Generator Potentials in Invertebrate Photoreceptors

  • M. G. F. Fuortes
  • Paul M. O’Bryan
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 2)


The purpose of the present chapter is to describe the responses evoked by light in photoreceptor cells of invertebrates, and to discuss various views on the mechanisms leading to the photic responses. Since the structure and organization of invertebrate photoreceptors are described in detail elsewhere in this volume, a few general remarks on this topic will be sufficient in this chapter.


Optic Nerve Generator Potential Photoreceptor Cell Visual Pigment Horseshoe Crab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barber, V.C., Evans, E.M., Land, M.F.: The fine structure of the eye of the mollusc Pecten maximus. Z. Zellforsch. 76, 295–312 (1967).Google Scholar
  2. Bass, L., Moore, W.J.: An electrochemical model for depolarization of a retinula cell of Limulus by a single photon. Biophys. J. 10, 1–19 (1970).PubMedGoogle Scholar
  3. Baumann, F.: Slow and spike potentials recorded from retinula cells of the Honeybee drone in response to light. J. gen. Physiol. 52, 855–875 (1968).PubMedGoogle Scholar
  4. Baylor, D. A., Fuortes, M.G.F.: Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207, 77–92 (1970).Google Scholar
  5. Behrens, M.E., Wulff, V.J.: Light-initiated responses of retinular and eccentric cells in the Limulus lateral eye. J. gen. Physiol. 48, 1081–1093 (1965).PubMedGoogle Scholar
  6. Behrens, M.E., Wulff, V.J.: Functional autonomy in the lateral eye of the horseshoe crab, Limulus polyphemus. Vision Res. 7, 191–196 (1967).PubMedGoogle Scholar
  7. Bennett, M.V.L., Aljure, E., Nakajima, Y., Pappas, G.D.: Electrotonic junctions between teleost spinal neurons: Electrophysiology and ultrastructure. Science 141, 262–264 (1963).PubMedGoogle Scholar
  8. Benolken, R. M.: Reversal of photoreceptor polarity recorded during graded receptor potential response to light in the eye of Limulus. Biophys. J. 1, 551–564 (1961).PubMedGoogle Scholar
  9. Bernhard, C.G., Granit, R.: Nerve as a model temperature end organ. J. gen. Physiol. 29, 257–265 (1946).Google Scholar
  10. Borsellino, A., Fuortes, M.G.F., Smith, T.G.: Visual responses in Limulus. Cold Spr. Harb. Symp. quant. Biol. 30, 429–443 (1965).Google Scholar
  11. Brown, H.M., Hagiwara, S., Koike, H., Meech, R.W.: Membrane properties of a Barnacle photoreceptor examined by the voltage clamp technique. J. Physiol. (Lond.) 208, 385–413 (1970).Google Scholar
  12. Brown, H.M., Hagiwara, S., Koike, H., Meech, R.W.: Electrical characteristics of a barnacle photoreceptor. Fed. Proc. 30, 69–78 (1971).PubMedGoogle Scholar
  13. Brown, H.M., Meech, R.W., Koike, H., Hagiwara, S.: Current-voltage relations during illumination: Photoreceptor membrane of a barnacle. Science 166, 240–243 (1969).PubMedGoogle Scholar
  14. Brown, H.M., Meech, R.W., Sakata, H., Hagiwara, S.: Voltage clamp of light receptor cells in the barnacle lateral eye. Proc. Internat. Union Physiol. Sci. 7, 63 (1968).Google Scholar
  15. Calma, I.: Ions and the receptor potential in the muscle spindle of the frog. J. Physiol. (Lond.) 177, 31–41 (1965).Google Scholar
  16. Clark, A. W., Millecchia, R., Mauro, A.: The ventral photoreceptor cells of Limulus. I. The microanatomy. J. gen. Physiol. 54, 289–309 (1969).PubMedGoogle Scholar
  17. Cohen, A. I.: Rods and cones. Handbook of Sensory Physiology. This volume.Google Scholar
  18. Cole, K.S., Curtis, H.J.: Electric inpedance of the squid giant axon during activity. J. gen. Physiol. 22, 649–670 (1939).PubMedGoogle Scholar
  19. DeLange, H.: Research into the dynamic nature of the human fovea-cortex system with intermittent and modulated light. J. opt. Soc. Amer. 48, 777–789 (1958).Google Scholar
  20. Demoll, R.: Die Augen von Limulus. Zool. Jb. Abt. Anat. 38, 443–464 (1914).Google Scholar
  21. Dennis, M. J.: Electrophysiology of the visual system of a nudibranch mollusc. J. Neurophysiol. 30, 1439–1465 (1967).PubMedGoogle Scholar
  22. DeVoe, R.D.: Linear superposition of retinal action potentials to predict electrical flicker responses from the eye of the wolf spider, Lycosa Baltimoriana (Keyserling). J. gen. Physiol. 46, 75–96 (1962).Google Scholar
  23. DeVoe, R.D.: Linear relations between stimulus amplitudes and amplitudes of retinal action potentials from the eye of the wolf spider. J. gen. Physiol. 47, 13–32 (1963).PubMedGoogle Scholar
  24. DeVoe, R.D.: A nonlinear model for transient responses from light-adapted Wolf Spider eyes. J. gen. Physiol. 50, 1993–2030 (1967).PubMedGoogle Scholar
  25. Dewey, M.M., Barr, L.: A study of the structure and distribution of the nexus. J. Cell Biol. 23, 553–585 (1964).PubMedGoogle Scholar
  26. Diamond, J., Gray, J.A.B., Inman, D.R.: The relations between receptor potentials and the concentration of sodium ions. J. Physiol. (Lond.) 142, 382–394 (1958).Google Scholar
  27. Eakin, R.M.: Evolution of photoreceptors. Cold Spr. Harb. Symp. quant. Biol. 30, 363–370 (1965).Google Scholar
  28. Edwards, C., Terzuolo, C.A., Washizu, Y.: The effect of changes of the ionic environment upon an isolated crustacean sensory neuron. J. Neurophysiol. 26, 948–957 (1963).PubMedGoogle Scholar
  29. Eguchi, E.: Rhabdom structure and receptor potentials in single crayfish retinular cells. J. cell. comp. Physiol. 66, 411–429 (1965).Google Scholar
  30. Fatt, P., Katz, B.: An analysis of the end-plate potential recorded with an intracellular electrode. J. Physiol. (Lond.) 115, 320–370 (1951).Google Scholar
  31. Fulpius, B., Baumann, F.: Effects of sodium, potassium and calcium ions on slow and spike potentials in single photoreceptor cells. J. gen. Physiol. 53, 541–561 (1969).PubMedGoogle Scholar
  32. Fuortes, M.G.F.: Electrical activity of cells in the eye of Limulus. Amer. J. Ophth. 46, 210–223 (1958).Google Scholar
  33. Fuortes, M.G.F.: Initiation of impulses in visual cells of Limulus. J. Physiol. (Lond.) 148, 14–28 (1959).Google Scholar
  34. Fuortes, M.G.F.: Visual responses in the eye of the Dragonfly. Science 142, 69–70 (1963).PubMedGoogle Scholar
  35. Fuortes, M.G.F.: Hodgkin, A. L.: Changes in time scale and sensitivity in the ommatidia of Limulus. J. Physiol. (Lond.) 172, 239–263 (1964).Google Scholar
  36. Fuortes, M.G.F.: Poggio, G.F.: Transient responses to sudden illumination in cells in the eye of Limulus. J. gen. Physiol. 46, 435–452 (1963).PubMedGoogle Scholar
  37. Gorman, A.L.F., McReynolds, J.S.: Hyperpolarizing and depolarizing receptor potentials in the scallop eye. Science 165, 309–310 (1969).PubMedGoogle Scholar
  38. Graziadei, P.P.C., Metcalf, J.F.: Ultrastructure of the retina in the scallop’s eye. Fed. Proc. 29, 393 (1970).Google Scholar
  39. Grundfest, H.: Ionic mechanisms in electrogenesis. Ann. N.Y. Acad. Sci. 94, 405–457 (1961).PubMedGoogle Scholar
  40. Hagins, W.A.: Electrical signs of information flow in photoreceptors. Cold Spr. Harb. Symp. quant. Biol. 30, 403–418 (1965).Google Scholar
  41. Hagins, W.A.: McGaughy, R.E.: Membrane origin of the fast photovoltage of squid retina. Science 159, 213–215 (1968).PubMedGoogle Scholar
  42. Hagins, W.A.: Zonana, H.V., Adams, R.G.: Local membrane current in the outer segments of squid photoreceptors. Nature (Lond.) 194, 844–846 (1962).Google Scholar
  43. Hartline, H.K.: The discharge of impulses in the optic nerve in response to flashes of light of short duration. Amer. J. Physiol. 105, 45–46 (1933).Google Scholar
  44. Hartline, H.K.: Intensity and duration in the excitation of single photoreceptor units. J. cell. comp. Physiol. 5, 229–247 (1934).Google Scholar
  45. Hartline, H.K.: The discharge of nerve impulses from the single visual sense cell. Cold Spr. Harb. Symp. quant. Biol. 3, 245–249 (1935).Google Scholar
  46. Hartline, H.K.: The discharge of impulses in the optic nerve of Pecten in response to illumination of the eye. J. cell. comp. Physiol. 11, 465–477 (1938).Google Scholar
  47. Hartline, H.K.: Visual receptors and retinal interaction (Nobel Lecture). Le Prix Nobel, 242–259 (1967).Google Scholar
  48. Hartline, H.K.: Graham, C.H.: Nerve impulses from single receptors in the eye. J. cell. comp. Physiol. 1, 277–295 (1932).Google Scholar
  49. Hartline, H.K.: Graham, C.H.: The spectral sensitivity of single visual cells. Amer. J. Physiol. 109, 49–50 (1934).Google Scholar
  50. Hartline, H.K.: Wagner, H.G., MacNichol, E.F., Jr.: The peripheral origin of nervous activity in the visual system. Cold Spr. Harb. Symp. quant. Biol. 17, 125–141 (1952).Google Scholar
  51. Jacklett, J. W.: Electrophysiological organization of the eye of Aplysia. J. gen. Physiol. 53, 21–42 (1969).Google Scholar
  52. Karrer, H.E.: The striated musculature of blood vessels. II. Cell interconnections and cell surface. J. Biophy. Biochem. Cytol. 8, 135–150 (1960).Google Scholar
  53. Kennedy, D.: Neural photoreception in a Lamellibranch mollusc. J. gen. Physiol. 44, 277–299 (1960).PubMedGoogle Scholar
  54. Kennedy, D.: The photoreceptor process in lower animals. In: A. C. Giese (Ed.): Photophysiology, pp. 79–121. New York: Academic Press 1964.Google Scholar
  55. Kikuchi, R., Ihnuma, M., Tachi, S.: Different cellular components in ommatidia of horseshoe crab, Tachypleus tridentatus. Naturwissenschaften 52, 265 (1965).PubMedGoogle Scholar
  56. Kikuchi, R., Naito, K., Tanaka, I.: Effect of sodium and potassium ions on the electrical activity of single cells in the lateral eye of the horseshoe crab. J. Physiol. (Lond.) 161, 319–343 (1962).Google Scholar
  57. Kirschfeld, K.: Discrete and graded receptor potentials in the compound eye of the fly (Musca). In: Bernhard, C.G. (Ed.): The Functional Organization of the Compound Eye. Oxford: Pergamon 1965.Google Scholar
  58. Koike, H., Brown, H.M., Hagiwara, S.: Post-illumination hyperpolarization of a barnacle photoreceptor cell. Fed. Proc. 29, 393 (1970).Google Scholar
  59. Langer, H., Thorell, B.: Microspectrophotometric assay of visual pigments in single rhabdomes of the insect eye. In: Bernhard, C.G. (Ed.): The Functional Organization of the Compound Eye, pp. 145–149. Oxford: Pergamon 1966.Google Scholar
  60. Lasansky, A.: Cell junctions in ommatidia of Limulus. J. Cell Biol. 33, 365–383 (1967).PubMedGoogle Scholar
  61. Lasansky, A.: Fuortes, M.G.F.: The site of origin of electrical responses in visual cells of the Leech Hirudo Medicinalis. J. Cell Biol. 42, 241–252 (1969).PubMedGoogle Scholar
  62. MacNichol, E.F., Jr.: Visual receptors as biological transducers. In: Grewell, R.G., Mullins, L.J. (Eds.): Molecular Structure and Functional Activity of Nerve Cells, pp. 34–52. American Institute of Biological Sciences, Publ. No. 1, 34, Washington, D.C., 1956.Google Scholar
  63. MacNichol, E.F., Jr.: Love, W.E.: Impulse discharges from the retinal nerve and optic ganglion of the squid. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics, pp. 97–103. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  64. McReynolds, J.S., Gorman, A. L. F.: Membrane conductances and spectral sensitivities of Pecten photoreceptors. J. gen. Physiol. 56, 376–391 (1970 a).PubMedGoogle Scholar
  65. McReynolds, J.S., Gorman, A. L. F.: Photoreceptor potentials of opposite polarity in the eye of the scallop, Pecten irradians. J. gen. Physiol. 56, 392–406 (1970 b).PubMedGoogle Scholar
  66. Marimont, R.: Numerical studies of the Fuortes-Hodgkin Limulus model. J. Physiol. (London) 179, 489–497 (1965).Google Scholar
  67. Mauro, A., Baumann, F.: Electrophysiological evidence of photoreceptors in the epistellar body of Eledone Moschata. Nature (Lond.) 220, 1332–1334 (1968).Google Scholar
  68. Millecchia, R., Bradbury, J., Mauro, A.: Single photoreceptor cells in Limulus polyphemus. Science 154, 1199–1201 (1966).PubMedGoogle Scholar
  69. Millecchia, R., Bradbury, J., Mauro, A.: The ventral photoreceptor cells of Limulus II. The basic photoresponse. J. gen. Physiol. 54, 310–330 (1969a).PubMedGoogle Scholar
  70. Millecchia, R., Bradbury, J. The ventral photoreceptor cells of Limulus III. A voltage-clamp study. J. gen. Physiol. 54, 331–351 (1969b).Google Scholar
  71. Miller, W.H.: Morphology of the ommatidia of the compound eye of Limulus. J. biophys. biochem. Cytol. 3, 241–248 (1957).Google Scholar
  72. Miller, W.H.: Derivatives of cilia in the distal sense cells of the retina of Pecten. J. biophys. biochem. Cytol. 4, 227–228 (1958).PubMedGoogle Scholar
  73. Miller, W.H.: Visual photoreceptor structures. In: Brachet, J., Mirsky, A.E. (Eds.): The Cell. London: Academic Press 1960.Google Scholar
  74. Naka, K.-I.: Recording of retinal action potentials from single cells of the insect compound eye. J. gen. Physiol. 44, 571–584 (1961).PubMedGoogle Scholar
  75. Naka, K.-I.: Eguchi, E.: Spike potentials recorded from the insect photoreceptor. J. gen. Physiol. 45, 663–680 (1962).PubMedGoogle Scholar
  76. Nilsson, S.E.G.: The ultrastructure of photoreceptor cells. Proceedings of the International School of Physics “Enrico Fermi”. Vol. 43. Processing of Optical Data by Organisms and by Machines, pp. 69–115. New York: Academic Press 1969.Google Scholar
  77. Nunnemacher, R.F., Davis, P.P.: The fine structure of the Limulus optic nerve. J. Morph. 125, 61–70 (1968).PubMedGoogle Scholar
  78. Obara, S.: Effects of some organic cations on generator potential of crayfish stretch receptor. J. gen. Physiol. 52, 363–386 (1968).PubMedGoogle Scholar
  79. Obara, S.: Grundfest, H.: Effect of lithium on different membrane components of crayfish stretch receptor neurons. J. gen. Physiol. 51, 635–654 (1968).PubMedGoogle Scholar
  80. Ottoson, D.: The effect of sodium deficiency on the response of the isolated muscle spindle. J. Physiol. (Lond.) 171, 109–118 (1964).Google Scholar
  81. Pinter, R.B.: Sinusoidal and delta function responses of visual cells in the Limulus eye. J. gen. Physiol. 49, 565–593 (1966).PubMedGoogle Scholar
  82. Purple, R.L., Dodge, F.A.: Interaction of excitation and inhibition in the eccentric cell in the eye of Limulus. Cold Spr. Harb. Symp. quant. Biol. 30, 529–537 (1965).Google Scholar
  83. Ratliff, F., Hartline, H.K., Lange, D.: The dynamics of lateral inhibition in the compound eye of Limulus I. In: Bernhard, C.G. (Ed.): The Functional Organization of the Compound Eye, pp. 399–424. Oxford: Pergamon 1966.Google Scholar
  84. Robertson, J. D.: The occurrence of a subunit pattern in the unit membranes of club endings in Mauthner cell synapses in goldfish brains. J. Cell Biol. 19, 201–221 (1963).PubMedGoogle Scholar
  85. Robertson, J. D.: Bodenheimer, T. S., Stage, D. E.: The ultrastructure of Mauthner cell synapses and nodes in goldfish brains. J. cell. Biol. 19, 159–199 (1963).PubMedGoogle Scholar
  86. Rushton, W.A.H.: A theoretical treatment of Fuortes’ observation upon eccentric cell activity in Limulus. J. Physiol. (Lond.) 148, 29–38 (1959).Google Scholar
  87. Scholes, J.: Discontinuity in the excitation process in Locust visual cells. Cold Spr. Harb. Symp. quant. Biol. 30, 517–527 (1965).Google Scholar
  88. Shaw, S.R.: Simultaneous recording from two cells in the locust retina. Z. vergl. Physiol. 55, 183–194 (1967a).Google Scholar
  89. Shaw, S.R.: Coupling between receptors in the eye of the drone honeybee. J. gen. Physiol. 50, 2480–2481 (1967 b).Google Scholar
  90. Shaw, S.R.: Organization of the locust retina. Symp. Zool. Soc. Lond. 23, 135–163 (1968).Google Scholar
  91. Shaw, S. R.: Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res. 9, 999–1029 (1969).PubMedGoogle Scholar
  92. Smith, T.G.: Receptor potentials in retinular cells in Limulus. Res. Lab. Elec. Quant. Prog. Rept., Mass. Inst. Techn. 81, 242–248 (1966).Google Scholar
  93. Smith, T.G.: Baumann, F.: The functional organization within the ommatidium of the lateral eye of Limulus. Progress Brain Res. 31, 313–349 (1969).Google Scholar
  94. Smith, T.G.: Fuoktes, M.G.F.: Electrical connections between visual cells in the ommatidium of Limulus. Science 147, 1446–1448 (1965).PubMedGoogle Scholar
  95. Brown, J. E.: A photoelectric potential in invertebrate cells. Nature (Lond.) 212, 1217–1219 (1966).Google Scholar
  96. Stell, W.K., Brown, J. E.: Conductance changes associated with receptor potentials in Limulus photoreceptors. Science 162, 454–456 (1968a).PubMedGoogle Scholar
  97. Stell, W.K., Brown, J. E.: Freeman, J. C., Murray, G.C.: A role for the sodium pump in photoreception. Science 162, 456–458 (1968b).PubMedGoogle Scholar
  98. Tomita, T.: The nature of action potentials in the lateral eye of the horseshoe crab as revealed by simultaneous intra- and extracellular recordings. Jap. J. Physiol. 6, 327–340 (1956).Google Scholar
  99. Tomita, T.: Peripheral mechanism of nervous activity in eye of Limulus. J. Neurophysiol. 21, 245–254, (1957).Google Scholar
  100. Tomita, T.: Kikuchi, R., Tanaka, L.: Excitation and inhibition on lateral eye of horseshoe crab. In: Katsuki, Y. (Ed.): Electrical Activity of Single Cells. Tokyo: Igakushiin 1960.Google Scholar
  101. Toyoda, J.I., Nosaki, H., Tomita, T.: Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 9, 453–463 (1969).PubMedGoogle Scholar
  102. Toyoda, J.I., Shapley, R.M.: The intracellularly recorded response in the scallop eye. Biol. Bull. 133, 490 (1967).Google Scholar
  103. Wald, G.: Visual excitation and blood clotting. Science 150, 1028–1030 (1965).PubMedGoogle Scholar
  104. Walther, J.B.: Single cell responses from the primitive eyes of an annelid. In: Bernhard, C.G. (Ed.): Functional organization of the compound Eye. New York: Pergamon Press 1965.Google Scholar
  105. Washizu, Y.: Electrical activity of single retinular cells in the compound eye of the blowfly Calliphora erythrocephala. Meig. Comp. Biochem. Physiol. 12, 369–387 (1964).Google Scholar
  106. Waterman, T.H., Wiersma, C.A.G.: The functional relation between retinular cell and optic nerve in Limulus. J. Exp. Zool. 126, 59–85 (1954).Google Scholar
  107. Winter, D.L.: Intracellular responses from the grasshopper eye. Nature (Lond.) 213, 607–608 (1967).Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • M. G. F. Fuortes
    • 1
  • Paul M. O’Bryan
    • 1
  1. 1.BethesdaUSA

Personalised recommendations