. Psychiat. 6, 201–252 (1920).Google Scholar
  444. Monje, M.: Über die regionale Verteilung der Empfindlichkeit in der Netzhaut bei Unter¬suchung mit intermittierenden Reizen. Pflügers Arch. ges. Physiol. 255, 499–507 (1952).Google Scholar
  445. Motokawa, K.: Visual function and the electrical excitability of the retina. Tohoku J. exp. Med. 51, 145–153 (1949).Google Scholar
  446. Motokawa, K.: Physiology Of Color And Pattern Vision, 283 P. Tokyo: Igagu Shoin, Ltd. 1970.Google Scholar
  447. Motokawa, K., Ebe, M.: Selective stimulation of color receptors with alternating currents. Science 116, 92–94 (1952).Google Scholar
  448. Motokawa, K.: Retinal Colour Processes Caused By Intermittent White Light. Nature (Lond.) 170, 79–80 (1952).Google Scholar
  449. Motokawa, K., Iwama, K.: Resonance in electrical stimulation of the eye. Tohoku J. exp. Med. 53, 201–206 (1950).Google Scholar
  450. Motokawa, K., Oikawa, T., Tasaki, K.: Receptor potential of vertebrate retina. J. Neurophysiol. 20, 186–199 (1957).PubMedGoogle Scholar
  451. Motokawa, K., Suzuki, E., Ooba, Y.: Retinal responses to intermittent light of subfusional frequencies. Tohoku J. exp. Med. 64, 161–168 (1956).Google Scholar
  452. Mowbray, G.H., Gebhard, J. W.: Differential sensitivity of the eye to intermittent white light. Science 121, 173–175 (1955).PubMedGoogle Scholar
  453. Mowbray, G.H., Gebhard, J. W.: Differential sensitivity of peripheral retina to intermittent white light. Science 132, 672–674 (1960).PubMedGoogle Scholar
  454. Mucher, H., Wendt, H. W.: Gruppen versuch zur Bestimmung der kritischen Verschmelzungs-frequenz beim binokularen Sehen: Änderungen unter Koffein und nach normaler Tages¬arbeit. Arch. exp. Path. Pharm. 214, 29–37 (1951).Google Scholar
  455. Mundie, J.R.: Neural calculus. In: Proctor, L.D. (Ed.): Biocybernetics of the nervous system, pp. 325–356. London: J. & A. Churchill Ltd. 1969.Google Scholar
  456. Nachmias, J.: Brightness and visual acuity with intermittent illumination. J. opt. Soc. Amer. 48, 726–730 (1958).Google Scholar
  457. Nachmias, J.: Brightness And Acuity With Intermittent Illumination. J. Opt. Soc. Amer. 51, 805 (1961).Google Scholar
  458. Naka, K.I., Rushton, W. A. H.: S-potentials from luminosity units in the retina of fish (cyprinidae). J. Physiol. (Lond.) 185, 587–599 (1966).Google Scholar
  459. Naquet, R., Killam, K.F., Rhodes, J. M.: Flicker stimulation with chimpanzees. Life Sei. 6, 1575–1578 (1967).Google Scholar
  460. Nelson, Th.M., Bartley, S.H., Harper, E.S.: OFF for short trains of photic stimulation having various temporal distributions and separations. J. Psychol. 58, 333–341 (1964).Google Scholar
  461. Nes, F.L.Van: Enhanced visibility by regular motion of retinal images. Amer. J. Psychol. 81, 367–374 (1968a).PubMedGoogle Scholar
  462. Nes, F.L.Van: Experimental Studies In Spatio-Temporal Contrast Transfer By The Human Eye. Doct. Thesis Univ. Utrecht, The Netherlands, 123 P. (1968B).Google Scholar
  463. Nes, F.L.Van., Koekderink, J. J., Nas, H., Bouman, M.A.: Spatio-Temporal modulation transfer in the human eye. J. opt. Soc. Amer. 57, 1082–1088 (1967).Google Scholar
  464. Nilssonjt. H., Nelson, T.M.: Hue shifts produced by intermittent stimulation. Vision Res. 11, 697–712 (1971).Google Scholar
  465. Ogawa, T., Bishop, P.O., Levick, W.R.: Temporal characteristics of responses to photic stimulation by single ganglion cells in the unopened eye of the cat. J. Neurophysiol. 29, 1–30 (1966).PubMedGoogle Scholar
  466. O’leary, I.: A structural analysis of the lateral geniculate nucleus of the cat. J. comp. Neurol. 73, 405–430 (1940).Google Scholar
  467. Pantle, A.: Flicker adaptation. I. Effect on visual sensitivity to temporal fluctuations of light intensity. Vision Res. 11, 943–952 (1971).PubMedGoogle Scholar
  468. Pantle, A.: Flicker Adaptation. Ii. Effect On The Apparent Brightness Of Intermittent Lights. Vision Res. 12, 705–715 (1972).PubMedGoogle Scholar
  469. Pautler, E.L.: Responses of the isolated mammalian retina to intermittent and steady photic stimulation. Vision Res. 4, 493–498 (1964).PubMedGoogle Scholar
  470. Pecci-Saavedra, J., Vaccarezza, O.L., Reader, T. A., Pasqualini, E.: Ultrastructural and electrophysiological aspects of denervated synapses in the lateral geniculate nucleus. Vision Res. Suppl. 3, 229–238 (1971).PubMedGoogle Scholar
  471. Pflüger, E. F. W.: Untersuchungen aus dem physiologischen Laboratorium zu Bonn, S. 170–171. Berlin: Hirschwald 1865.Google Scholar
  472. Pieron, H.: L’influence de l’intensité lumineuse sur la persistance retinienne apparente. Arch, néerl. Physiol. 7, 199–212 (1922).Google Scholar
  473. Pieron, H.: Influence Du Rapport Des Phases Sur La Durée D’interruption D’une Stimulation Lumineuse Périodique À La Limite Du Papillotement. C.R.Soc. Biol. 99, 398–400 (1928).Google Scholar
  474. Pieron, H.: L’influence De La Surface Rétinienne En Jeu Dans Une Excitation Lumineuse Intermittente Sur La Valeur Des Fréquences Critiques De Papillotement. C.R. Soc. Biol. 118, 25–28 (1935).Google Scholar
  475. Pieron, H.: La Vision En Lumière Intermittente. Monogr. Franç. Psychol. 8, 91 P. (1961).Google Scholar
  476. Pieron, H.: Neurophysiological Mechanisms Of Critical Flicker Frequency And Harmonic Phenomena. J. Opt. Soc. Amer. 52, 475 (1962).Google Scholar
  477. Pinter, R.B.: Sinusoidal and delta function responses of visual cells of the Limulus eye. J. gen. Physiol. 49, 565–593 (1966).PubMedGoogle Scholar
  478. Plateau, J.: Über einige Eigenschaften der vom Licht auf das Gesichtsorgan hervorgebrach¬ten Eindrücke. Poggendorf Ann. Physik. Chem. 20, 304–332 (1830).Google Scholar
  479. Plateau, J.: Essai D’une Théorie Générale Comprenant L’ensemble Des Apparences Visuelles Etc. Mém. De L’acad. Des Sei. Et Bell.-Let., Bruxelles 8, 1–68 (1834).Google Scholar
  480. Plateau, J.: Betrachtungen Über Ein Von Hrn. Talbot Vorgeschlagenes Photometrisches Princip. Pog–Gendorf Ann. Physik. Chemie 35, 457–468 (1835).Google Scholar
  481. Pokorny, J., Smith, V.C.: Luminosity and CFF in deuteranopes and protanopes. J. opt. Soc. Amer. 62, 111–117 (1972).Google Scholar
  482. Polyak, S. L.: The retina. Chicago: Chicago Univ. Press 1941.Google Scholar
  483. Porter, T.: Contribution to the study of flicker. I. Proc. roy. Soc. London 70 A, 313–329 (1902).Google Scholar
  484. Porter, T.: Contribution To The Study Of Flicker. Ii. Proc. Roy. Soc. London 86 A, 495–513 (1912).Google Scholar
  485. Prevost, B.: Memories de la Société de Physique et d’Histoire naturelle de Geneva 3, 121 (1826).Google Scholar
  486. Purkinje, J.E.: Beiträge zur Kenntnis des Sehens in subjektiver Hinsicht. Prag 1819.Google Scholar
  487. Purkinje, J.E.: Beobachtungen Und Versuche Zur Physiologie Der Sinne. Vol. 1, Prag 1823.Google Scholar
  488. Rabelo, C., Grüsser, O.-J.: Die Abhängigkeit der subjektiven Helligkeit intermittierender Lichtreize von der Flimmerfrequenz (Brücke–Effekt, ‘brightness-enhancement’): Unter–suchungen bei verschiedener Leuchtdichte und Feldgröße. Psychol. Forsch. 26, 299–312 (1961).PubMedGoogle Scholar
  489. Rackensperger, W.: Two types of LGN-cells in the cat. Their response to stimulation of the receptive field by sinusoidal stimuli of different frequency and area. Unpubl. manuscript (1970).Google Scholar
  490. Rackensperger, W., Grüsser, O.-J.: Sinuslichtreizung der rezeptiven Felder einzelner Retinaneurone. Experientia (Basel) 22, 192 (1966).Google Scholar
  491. Rackensperger, W., Reiter, H., Wuttke, W., Snigula, F.: Die Reaktion einzelner Retinaneurone auf sinus-förmige Leuchtdichteänderung. Pflügers Arch. ges. Physiol. 288, R 50 (1965).Google Scholar
  492. Randolph, D. I.: Brightness enhancement as a function of frequency, intensity and light-dark ratio. J. opt. Soc. Amer. 54, 577 (1964).Google Scholar
  493. Ratliff, F., Knight, B.W., Graham, N.: On tuning and amplification by lateral inhibition. Physiology 62, 733–740 (1969).Google Scholar
  494. Ratliff, F., Knight, B.W., Toyoda, J., Hartline, H.K.: Enhancement of flicker by lateral inhibition. Science 158, 292–293 (1967).Google Scholar
  495. Regan, D.: Some characteristics of average steady–state and transient responses evoked by modulated light. Electroenceph. clin. Neurophysiol. 20, 238–248 (1966).PubMedGoogle Scholar
  496. Regan, D., Tyler, C.W.: Wavelength modulated light generator. Vision Res. 11, 43–56 (1971).PubMedGoogle Scholar
  497. Regan, S.: Some dynamic features of colour vision. Vision Res. 11, 1307–1324 (1971).PubMedGoogle Scholar
  498. Reichardt, W.: Die Lichtreaktion von Phycomyces. Kybernetik 1, 6–21 (1961).PubMedGoogle Scholar
  499. Reidemeister, C., Grüsser, O.-J.: Flimmerlichtuntersuchungen an der Katzenretina. I. On-Neurone und on-off-Neurone. Z. Biol. 11, 241–253 (1959).Google Scholar
  500. Remole, A.: Luminance thresholds for subjective patterns in a flickering field: effect of wavelength. J. opt. Soc. Amer. 61, 9, 1164–1168 (1971).Google Scholar
  501. Reuter, J. H.: A comparison of flash evoked ERG’s and ERG’s evoked with sinusoidally modulated light stimuli in a number of rodents. Pflügers Arch. ges. Physiol. 381, 95–102 (1972).Google Scholar
  502. Rey, P., Rey, J.-P.: Effect of an intermittent light stimulation on the critical fusion frequency. Ergonomics 8, 173–180 (1965).Google Scholar
  503. Ripps, H., Kaplan, I. T., Siegel, I. M.: Effect of contrast on CFF and apparent brightness. J. opt. Soc. Amer. 51, 870–873 (1961).Google Scholar
  504. Robinson, D.N.: Critical Flicker-Fusion of solid and annular stimuli. Science 167, 207–208 (1970).PubMedGoogle Scholar
  505. Robson, J.G.: Spatial and temporal contrast–sensitivity functions of the visual system. J. opt. Soc. Amer. 56, 1141–1142 (1966).Google Scholar
  506. Rodieck, R.W.: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res. 5, 583–601 (1965).PubMedGoogle Scholar
  507. Rodieck, R.W., Stone, J.: Analysis of receptive fields of cat retinal ganglion cells. J. Neurophysiol. 28, 833–849 (1965).Google Scholar
  508. Roehrig, W.C.: The influence of area on the critical Flicker-Fusion threshold. J. Psychol. 47, 317–330 (1959a).Google Scholar
  509. Roehrig, W.C.: The Influence Of The Portion Of The Retina Stimulated On The Flicker-Fusion Threshold. J. Psychol. 48, 57–63 (1959B).Google Scholar
  510. Ross, R. T.: A comparison of the regional gradients of fusion frequency and visual acuity. Psychol. Monogr. 47, 306–310 (1936).Google Scholar
  511. Roufs, J. A. J.: Dynamic properties of vision. I. Experimental relationship between flicker and flash threshold. Vision Res. 12, 261–278 (1972).PubMedGoogle Scholar
  512. Roufs, J. A. J.: Dynamic Properties Of Vision. Ii. Theoretical Relationship Between Flicker And Flash Thresh¬Olds. Vision Res. 12, 279–292 (1972).PubMedGoogle Scholar
  513. Rubinstein, B., Therman, P. O.: The influence of hyperventilation on the fusion frequency of intermittent visual stimuli. Scand. Arch. Physiol. 72, 26–34 (1935).Google Scholar
  514. Rushton, W. A. H.: The structure responsible for action potential spikes in the cat’s Retina- Nature (Lond.) 164, 743–744 (1949).Google Scholar
  515. Rushton, W. A. H.: The Ferrier Lecture 1962. Visual Adaptation. Proc. Roy. Soc. (Lond.) B 162, 20–46 (1965).Google Scholar
  516. Saito, H.-A., Shimhara, T., Fukada, Y.: Four types of responses to light and dark spot stimuli in the cat optic nerve. Tohoku J. exp. Med. 102, 127–133 (1970).Google Scholar
  517. Saito, H.-A., Shimhara, T., Fukada, Y.: Phasic and tonic responses in the cat optic nerve fibers-stimulus-response relations. Tohoku J. exp. Med. 104, 313–323 (1971).Google Scholar
  518. Sakmann, B., Creutzfeldt, O.-D.: Scotopic and mesopic light adaptation in the cat’s retina. Pflügers Arch. ges. Physiol. 313, 168–185 (1969).Google Scholar
  519. Sanderson, K.J., Bishop, P.O., Darian-Smith, I.: The properties of the binocular receptive fields of lateral geniculate neurons. Exp. Brain Res. 13, 178–207 (1971).PubMedGoogle Scholar
  520. Sanderson, K.J., Bishop, P.O., Darian-Smith, I.: Darian-Smith, I., Bishop, P.O.: Binocular corresponding receptive fields of single units in the cat dorsal lateral geniculate nucleus. Vision Res. 9, 1297–1303 (1969).PubMedGoogle Scholar
  521. Schade, Sr., O. H.: Optical and photoelectric analog of the eye. J. opt. Soc. Amer. 46, 721–739 (1956).Google Scholar
  522. Schaternikoff, M.: Über den Einfluß der Adaptation auf die Erscheinung des Flimmerns. Z. Sinnesphysiol. 29, 241–263 (1902).Google Scholar
  523. Scheich, H., Korn, A.: Timing properties and temporal summation in the retina. Pflügers Arch. ges. Physiol. 327, 16–36 (1971).Google Scholar
  524. Schellart, N. A.M., Spekreijse, H.: Dynamic characteristics of retinal ganglion cell responses in goldfish. J. gen. Physiol. 59, 1–21 (1972).PubMedGoogle Scholar
  525. Schmidt, R., Creutzfeldt, O. D.: Veränderungen von Spontanaktivität und Reizantwort retinaler und geniculärer Neurone der Katze bei fraktionierter Injektion von Pentobarbital- Na (Nembutal). Pflügers Arch. ges. Physiol. 300, 129–147 (1968).Google Scholar
  526. Schmidtke, H.: Über Messung der psychischen Ermüdung mit Hilfe des Flimmertests. Psychol. Forsch. 23, 409–463 (1951).Google Scholar
  527. Schneider, C. W.: Behavioral determinations of critical flicker frequency in the rabbit. Vision Res. 8, 1227–1234 (1968a).PubMedGoogle Scholar
  528. Schneider, C. W.: Electrophysiological Analysis Of The Mechanisms Underlying Critical Flicker Frequency. Vision Res. 8, 1235–1244 (1968B).PubMedGoogle Scholar
  529. Schober, H., Hilz, R.: Contrast sensitivity of the human eye for square wave gratings. J. opt. Soc. Amer. 55, 1086 (1965).Google Scholar
  530. Schwartz, A. S., Lindsley, D.B.: Critical flicker frequency and photic following in the cat. Bull. Inst. Estudios Med. Biol. 22, 249–262 (1964).Google Scholar
  531. Schwarz, F.: Über die Wirkung des Wechselstromes auf das Sehorgan. Z. Sinnesphysiol. 67, 227–244 (1936–1938).Google Scholar
  532. Schwarz, F.: Über Die Reizung Des Sehorgans Durch Niederfrequente Elektrische Schwingungen. Z. Sinnesphysiol. 69, 92–118 (1940).Google Scholar
  533. Schwarz, F.: Quantitative Untersuchungen Über Die Optische Wirkung Sinusförmiger Wechselströme. Z. Sinnesphysiol. 69, 1–16 (1940).Google Scholar
  534. Schwarz, F.: Über Die Reizung Des Sehorgans Durch Doppelphasige Und Gleichgerichtete Elektrische Schwingungen. Z. Sinnesphysiol. 69, 158–172 (1941).Google Scholar
  535. Schwarz, F.: Über Die Elektrische Reizbarkeit Des Auges Bei Hell– Und Dunkeladaptation. Pflügers Arch, Ges. Physiol. 248, 76–86 (1944).Google Scholar
  536. Schwarz, F., Wintzeb, H.: Über die Unterscheidung und Beurteilung von Frequenzen rhythmischer Lichtblitze. Pflügers Arch. ges. Physiol. 260, 74–80 (1954).Google Scholar
  537. Schwarz, F., Wintzeb, H., Langer, H.: Weitere Untersuchungen über die Unterscheidung und Beurteilung von Frequenzen rhythmischer Lichtblitze. Pflügers Arch. ges. Physiol. 261, 295–301 (1955).Google Scholar
  538. Seitz, C.P.: Effects of anoxia on visual function; a study of critical frequency. Arch. Psychol. 257, 1–38 (1940).Google Scholar
  539. Sen, T.K.: Visual responses to two alternating trains of high–frequency intermittent stimuli. J. opt. Soc. Amer. 54, 386–393 (1964).Google Scholar
  540. Senders, V. L.: On reading printed matter with interrupted light. J. exp. Psychol. 47, 135–136 (1954).PubMedGoogle Scholar
  541. Sherrington, C. S.: On binocular flicker and the correlation of activity of corresponding retinal points. Brit. J. Psychol. 1, 26–60 (1904).Google Scholar
  542. Sherrington, C. S.: The Integrative Action Of The Nervous System. New Haven: Yale University Press (1906).Google Scholar
  543. Shickman, G.M.: Visual masking by low-frequency sinusoidally modulated light. J. opt. Soc- Amer. 60, 107–117 (1970).Google Scholar
  544. Shumake, S.A., Smith, J. C., Taylor, H.L.: Critical fusion frequency in Rhesus monkeys. Psychol. Ree. 18, 537–542 (1968).Google Scholar
  545. Simonson, E.: Flicker between different brightness levels as determinant of the flicker fusion. J. opt. Soc. Amer. 50, 328–331 (1960).Google Scholar
  546. Simonson, E., Brozek, J.: Flicker fusion frequency, background and applications. Physiol. Rev. 32, 349–378 (1952).PubMedGoogle Scholar
  547. Simonson, E., Brozek, J., Enzer, N.: Effect of pervitine (desoxyephedrine) on fatigue of the central nervous system. J. Industr. Hyg. 24, 205–209 (1942).Google Scholar
  548. Simonson, E., Brozek, J., Enzer, N., Blankstein, S. S.: The influence of age on the fusion frequency of flicker. J. exp. Psychol. 29, 252–255 (1941).Google Scholar
  549. Simonson, E., Brozek, J., Singer, W.: Inhibitory binocular interaction in the lateral geniculate body of the cat. Brain Res. 18, 165–170 (1970).Google Scholar
  550. Simonson, E., Creutzfeldt, O.D.: Reciprocal lateral inhibition of on– and off–center neurones in the lateral geniculate body of the cat. Exp. Brain Res. 10, 311–330 (1970).Google Scholar
  551. Simonson, E., Pöppel, E., Creutzfeldt, O.D.: Inhibitory interaction in the cat’s lateral geniculate nucleus. Exp. Brain Res. 14, 210–226 (1972).Google Scholar
  552. Simonson, E., Wässle, H.: The lateral geniculate body, a multichannel filter for spatial and temporal stimulus parameters. Proc. I. Europ. Congr. Biophys. Vienne 353–357 (1971).Google Scholar
  553. Smith, R.A., Jr.: Adaptation of visual contrast sensitivity to specific temporal frequencies. Vision Res. 10, 275–279 (1970).PubMedGoogle Scholar
  554. Smith, R.A., Jr.: Studies Of Temporal Frequency Adaptation In Visual Contrast Sensitivity. J. Physiol. (Lond.) 216, 531–552 (1971).Google Scholar
  555. Smythies, J.R.: The stroboscopic patterns. I. The dark phase. Brit. J. Psychol. 50, 106–116 (1959a).Google Scholar
  556. Smythies, J.R.: The Stroboscopic Patterns. Ii. The Phenomenology Of The Bright Phase And After-Images. Brit. J. Psychol. 50, 305–324 (1959B).PubMedGoogle Scholar
  557. Spekreijse, H.: Analysis of EEG responses in man evoked by sine wave modulated light. Doctoral dissertation, Univ. of Amsterdam. The Netherlands (1966).Google Scholar
  558. Spekreijse, H.: Rectification In The Goldfish Retina: analysis by sinusoidal and auxiliary stimulation. Vision Res. 9, 1461–1472 (1969).PubMedGoogle Scholar
  559. Spekreijse, H., Norren, D. Van, Berg, T. J.T.P. Van den: Flicker responses in monkey lateral geniculate nucleus and human perception of flicker. Proc. nat. Acad. Sci. 68, 2802–2805 (1971).Google Scholar
  560. Spekreijse, H., Norren, D.Van, Berg, T. J.T.P.Vanden, Norton, A. L.: The dynamic characteristics of color coded S-potentials. J. Gen. Physiol. 56, 1–15 (1970).Google Scholar
  561. Sperling, G.: Linear theory and the psychophysics of flicker. Docum. Ophthal. (Den Haag) 18, 3–15 (1964).Google Scholar
  562. Sperling, G.: Temporal And Spatial Visual Masking. I. Masking By Impulse Flashes. J. Opt. Soc. Amer. 55, 541–559 (1965).Google Scholar
  563. Sperling, G.: Model Of Visual Adaptation And Contrast Detection. Percept, And Psychophys. 8, 143–157 (1970).Google Scholar
  564. Sperling, G., Sondhi, M.M.: Model for visual luminance discrimination and flicker detection. J. opt. Soc. 58, 1133–1145 (1968).Google Scholar
  565. Spigel, I.M.: Size-constancy and critical flicker-sfrequency. Amer. J. Psychol. 77, 469–471 (1964).PubMedGoogle Scholar
  566. Spinelli, D. N.: Visual receptive fields in the cat’s retina: complications. Science 152, 1768–1769 (1966).PubMedGoogle Scholar
  567. Spinelli, D. N.: Receptive Field Organization Of Ganglion Cells In The Cat’s Retina. Exp. Neurol. 19, 291–315 (1967).PubMedGoogle Scholar
  568. Sprague, J.M., Berlucchi, G., Rizzolatti, G.: this Handbook VIII/3B, 27–101 (1973).Google Scholar
  569. Stange, D. : Über den Einfluß von Äthylalkohol auf die Funktion einzelner Netzhautneurone der Katze. In: Breitenecker, L. (Ed.): Beiträge zur gerichtlichen Medizin, S. 327–331. Wien: F. Deuticke 1970.Google Scholar
  570. Stein, R.B., French, A.S.: Models for the transmission of information by nerve cells. In: Anderson, P., Jansen, J.K.S. (Eds.): Excitatory Synaptic Mechanisms, pp. 247–257 Oslo: Oslo University Press 1970.Google Scholar
  571. Steinberg, R. H.: Rod and cone contributions to S-potentials from the cat retina. Vision Res. 9, 1319–1329 (1969).PubMedGoogle Scholar
  572. Sprague, J.M., Berlucchi, G., Rizzolatti, G.: The Rod After–Effect In S-potentials From The Cat Retina. Vision Res. 9, 1345–1355 (1969).Google Scholar
  573. Sprague, J.M., Berlucchi, G., Rizzolatti, G.: Incremental Responses To Light Recorded From Pigment Epithelial Cells And Horizontal Cells Of The Cat Retina. J. Physiol. (Lond.) 217, 93–110 (1971).Google Scholar
  574. Steinberg, R.H., Schmidt, R.: Identification of horizontal cells as $–potentials generators in the cat retina by intracellular dye injection. Vision Res. 10, 817–820 (1970).PubMedGoogle Scholar
  575. Steinberg, R.H., Schmidt, R.: Schmidt, R.: The evidence that horizontal cells generate S-potentials in the cat retina. Vision Res. 11, 1029–1031 (1971).PubMedGoogle Scholar
  576. Stone, J.: Structure of the cat’s retina after occlusion of the retinal circulation. Vision Res. 9, 351–356 (1969).PubMedGoogle Scholar
  577. Stone, J.: Fabian, M.: Specialized receptive fields of the cat’s retina. Science 152, 1277–1279 (1966).PubMedGoogle Scholar
  578. Stone, J.: Fabian, M.: Summing properties of the cat’s retinal ganglion cell. Vision Res. 8, 1023–1040 (1968).PubMedGoogle Scholar
  579. Stone, J.: Freeman, R.B., Jr.: Conduction velocity groups in the cat’s optic nerve classified accord¬ing to their retinal origin. Exp. Brain Res. IB, 489–497 (1971).Google Scholar
  580. Stone, J.: Hoffmann, K.-P.: Conduction velocity as parameter in the organisation of the afferent relay in the cat’s lateral geniculate nucleus. Brain Res. 32, 454–459 (1971).PubMedGoogle Scholar
  581. Stone, J., Hollander, H.: Optic nerve axon diameters measured in the cat retina: some functional considerations. Exp. Brain Res. 13, 498–503 (1971).PubMedGoogle Scholar
  582. Sturr, J.F., Shansky, M.S.: Cortical and subcortical responses to flicker in cats. Exp. Neurol. 33, 279–290 (1971).PubMedGoogle Scholar
  583. Sumitomo, I., Ide, K., Iwama, K.: Maintained activity and responsiveness to flicker stimulation in rat lateral geniculate neurons. Physiol, and Behavior 3, 955–959 (1968).Google Scholar
  584. Sumitomo, I., Ide, K., Iwama, K., Arikuni, T.: Conduction velocity of optic nerve fibers innervating lateral geniculate and superior colliculus in the rat. Exp. Neurol. 25, 378–392 (1969).PubMedGoogle Scholar
  585. Sumitomo, I., Ide, K., Iwama, K., Arikuni, T.: A relation between visual field representation of rat lateral geni¬culate cells and conduction velocities of optic nerve fibers innervating them. Brain Res. 24, 333–335 (1970).PubMedGoogle Scholar
  586. Svaetichin, G.: Spectral response curves from single cones. Acta physiol. scand. 39, Suppl. 134, 17–46 (1956).Google Scholar
  587. Svaetichin, G.: Receptor Mechanisms For Flicker And Fusion. Acta Physiol. Scand. 39, Suppl. 134, 47–54 (1956).Google Scholar
  588. Svaetichin, G.: Negishi, K., Drujan, B., Muriel, C.: S-potentials and retinal automatic control systems. In: First Europ. Biophys. Congr. Vienna 1971, Proc. Vol. 5, 77–88 (1971).Google Scholar
  589. Szentagothai, J., Hamori, J., Tombol, T.: Degeneration and electronmicroscope analysis of the synaptic glomeruli in the lateral geniculate body. Exp. Brain Res. 2, 283–301 (1966).PubMedGoogle Scholar
  590. Taira, N., Okuda, J.: Sensory transmission in visual pathway in various arousal states of cat. Tohoku J. exp. Med. 78, 76–97 (1962).PubMedGoogle Scholar
  591. Takahashi, R., Mori, H., Yoshino, T.: Changes in electrical excitability of the human eye for sinusoidal alternating currents, caused by illumination with white and monochromatic lights. Nichiganshi (Jap.) 60, 727–734 (1956); cit. after K. MOTOKAWA (1970).Google Scholar
  592. Talbot, H.F.: Experiments on light. Phil. Mag. 5, 321–334 (1834).Google Scholar
  593. Thomas, G. J.: A comparison of uniocular and binocular critical flicker frequencies: Simultan¬eous and alternate flashes. Amer. J. Psychol. 68, 37–53 (1955).PubMedGoogle Scholar
  594. Tomita, T.: Electrical response of single photoreceptor. Proc. IEEE 56, 1015–1023 (1968).Google Scholar
  595. Tomita, T.: Electrical Activity Of Vertebrate Photoreceptors. Quart. Rev. Biophys. 3, 179–222 (1970).Google Scholar
  596. Toyoda, J.: The frequency response of the retinal interneurons: Factors affecting flicker. Unpubl. manuscript (1971).Google Scholar
  597. Toyoda, J., Hashimoto, H., Anno, H., Tomita, T.: The rod response in the frog as studied by intra-cellular recording. Vision Res. 10, 1093–1100 (1970).PubMedGoogle Scholar
  598. Toyoda, J.-I., Nosaki, H., Tomita, T.: Light-induced resistance changes in single photo-receptors of Necturus and Gekko. Vision Res. 9, 453–463 (1969).PubMedGoogle Scholar
  599. Tschermak, A.: Licht- und Farbensinn. In: BETHE’S Handbuch der normalen und pathologischen Physiologie. Vol. XII, S. 295–501. Berlin: Springer 1929.Google Scholar
  600. Turner, P.: The modification of critical flicker fusion frequency by an adapting stimulus of flickering light. Vision Res. 5, 463–470 (1965).PubMedGoogle Scholar
  601. Tweel, L. H. Van Der: Some problems in vision regarded with respect to linearity and frequen¬cy response. Ann. N. Y. Acad. Sci. 89, 829–856 (1961).PubMedGoogle Scholar
  602. Tweel, L. H. Van Der: Relations Between Psychophysics And Electrophysiology Of Flicker. Docum. Ophthal. (Den Haag) 18, 287–304 (1964).Google Scholar
  603. Tweel, L. H. Van Der: Spekreijse, H.: Visual evoked responses. In: The clinical value of electroretinography. ISCERG Symp. Gent 1966, pp. 83–94. Basel: Karger 1968.Google Scholar
  604. Tweel, L. H. Van Der, Verduyn Lunel, H.F.E.: Human visual responses to sinusoidally modulated light. EEG Clin. Neurophysiol. 18, 578–598 (1965).Google Scholar
  605. Varju, D.: Der Einfluß sinusförmiger Leuchtdichteänderungen auf die mittlere Pupillen weite und auf die subjective Helligkeit. Kybernetik 2, 33–43 (1964).PubMedGoogle Scholar
  606. Varju, D.: Über Nichtlineare Analogschaltungen Zur Simulierung Biologischer Adaptationsvorgänge. Progress In Brain Res. 17, 74–101. Amsterdam: Elsevier Publ. 1965.Google Scholar
  607. Veringa, F.: On some properties of nonthreshold flicker. J. opt. Soc. Amer. 48, 500–502 (1958).Google Scholar
  608. Veringa, F.: Enige Natuurkundige Aspecten Van Het Zien Van Gemoduleerd Licht. Thesis, University Of Amsterdam. The Netherlands (1961).Google Scholar
  609. Veringa, F.: Phase Shifts In The Human Retina. Nature (Lond.) 197, 998–999 (1963).Google Scholar
  610. Veringa, F.: Electro–Optical Stimulation Of The Human Retina As A Research Technique. Docum. Opthahl. (Den Haag) 18, 72–82 (1964).Google Scholar
  611. Veringa, F.: Diffusion Model Of Linear Flicker Responses. J. Opt. Soc. Amer. 60, 285–286 (1970).Google Scholar
  612. Veringa, F.: Roelofs, J.: Electro–optical interaction in the retina. Nature (Lond.) 211, 321–322 (1966).Google Scholar
  613. Vernon, M.D.: The binocular perception of flicker. Brit. J. Psychol. 24, 351–374 (1934).Google Scholar
  614. Wald, G.: Visual excitation and blood clotting. Science 150, 1028–1030 (1965).PubMedGoogle Scholar
  615. Walraven P.-L., Leebeek, H. J.: Phase shift of alternating coloured stimuli. Docum. Ophthal. (Den Haag) 18, 56–71 (1964a).Google Scholar
  616. Walraven, P.-L., Leebeek, H. J.: Phase shift sinusoidally alternating coloured stimuli. J. opt. Soc. Amer. 54, 78–82 (1964b).Google Scholar
  617. Walraven, P.-L., Leebeek, H. J., Bouman, M.A.: Some measurements about the fusion frequency of colors. Optica Acta 5, 3–7 (1958).Google Scholar
  618. Walter, W. G.: Colour illusions and aberrations during stimulation by flickering light. Nature (Lond.) 177, 710 (1956).Google Scholar
  619. Wasserman, G. S.: Brightness enhancement and the opponent colour theory. Vision Res. 6, 689–699 (1966a).PubMedGoogle Scholar
  620. Wasserman, G. S.: Brightness Enhancement In Intermittent Light, Variation Of Luminance And light-dark Ratio. J. Opt. Soc. Amer. 56, 242–250 (1966B).Google Scholar
  621. Weale, R.A.: Some observations on the Ferry-Porter law. J. Physiol. (Lond.), P 26–27 (1957).Google Scholar
  622. Weale, R.A.: The Effect Of Test Size And Adapting Luminance On Foveal Critical Fusion Frequency. Symp. On Vis. Problems Of Colour (1957).Google Scholar
  623. Welpe, E.: Über die Strukturierung des Gesichtsfeldes bei intermittierender Belichtung des Auges im Frequenzbereich zwischen 33 Hz und der Flimmerverschmelzungsfrequenz. Vision Res. 10, 1457–1469 (1970).PubMedGoogle Scholar
  624. Werblin, F.S.: Response of retinal cells to moving spots: Intracellular recording in Necturus maculosus. J. Neurophysiol. 83, 342–350 (1970).Google Scholar
  625. Werblin, F.S., Dowling, J. E.: Organization of the retina of the mudpuppy Necturus maculosus. II. Intra-cellular recording. J. Neurophysiol. 32, 339–355 (1969).PubMedGoogle Scholar
  626. West, D.C.: Flicker and the stabilized retinal image. Vision Res. 8, 719–745 (1968).PubMedGoogle Scholar
  627. White, C.T., Lichtenstein, M.: Some aspects of temporal discrimination. Perceptual and Motor Skills 17, 471–482 (1963).PubMedGoogle Scholar
  628. Wiesel, T.N.: Recording inhibition and excitation in the cat’s retinal ganglion cells with intracellular electrodes. Nature (Lond.) 183, 264–265 (1959).Google Scholar
  629. Wiesel, T.N.: Receptive Fields Of Ganglion Cells In Cat’s Retina. J. Physiol. (Lond.) 153, 583–594 (1960).Google Scholar
  630. Wolbarsht, M.L., Wagner, H.G., Macnichol, E.F.: The origin of “on and off” responses of retinal ganglion cells. In: Jung, R., Kornhuber, H. (Eds.): The visual system: Neuro¬physiology and Psychophysics, pp. 163–170. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  631. Wuttke, W., Grüsser, O.-J.: Die funktionelle Organisation der rezeptiven Felder von on Zentrum-Neuronen der Katzenretina. Pflügers Arch. ges. Physiol. 289, R 83 (1966).Google Scholar
  632. Wuttke, W., Grüsser, O.–J.: The conduction velocity of lateral inhibition in the cat’s retina. Pflügers Arch. ges. Physiol. 304, 253–257 (1968).Google Scholar
  633. Wuttke, W., Grüsser, O.-J., Rackensperger, W.: Ausbreitungsgeschwindigkeit und räumliches Dekrement der lateralen Hemmung in der Netzhaut. Pflügers Arch. ges. Physiol. 283, R 49 (1965).Google Scholar
  634. Zerbst, E., Dittberner, K.-H., William, E.: Über die Nachrichtenaufnahme durch biologische Receptoren. I. Theoretische Untersuchungen zur Ursache der Erregungsbildung. Kybernetik 2, 160–168 (1965).Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • W. A. Van De Grind
    • 1
  • O.-J. Grüsser
    • 2
  • H.-U. Lunkenheimer
    • 3
  1. 1.AmsterdamNetherlands
  2. 2.Germany
  3. 3.LausanneSwitzerland

Personalised recommendations