Advertisement

The Morphological Organization of the Vertebrate Retina

  • William K. Stell
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 2)

Abstract

The photoreceptor cells are transducers which absorb incident photons and transmit a proportional signal to other cells. More complex retinal functions such as the discrimination of colors and the detection of contrast and movement are accomplished by networks of many cells. This chapter is a critical historical review of attempts to establish the spatial relationships of the structural, functional, and chemical units in the retina which correspond to such networks.

Keywords

Ganglion Cell Bipolar Cell Amacrine Cell Horizontal Cell Dendritic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aichel, O.: Zur Kenntnis des histologischen Baues einiger Teleostier. Inaug.-Diss. Erlangen (1896). Cited by Franz (1913).Google Scholar
  2. Akert, K., Steiger, U: Über Glomeruli im Zentralnervensystem von Vertebraten und Invertebraten. Schweiz. Arch. Neurol. Neurochir. Psychiat. 100, 321–337 (1967).Google Scholar
  3. Ali, M.A., Anctil, M.: Correlation entre la structure rétinienne et l’habitat chez Stizostedion vitreum vitreum et S. canadense. J. Fish. Res. Bd. Canada 25, 2001–2003 (1968).CrossRefGoogle Scholar
  4. Ali, M.A., Anctil, M., Mohideen, H.M.: Structure rétinienne et la vascularisation intraoculaire chez quelques poissons marins de la région de Gaspé. Canad. J. Zool. 46, 729–745 (1968).CrossRefGoogle Scholar
  5. Ali, M.A., Hanyu, I.: A comparative study of retinal structure in some fishes from moderately deep waters of the Western North Atlantic. Canad. J. Zool. 41, 225–241 (1963).CrossRefGoogle Scholar
  6. Allen, R.A.: Isolated cilia in inner retinal neurons and in retinal pigment epithelium. J. Ultrastruct. Res. 12, 730–747 (1965).PubMedCrossRefGoogle Scholar
  7. Allen, R.A.: The retinal bipolar cells and their synapses in the inner plexiform layer. In: Straatsma, B.R., Hall, M.O., Allen, R.A., Crescitelli, F. (Eds.): The retina: morphology, function and clinical characteristics. UCLA Forum in Medical Sciences No. 8, pp. 101–143. Berkeley-Los Angeles: University of California Press 1969.Google Scholar
  8. Ames, A., III.: Studies in water and electrolytes in nervous tissue. II. Effect of glutamate and glutamine. J. Neurophysiol. 19, 213–223 (1956).PubMedGoogle Scholar
  9. Ames, A., III., Hastings, A.B.: Studies in water and electrolytes in nervous tissue. I. Rabbit retina: Methods and interpretation of dat. A.J. Neurophysiol. 19, 201–212 (1956).Google Scholar
  10. Ames, A., III., Pollen, D.A.: Neurotransmission in central nervous tissue: a study of isolated rabbit retina. J. Neurophysiol. 32, 424–442 (1969).PubMedGoogle Scholar
  11. Anctil, M.: Structure de la rétine chez quelques téléostéens marins du plateau continental. J. Fish. Res. Bd. Canada 26, 597–628 (1969).CrossRefGoogle Scholar
  12. Anfinsen, C.B.: The distribution of cholinesterase in the bovine retina. J. biol. Chem. 152, 267–278 (1944).Google Scholar
  13. Armstrong, J.A.: An experimental study of the visual pathways in a reptile (Lacerta vivipara). J. Anat. 84, 146–167 (1950).PubMedGoogle Scholar
  14. Arstila, A.U.: Electron microscopic studies on the structure and histochemistry of the pineal gland of the rat. Neuroendocrinology Suppl. 2, 101 pp. (1967).CrossRefGoogle Scholar
  15. Baylor, D.A., Fuortes, M.G.F.: Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207, 77–92 (1970).Google Scholar
  16. Baylor, D.A., Fuortes, M.G.F., O’Bryan, P.M.: Receptive fields of cones in the retina of the turtle. J. Physiol. 214, 265–294 (1971).PubMedGoogle Scholar
  17. Baylor, D.A., Nicholls, J.G.: Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J. Physiol. (Lond.) 203, 555–569 (1969).Google Scholar
  18. Berger, E.R.: Subsurface membranes in paired cone photoreceptor inner segments of adult and neonatal Lebistes retinae. J. Ultrastruct. Res. 17, 220–232 (1967).PubMedCrossRefGoogle Scholar
  19. Blackstad, T.W.: Mapping of experimental axon degeneration by electron microscopy of Golgi preparations. Z. Zellforsch. 67, 819–834 (1965).PubMedCrossRefGoogle Scholar
  20. Blaxter, J.H.S., Jones, M.P.: The development of the retina and retinomotor responses in the herring. J. Mar. Biol. Ass. U.K. 47, 677–697 (1967).CrossRefGoogle Scholar
  21. Blaxter, J.H.S., Staines, M.: Pure-cone retinae and retinomotor responses in larval teleosts. J. Mar. Biol. Ass. U.K. 50, 449–460 (1970).CrossRefGoogle Scholar
  22. Boell, E.J., Greenfield, P., Shen, S.C: Development of cholinesterase in the optic lobes of the frog (Rana pipiens). J. exp. Zool. 129, 415–452 (1955).CrossRefGoogle Scholar
  23. Borovyagin, V.L.: Submikroskopicheskaya morfologiya i strukturnaya vzaimosvyaz’ retseptornykh i gorizontal’nykh kletok setchatki ryada nizhnykh pozvonochnykh. Biofizika 11, 810–817 (1966). English translation: Submicroscopic morphology and structural connexion of the receptor and horizontal cells of the retina of a number of lower vertebrates. Biophysics 11, 930–940 (1966).Google Scholar
  24. Bortoff, A.: Localization of slow potential responses in the Necturus retina. Vision Res. 4, 627–635 (1964).PubMedCrossRefGoogle Scholar
  25. Boycott, B.B., Dowling, J.E.: Organization of the primate retina: light microscopy. Phil. Trans, roy. Soc. Lond. B 255, 109–184 (1969).CrossRefGoogle Scholar
  26. Branston, N.M., Fleming, D.G.: Efferent fibers in the frog optic nerve. Exp. Neurol. 20, 611–623 (1968).PubMedCrossRefGoogle Scholar
  27. Brightman, M.W., Reese, T.S.: Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677 (1969).PubMedCrossRefGoogle Scholar
  28. Brindley, G.S.: Physiology of the Retina and the Visual Pathway. London: Edward Arnold 1960.Google Scholar
  29. Brindley, G.S., Hamasaki, D.I.: Absence of early degeneration of fibers in the orbital part of the cat’s optic nerve after transection of the intracranial part. J. Physiol. (Lond.) 159, 88 P (1961).Google Scholar
  30. Brindley, G.S., Hamasaki, D.I.: Histological evidence against the view that the cat’s optic nerve contains centrifugal fibres. J. Physiol. (Lond.) 163, 25 P–26 P (1962a).Google Scholar
  31. Brindley, G.S., Hamasaki, D.I.: Evidence that the cat’s electroretinogram is not influenced by impulses passing to the eye along the optic nerve. J. Physiol. (Lond.) 163, 558–565 (1962b).Google Scholar
  32. Brooke, R.N.L., Downer, I. de C., Powell, T.P.S.: Centrifugal fibres to the retina in the monkey and cat. Nature (Lond.) 207, 1365–1367 (1965).CrossRefGoogle Scholar
  33. Brown, J.E.: Dendritic fields of retinal ganglion cells of the rat. J. Neurophysiol. 28, 1091–1110 (1965).PubMedGoogle Scholar
  34. Brown, J.E., Major, D.: Cat retinal ganglion cell dendritic fields. Exp. Neurol. 15, 70–78 (1966).PubMedCrossRefGoogle Scholar
  35. Brown, K.T., Murakami, M.: Rapid effects of light and dark adaptation upon the receptive field organization of S-potentials and late receptor potentials. Vision Res. 8, 1145–1171 (1968).PubMedCrossRefGoogle Scholar
  36. Brown, K.T., Tasaki, K.: Localization of electrical activity in the cat retina by an electrode marking method. J. Physiol. (Lond.) 158, 281–295 (1961).Google Scholar
  37. Brown, K.T., Wiesel, T.N.: Intraretinal recording with micro-pipette electrodes in the intact cat eye. J. Physiol. (Lond.) 149, 537–562 (1959).Google Scholar
  38. Brzin, M., Drujan, B.O.: Activity and histochemical and cytochemical localization of cholinesterases in fish retina. Proc. 2nd Intl. Mtng. Intl. Soc. Neurochem. p. 110 (1969).Google Scholar
  39. Bullivant, S., Loewenstein, W.R.: Structure of coupled and uncoupled cell junctions. J. Cell Biol. 37, 621–632 (1968).PubMedCrossRefGoogle Scholar
  40. Byzov, A.L.: Gorizontal’nye kletki setchatki — regyulyatory sinapticheskoi peredachi. Fiziol. Zhur. SSSR (Sechenov) 53, 1115–1124 (1967). Engl. Transl.: Horizontal cells of the retina as the regulators of synaptic transmission. Neurosci. Transl. (F.A.S.E.B.) 3, 268–276 (1968).Google Scholar
  41. Byzov, A.L.: Localization of the R-membrane in the frog eye by means of an electrode marking method. Vision Res. 8, 679–700 (1968a).CrossRefGoogle Scholar
  42. Byzov, A.L.: The component analysis of electroretinogram in the retina of coldblooded vertebrates and the regulative function of horizontal cells. In: Advances in electrophysiology and pathology of the visual system. 6. ISCERG Symposium, Erfurt, 1967, pp. 217–230. Leipzig: G. Thieme 1968b.Google Scholar
  43. Byzov, A.L.: O roli gorizontal’nykh kletok v mekhanizme adaptatsii setchatki. (On the role of horizontal cells in the mechanism of retinal adaptation. In Russian with English summary and figure legends). Neirofiziologiia 1, 210–218 (1969).Google Scholar
  44. Byzov, A.L., Trifonov, Yu.A.: Gipoteza ob elektricheskoi obraznoi svyazi v sinapticheskoi peredache fotoretseptory — neirony vtorogo poryadka setchatki pozvonochnykh. (Hypothesis on the electrical feed-back in synaptic transmission between the photoreceptors and second-order neurons in the vertebrate retina. In Russian with English summary). Sinapticheskie Protsessy v Afferentnykh Sistemakh. Trudy vtorogo simpoziuma po voprosam obshchei fiziologii (P. G. Kostyuk), Akad. Nauk Ukrain. S.S.R. pp. 231–248. Kiev: Naukova Dumka 1968.Google Scholar
  45. Cajal, S.R. y: Sur la morphologie et les connexions des éléments de la rétine des oiseaux. Anat. Anz. 4, 111–121 (1889).Google Scholar
  46. Cajal, S.R. y: La rétine des vertébrés. Cellule 9, 121–225 (1892).Google Scholar
  47. Cajal, S.R. y: Neue Darstellung vom histologischen Bau des Centralnervensystems. Retina. Arch. Anat. Physiol., Anat. Abt. 1893, 399–410.Google Scholar
  48. Cajal, S.R. y: Die Retina der Wirbelthiere. Wiesbaden: Bergmann 1894.Google Scholar
  49. Cajal, S.R. y: Nouvelles contributions a l’étude histologique de la rétine, et la question des anastomoses des prolongements protoplasmiques. J. Anat. Physiol. 32, 481–543 (1896).Google Scholar
  50. Cajal, S.R. y: Histologie du système nerveux (Transl. L. Azoulay), II, 296–367. Paris: A. Maloine 1909–1911. Reprinted in Madrid: Instituto Ramón y Cajal 1955.Google Scholar
  51. Cajal, S.R. y: Estudios sobre la degeneración y regeneración del sistema nerviosa. Madrid 1913–1914. Engl, Transl.: Degeneration and regeneration of the nervous system (Transl. R. M. May). London: Oxford Univ. Press 1928. Reprinted in New York: Hafner 1959.Google Scholar
  52. Cajal, S.R. y: Neuronismo o reticularismo? Trav. Lab. Rech. Biol. 28 (1933). Engl, Transl.: Neuron theory or reticular theory? (Transl. M. Purkiss and C. A. Fox). Madrid: Instituto Ramón y Cajal 1954.Google Scholar
  53. Cajal, S.R. y: Los problemas histofisiológicos de la retina. XIV. Concil. Ophtal. Madrid 1933, 1–8.Google Scholar
  54. Castro, G. de O.: Branching pattern of amacrine cell processes. Nature (Lond.) 212, 832–834 (1966).CrossRefGoogle Scholar
  55. Catois, E.H.: Recherches sur l’histologie et l’anatomie microscopique de l’encéphale chez les poissons. Bull. Scient. France Belg. 36, 1–166 (1902).Google Scholar
  56. Cohen, A.I.: The fine structure of the extrafoveal receptors of the rhesus monkey. Exp. Eye Res. 1, 128–136 (1961).PubMedCrossRefGoogle Scholar
  57. Cohen, A.I.: Vertebrate retinal cells and their organization. Biol. Rev. 38, 427–459 (1963a).CrossRefGoogle Scholar
  58. Cohen, A.I.: The fine structure of the visual receptors of the pigeon. Exp. Eye Res. 2, 88–97 (1963b).PubMedCrossRefGoogle Scholar
  59. Cohen, A.I.: Some observations on the fine structure of the retinal receptors of the American gray squirrel. Invest. Ophthal. 3, 198–216 (1964).PubMedGoogle Scholar
  60. Cohen, A.I.: Some electron microscopic observations on inter-receptor contacts in the human and macaque retinae. J. Anat. 99, 595–610 (1965a).PubMedGoogle Scholar
  61. Cohen, A.I.: A possible cytological basis for the “R” membrane in the vertebrate eye. Nature (Lond.) 205, 1222–1223 (1965b).CrossRefGoogle Scholar
  62. Cohen, A.I.: An electron microscopic study of the modification by monosodium glutamate of the retinas of normal and “rodless” mice. Amer. J. Anat. 120, 319–356 (1967a).CrossRefGoogle Scholar
  63. Cohen, A.I.: Ultrastructural aspects of the human optic nerve. Invest. Ophthal. 6, 294–308 (1967b).PubMedGoogle Scholar
  64. Cohen, A.I.: Rods and cones and the problem of visual excitation. In: Straatsma, B.R., Hall, M.O., Allen, R.A., Crescitelli, F. (Eds.): The Retina: Morphology, Function and Clinical Characteristics. UCLA Forum in Medical Sciences No. 8, pp. 31–62. Berkeley-Los Angeles: University of California Press 1969.Google Scholar
  65. Cohen, A.I.: Rods and cones. (This volume).Google Scholar
  66. Collin, J.-P.: Rubans circonscrits par des vésicules dans les photorécepteurs rudimentaires épiphysaires de l’Oiseau: Vanellus vanellus (L), et nouvelles considérations phylogénétiques relatives aux pinéalocytes (ou cellules principales) de Mammifères. C.R. Acad. Sci. Paris 267, 758–761 (1968).Google Scholar
  67. Collin, J.-P., Meiniel, A.: Les synapses de l’organe pinéal de l’ammocète. C.R. Acad. Sci. Paris 266, 1293–1295 (1968).Google Scholar
  68. Corrodi, H., Jonsson, G.: The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. A review on the methodology. J. Histochem. Cytochem. 15, 65–78 (1967).CrossRefGoogle Scholar
  69. Cowan, W.M.: Centrifugal fibres to the avian retina. Brit. med. Bull. 26, 112–118 (1970).Google Scholar
  70. Cowan, W.M., Adamson, L., Powell, T.P.S.: An experimental study of the avian system. J. Anat. 95, 545–562 (1961).PubMedGoogle Scholar
  71. Cowan, W.M., Powell, T.P.S.: Centrifugal fibres in the avian visual system. Proc. Roy. Soc. B 158, 232–252 (1963).CrossRefGoogle Scholar
  72. Cowan, W.M., Wenger, E.: The development of the nucleus of origin of centrifugal fibers to the retina in the chick. J. comp. Neurol. 133, 207–240 (1968).PubMedCrossRefGoogle Scholar
  73. Cragg, B.G.: Centrifugal fibers to the retina and olfactory bulb and composition of the supraoptic commissures in the rabbit. Exp. Neurol. 5, 406–427 (1962).CrossRefGoogle Scholar
  74. Cragg, B.G.: Structural changes in naive retinal synapses detectable within minutes of first exposure to daylight. Brain Res. 15, 79–96 (1969).PubMedCrossRefGoogle Scholar
  75. Crescitelli, F.: The spectral sensitivity and visual pigment content of the retina of Gekko gekko. In: Ciba Foundation Symposium on Colour Vision, pp. 301–322. Boston: Little, Brown and Company 1965.Google Scholar
  76. Danilova, L.B., Rokhlenko, K.D., Bodryagina, A.V.: Electron microscopic study on the structure of septate and comb desmosomes. Z. Zellforsch. 100, 101–117 (1969).PubMedCrossRefGoogle Scholar
  77. Dartnall, H.J.A., Arden, G.B., Ikeda, H., Luck, C.P., Rosenberg, M.E., Pedler, C., Tansley, K.: Anatomical, electrophysiological and pigmentary aspects of vision in the bush baby: an interpretive study. Vision Res. 5, 399–424 (1965).PubMedCrossRefGoogle Scholar
  78. Daw, N.: Colour-coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli. J. Physiol. (Lond.) 197, 567–592 (1968).Google Scholar
  79. de Robertis, E., Franchi, C.M.: Electron microscope observations on synaptic vesicles in synapses of the retinal rods and cones. J. biophys. biochem. Cytol. 2, 307–318 (1956).CrossRefGoogle Scholar
  80. Detwiler, S.R.: Vertebrate Photoreceptors. New York: MacMillan 1943.Google Scholar
  81. Dieterich, C.E.: Elektronenmikroskopische Untersuchungen über die synaptischen Formationen der Photoreceptoren einiger Mammalier. Virchows Anat. Gesellsch. 62, 595–596 (1967).Google Scholar
  82. Dieterich, C.E.: Elektronenmikroskopische Untersuchungen über die Photoreceptoren und Receptorensynapsen bei reinen Stäbchen und Zapfennetzhäuten. Albrecht v. Graefes Arch. klin. exp. Ophthal. 174, 289–320 (1968).CrossRefGoogle Scholar
  83. Dieterich, C.E.: Feinstrukturelle Untersuchungen an den Horizontalzellen der menschlichen Netzhaut. Z. Zellforsch. 98, 277–289 (1969).PubMedCrossRefGoogle Scholar
  84. Dodt, E.: Vergleichende Physiologie der lichtempfindlichen Wirbeltier-Ephiphyse. Nova Acta Leopoldina N.F. 31, 219–235 (1966).Google Scholar
  85. Dogiel, A.S.: Über das Verhalten der nervösen Elemente in der Retina der Ganoiden, Reptilien, Vögel und Säugethiere. Anat. Anz. 3, 133–143 (1888).Google Scholar
  86. Dogiel, A.S.: Die Retina der Vögel. Arch. mikr. Anat. 44, 622–648 (1895).CrossRefGoogle Scholar
  87. Dowling, J.E.: Structure and function in the all-cone retina of the ground squirrel. In: Symposium on the Physiological Basis for Form Discrimination, pp. 17–23. Providence, R.I.: Brown University 1964.Google Scholar
  88. Dowling, J.E.: Foveal receptors of the monkey retina: Fine structure. Science 147, 57–59 (1965).PubMedCrossRefGoogle Scholar
  89. Dowling, J.E.: The site of visual adaptation. Science 155, 273–279 (1967a).PubMedCrossRefGoogle Scholar
  90. Dowling, J.E.: Visual adaptation: its mechanism. Science 155, 584–585 (1967b).CrossRefGoogle Scholar
  91. Dowling, J.E.: Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates. Proc. roy. Soc. B 170, 205–228 (1968).CrossRefGoogle Scholar
  92. Dowling, J.E.: Organization of vertebrate retinas. Invest. Ophthal. 9, 655–680 (1970).PubMedGoogle Scholar
  93. Dowling, J.E., Boycott, B.B.: Neural connections of the retina: Fine structure of the inner plexiform layer. Cold Spr. Harb. Symp. quant. Biol. 30, 393–402 (1965a).Google Scholar
  94. Dowling, J.E., Boycott, B.B.: Neural connections of the primate retina. In: Rohen, J. (Ed.): The Structure of the Eye, II, pp. 55–68, Symposium, Wiesbaden 1965. Stuttgart: Schattauer 1965b.Google Scholar
  95. Dowling, J.E., Boycott, B.B.: Organization of the primate retina: electron microscopy. Proc. roy. Soc. Lond. B 116, 80–111 (1966).CrossRefGoogle Scholar
  96. Dowling, J.E., Boycott, B.B.: Retinal ganglion cells: A correlation of anatomical and physiological approaches. In: Straatsma, B.R., Hall, M.O., Allen, R.A., Crescitelli, F. (Eds.): The retina: Morphology, function and clinical characteristics. UCLA Forum in Medical Sciences No. 8, pp. 31–62. Berkeley-Los Angeles: University of California Press 1969.Google Scholar
  97. Dowling, J.E., Brown, J.E., Major, D.: Synapses of horizontal cells in rabbit and cat retinas. Science 153, 1639–1641 (1966).PubMedCrossRefGoogle Scholar
  98. Dowling, J.E., Cowan, W. M.: An electron microscope study of normal and degenerating centrifugal fiber terminals in the pigeon retina. Z. Zellforsch. 71, 14–28 (1966).PubMedCrossRefGoogle Scholar
  99. Dowling, J.E., Ripps, H.: Visual adaptation in the retina of the skate. J. gen. Physiol. 56, 491–520 (1970).PubMedCrossRefGoogle Scholar
  100. Dowling, J.E., Werblin, F.S.: Organization of the retina of the mudpuppy, Necturus maculosus. I. Synaptic structure. J. Neurophysiol. 32, 315–338 (1969).PubMedGoogle Scholar
  101. Drujan, B.D., Diaz Bórges, J.M.: Adrenaline depletion induced by light in the dark-adapted retina. Experientia (Basel) 24, 676–677 (1968).CrossRefGoogle Scholar
  102. Drujan, B.D., Diaz Bórges, J.M., Alvarez, N.: Relationship between the contents of adrenaline, noradrenaline and dopamine in the retina and its adaptational state. Life Sci. 4, 473–477 (1965).PubMedCrossRefGoogle Scholar
  103. Dubin, M.W.: The inner plexiform layer of the retina: A quantitative and comparative electron microscopic analysis in several vertebrates. Ph. D. Dissertation, The Johns Hopkins University 1969.Google Scholar
  104. Dubin, M.W.: The inner plexiform layer of the vertebrate retina: A quantitative and comparative electron microscopic analysis. J. comp. Neurol. 140, 479–506 (1970).PubMedCrossRefGoogle Scholar
  105. Duke-Elder, S.: The eye in evolution. System of ophthalmology, Vol. I. St. Louis: Mosby 1958.Google Scholar
  106. Dunn, R.F.: Studies on the retina of the gecko Coleonyx variegatus. I. The visual cell classification. J. Ultrastruct. Res. 16, 651–671 (1966).Google Scholar
  107. Eakin, R.M., Quay, W.B., Westfall, J.A.: Cytological and cytochemical studies on the frontal and pineal organs of the tree frog, Hyla regilla. Z. Zellforsch. 59, 663–683 (1963).CrossRefGoogle Scholar
  108. Ehinger, B.: Adrenergic neurons in the retina. Life Sci. 5, 129–131 (1966a).PubMedCrossRefGoogle Scholar
  109. Ehinger, B.: Adrenergic retinal neurons. Z. Zellforsch. 71, 146–152 (1966b).CrossRefGoogle Scholar
  110. Ehinger, B.: Adrenergic nerves in the avian eye and ciliary ganglion. Z. Zellforsch. 82, 577–588 (1967).PubMedCrossRefGoogle Scholar
  111. Ehinger, B., Falck, B.: Adrenergic retinal neurons of some New World monkeys. Z. Zellforsch. 100, 364–375 (1969).PubMedCrossRefGoogle Scholar
  112. Ehinger, B., Falck, B., Laties, A.M.: Adrenergic neurons in teleost retina. Z. Zellforsch. 97, 285–297 (1969).PubMedCrossRefGoogle Scholar
  113. Eichner, D.: Zur Frage der Fermentlokalisation in der Netzhaut des Menschen. Z. Zellforsch. 44, 339–344 (1956).PubMedCrossRefGoogle Scholar
  114. Eichner, D.: Zur Histologie und Topochemie der Netzhaut des Menschen. Z. Zellforsch. 48, 137–186 (1958).PubMedCrossRefGoogle Scholar
  115. Engström, K.: Structure, organization and ultrastructure of the visual cells in the teleost family Labridae. Acta Zool. 44, 1–41 (1963).CrossRefGoogle Scholar
  116. Enroth-Cugell, C., Pinto, L.: Algebraic summation of centre and surround inputs to retinal ganglion cells of the cat. Nature (Lond.) 226, 458–459 (1970).CrossRefGoogle Scholar
  117. Eränkö, O., Niemi, M., Merenmies, E.: Histochemical observations on esterases and oxidative enzymes of the retina. In: Smelser, G.S. (Eds.): The structure of the eye, pp. 159–171. New York-London: Academic Press 1961.Google Scholar
  118. Esilä, R.: Histochemical and electrophoretic properties of cholinesterases and non-spceific esterases in the retina of some mammals, including man. Acta Ophthal. 77 (Suppl.), 1–113 (1963).Google Scholar
  119. Evans, E. M.: On the ultrastructure of the synaptic region of visual receptors in certain vertebrates. Z. Zellforsch. 71, 499–516 (1966).PubMedCrossRefGoogle Scholar
  120. Faber, D.S.: Analysis of the slow transretinal potentials in response to light. Ph. D.Google Scholar
  121. Dissertation, State University of New York at Buffalo 1969.Google Scholar
  122. Falck, B., Hillarp, N.-Å., Thieme, G., Torp, A.: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348–354 (1962).CrossRefGoogle Scholar
  123. Fine, B. S.: Synaptic lamellas in the human retina: an electron microscopic study. J. Neuropath. exp. Neurol. 22, 255–262 (1962).CrossRefGoogle Scholar
  124. Fine, B. S., Zimmerman, L.E.: Müller’s cells and the “middle limiting membrane” of the human retina. Invest. Ophthal. 1, 304–326 (1962).PubMedGoogle Scholar
  125. Francis, C.M.: Cholinesterase in the retina. J. Physiol. (Lond.) 120, 435–439 (1953).Google Scholar
  126. Franz, V.: Sehorgan. In: Oppel, A. (Hrsg.): Lehrbuch der vergleichenden mikroskopischen Anatomie der Wirbelthiere, Bd. 7. Jena: G. Fischer 1913.Google Scholar
  127. Gallego, A.: Sinapsis a nivel de la capa plexiforme externa de la retina. An. Inst. Farm. Esp. 1, 145–180 (1952).Google Scholar
  128. Gallego, A.: Procedimiento de impregnación argentica de la retina entera. An. Inst. Farmacol. esp. 2, 171–176 (1953).Google Scholar
  129. Gallego, A.: Conexiones transversales retinianas. An. Inst. Farmacol. esp. 3, 31–39 (1954).Google Scholar
  130. Gallego, A.: Description d’une nouvelle couche cellulaire dans la rétine des mammifères et son rôle fonctionelle possible. An. Inst. Farmacol. esp. 13–14, 175–180 (1964–1965).Google Scholar
  131. Gallego, A.: Connexions transversales au niveau des couches plexiformes de la rétine. Actualités Neurophysiol. 6, 5–27 (1965). Reprinted in An. Inst. Farmacol. esp. 13–14, 181–204 (1964–1965).Google Scholar
  132. Gallego, A., Cruz, J.: Células nerviosas de asociación en la capa de células ganglionares de la retina de los mamíferos. An. Inst. Farmacol. esp. 13–14, 205–209 (1964–1965).Google Scholar
  133. Gallego, A., Cruz, J.: Mammalian retina: associational nerve cells in ganglion cell layer. Science 150, 1313–1314 (1965).PubMedCrossRefGoogle Scholar
  134. Globus, A., Lux, H.D., Schubert, P.: Somadendritic spread of intracellularly injected tritiated glycine in cat spinal motoneurons. Brain Res. 11, 440–445 (1968).PubMedCrossRefGoogle Scholar
  135. Glow, P.H., Rose, S.: Effects of light and dark on the acetylcholinesterase activity of the retina. Nature (Lond.) 202, 422–423 (1964).CrossRefGoogle Scholar
  136. Goodland, H.: The ultrastructure of the inner plexiform layer of the retina of Cottus bubalis. Exp. Eye Res. 5, 198–200 (1966).CrossRefGoogle Scholar
  137. Gouras, P.: Graded potentials of bream retina. J. Physiol. (Lond.) 152, 487–505 (1960).Google Scholar
  138. Gouras, P.: Antidromic responses of orthodromically identified ganglion cells in monkey retina. J. Physiol. (Lond.) 204, 407–419 (1969).Google Scholar
  139. Gouras, P., Link, K.: Rod and cone interaction in dark-adapted monkey ganglion cells. J. Physiol. (Lond.) 184, 499–510 (1966).Google Scholar
  140. Govardovskii, V.I., Kharkeievitch, T.A.: Elektronnomikroskopicheskoe issledovanie setchatki ptits (Gallus bankiva domestica). (Electronmicroscopic study of retina in birds (Gallus bankiva domestica). In Russian). Arkh. Anat. Gistol. Embriol. 52, 53–61 (1967).PubMedGoogle Scholar
  141. Graham, L.T., Lolley, R.N., Baxter, C.F.: Effect of illumination upon levels of γ-amino-butyric acid and glutamic acid in frog retina in vivo. Fed. Proc. 27, 463 (1968).Google Scholar
  142. Gray, E. G.: Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J. Anat. 93, 420–433 (1959).PubMedGoogle Scholar
  143. Guillery, R.W.: Some electron microscopical observations of degenerative changes in central nervous synapses. In: Singer, M., Schadé, J.P. (Eds.): Degeneration Patterns in the Nervous System. Progr. Brain Res. 14, 57–76. New York-Amsterdam: Elsevier 1965.CrossRefGoogle Scholar
  144. Guillery, R.W., Ralston, H. J.: Nerve fibers and terminals: Electron microscopy after Nauta staining. Science 143, 1331–1332 (1964).PubMedCrossRefGoogle Scholar
  145. Haft, J.S., Harman, P.J.: Evidence for central inhibition of retinal function. Vision Res. 7, 499–501 (1967).PubMedCrossRefGoogle Scholar
  146. Haft, J.S.: Further remarks on evidence for central inhibition of retinal function. Vision Res. 8, 319–323 (1968).PubMedCrossRefGoogle Scholar
  147. Häggendal, J., Malmfors, T.: Identification and cellular localization of the catecholamines in the retina and the choroid of the rabbit. Acta physiol. scand. 64, 58–66 (1965).CrossRefGoogle Scholar
  148. Hannover, A.: Über die Netzhaut und ihre Gehirnsubstanz bei Wirbelthieren, mit Ausnahme des Menschen. Arch. Anat. Physiol. wissen. Med. (J. Müller), pp. 320–345 (1840).Google Scholar
  149. Hannover, A.: De la rétine et de sa substance cérébrale dans les animaux vertébrés l’homme excepté. In: Recherches microscopiques sur le système nerveux, pp. 37–56, 64–67. Copenhagen: P. G. Philipsen 1844.Google Scholar
  150. Hansson, H.-A.: Scanning electron microscopy of the rat retina. Z. Zellforsch. 107, 23–44 (1970a).PubMedCrossRefGoogle Scholar
  151. Hansson, H.-A.: Scanning electron microscopic studies on the synaptic bodies in the rat retina. Z. Zellforsch. 107, 45–53 (1970b).PubMedCrossRefGoogle Scholar
  152. Hanytt, I., Niwa, H., Tamura, T.: A slow potential from the epiphysis cerebri of fishes. Vision Res. 9, 621–623 (1969).CrossRefGoogle Scholar
  153. Hebb, C.O., Silver, A., Swan, A.A.B., Walsh, E. G.: A histochemical study of cholinesterase of rabbit retina and optic nerve. Quart. J. exp. Physiol. 38, 185–191 (1953).PubMedGoogle Scholar
  154. Heimer, L.: The tracing of pathways in the central nervous system. Proc. I.E.E.E. 56, 950–959 (1968).Google Scholar
  155. Hendrickson, A. E.: Regeneration of the retina in the newt (Diemictylus v. viridescens): an electron microscope study. Ph. D. Dissertation, University of Washington (Seattle) 1964. Reproduced by University Microfilms, Inc., Ann Arbor, Mich, and University Microfilms Ltd., High Wycomb, England.Google Scholar
  156. Hendrickson, A. E.: Landolt’s club in the amphibian retina: A Golgi and electron microscope study. Invest. Ophthal. 5, 484–496 (1966).PubMedGoogle Scholar
  157. Hillarp, N.-Å., Fuxe, K., Dahlstrom, A.: Central monoamine neurons. In: von Eitler, U.S., Rosell, S., Uvnas, B. (Eds.): Mechanisms on release of biogenic amines, pp. 31–37. New York-Oxford: Pergamon 1966.Google Scholar
  158. Holden, A.L.: An investigation of the centrifugal pathway to the pigeon retina. J. Physiol. (Lond.) 186, 133 P (1966a).Google Scholar
  159. Holden, A.L.: Two possible visual functions for centrifugal fibres to the retina. Nature (Lond.) 212, 837–838 (1966b).CrossRefGoogle Scholar
  160. Holden, A.L.: Antidromic activation of the isthmo-optic nucleus. J. Physiol. (Lond.) 197, 183–198 (1968a).Google Scholar
  161. Holden, A.L.: The centrifugal system running to the pigeon retina. J. Physiol. (Lond.) 197, 199–219 (1968b).Google Scholar
  162. Holden, A.L.: Receptive properties of centrifugal cells projecting to the pigeon retina. J. Physiol. (Lond.) 210, 155 P (1970).Google Scholar
  163. Hollenberg, M.J., Bernstein, M.H.: Fine structure of the photoreceptor cells of the ground squirrel (Citellus tridecemlineatus tridecemlineatus). Amer. J. Anat. 118, 359–374 (1966).PubMedCrossRefGoogle Scholar
  164. Honrubia López, F.M.: Estudio de los campos anatómicos de las células ganglionares de la retina. Arch. Soc. oftal. hisp.-amer. 26, 693–720 (1966).Google Scholar
  165. Honrubia, F.M., Elliott, J.H.: Efferent innervation of the primate retina. Invest. Ophthal. 7, 618 (1968).Google Scholar
  166. Honrubia, F.M., Elliott, J.H.: Horizontal cell of the mammal retina. Arch. Ophthal. 82, 98–104 (1969a).PubMedGoogle Scholar
  167. Honrubia, F.M., Elliott, J.H.: Dendritic fields of the retinal ganglion cells in the cat. Invest. Ophthal. 8, 461 (1969b).Google Scholar
  168. Honrubia, F.M., Elliott, J.H.: Dendritic fields of the retinal ganglion cells in the cat. Arch. Ophthal. 84, 221–226 (1970).PubMedGoogle Scholar
  169. Honrubia, F.M., Grijalbo, M.P.: Estudio de las células ganglionares de la retina. Arch. Soc. oftal. hisp.-amer. 27, 796–804 (1967).Google Scholar
  170. Honrubia, F.M., Grijalbo, M.P., Elliott, J.H.: Fibras centrífugas en la retina de los primates. Arch. Soc. oftal. hisp.-amer. 27, 561–569 (1967).Google Scholar
  171. Imbert, M.: Aspects récents de la physiologie des voies visuelles primaires chez les vertébrés. J. Physiol. (Paris) 62 (Suppl. 1), 3–59 (1970).Google Scholar
  172. Iraldi, A.P., Robertis, E. de: Ultrastructure and function of catecholamine containing systems. In: Proc. 2nd Internat. Congr. Endocrinol., London. Excerpta Medica Internat. Congr. Ser. 83, 355–363 (1964).Google Scholar
  173. Iraldi, A.P., Etcheverry, G.J.: Granulated vesicles in retinal synapses and neurons. Z. Zellforsch. 81, 283–296 (1967).PubMedCrossRefGoogle Scholar
  174. Kabuta, H., Tominaga, Y., Kuwabara, M.: The rhabdomeric microvilli of several arthropod compound eyes kept in darkness. Z. Zellforsch. 85, 78–88 (1968).PubMedCrossRefGoogle Scholar
  175. Kalberer, M., Pedler, C.: The visual cells of the alligator: An electron microscopic study. Vision Res. 3, 323–329 (1963).CrossRefGoogle Scholar
  176. Kaneko, A.: Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J. Physiol. (Lond.) 207, 623–633 (1970).Google Scholar
  177. Kaneko, A.: Electrical connections between horizontal cells in dogfish retina. J. Physiol. (Lond.) 213, 95–105 (1971).Google Scholar
  178. Kaneko, A., Hashimoto, H.: Recording site of the single cone response determined by an electrode marking technique. Vision Res. 7, 847–851 (1967).PubMedCrossRefGoogle Scholar
  179. Kaneko, A., Hashimoto, H.: Localization of spike-producing cells in the frog retina. Vision Res. 8, 259–262 (1968).PubMedCrossRefGoogle Scholar
  180. Kaneko, A., Hashimoto, H.: Electrophysiological study of single neurons in the inner nuclear layer of the carp retina. Vision Res. 9, 37–55 (1969).PubMedCrossRefGoogle Scholar
  181. Kelly, D.E., Smith, S.W.: Fine structure of the pineal organs of the adult frog, Rana pipiens. J. Cell Biol. 22, 653–674 (1964).PubMedCrossRefGoogle Scholar
  182. Kelly, D.E., Kamer, J.C. van de: Cytological and histochemical investigations on the pineal organ of the adult frog (Rana esculenta). Z. Zellforsch. 52, 618–639 (1960).PubMedCrossRefGoogle Scholar
  183. Kidd, M.: Electron microscopy of the inner plexiform layer of the retina. Proc. Anat. Soc: “Cytology of nervous tissue”, pp. 88–91. London: Taylor and Francis 1961.Google Scholar
  184. Kidd, M.: Electron microscopy of the inner plexiform layer of the retina in the cat and the pigeon. J. Anat. 96, 179–187 (1962).PubMedGoogle Scholar
  185. Kishida, K., Naka, K.-I.: Amino acids and spikes from the retinal ganglion cells. Science 156, 648–650 (1967).PubMedCrossRefGoogle Scholar
  186. Koelle, G.B.: The elimination of enzymatic diffusion artefacts in the histochemical localization of cholinesterases and a survey of their cellular distributions. J. Pharmacol. 103, 153–171 (1951).Google Scholar
  187. Koelle, G.B., Friedenwald, J.S.: The histochemical localization of cholinesterase in ocular tissues. Amer. J. Ophthal. 33, 253–256 (1950).PubMedGoogle Scholar
  188. Koelle, G.B., Friedenwald, J.S.Allen, R.A., Wolfand, L.: Localization of specific cholinesterase in ocular tissues of the cat. Amer. J. Ophthal. 35, 1580–1584 (1952).PubMedGoogle Scholar
  189. Kojima, K., Iida, M., Majima, Y., Okada, S.: Histochemical studies on monoamine oxidase (MAO) of the human retina. Jap. J. Ophthal. 5, 205–210 (1961).Google Scholar
  190. Kolb, H.: Organization of the outer plexiform layer of the primate retina: Electron microscopy of Golgi-impregnated cells. Proc. roy. Soc. Lond. B 258, 261–283 (1970).Google Scholar
  191. Kolb, H., Boycott, B.B., Dowling, J.E.: A second type of midget bipolar cell in the primate retina. Appendix to Boycott, B.B. and Dowling, J.E.: Organization of the primate retina: light microscopy. Phil. Trans, Roy. Soc. Lond. B 255, 109–184 (1969).CrossRefGoogle Scholar
  192. Kolmer, W.: Die Netzhaut (Retina). In: von Mollendorff, W. (Hrsg.): Handbuch der mikroskopischen Anatomie des Menschen, 2. Bd., 3. Teil, S. 295–468. Berlin: Springer 1936.Google Scholar
  193. Kramer, S.G.: Dopamine: A retinal neurotransmitter. I. Retinal uptake, storage, and light-stimulated release of H3-dopamine in vivo. Invest. Ophthal. 10, 438–452 (1971).PubMedGoogle Scholar
  194. Kramer, S.G., Potts, A.M., Mangnall, Y.: Dopamine: A retinal neurotransmitter. II. Autoradiographic localization of H3-dopamine in the retina. Invest. Ophthal. 10, 617–624 (1971).PubMedGoogle Scholar
  195. Kuffler, S.W.: Neurons in the retina: Organization, inhibition and excitation problems. Cold Spr. Harb. Symp. quant. Biol. 17, 281–292 (1952).Google Scholar
  196. Kuffler, S.W., Nicholls, J.G., Orkand, R.K.: Physiological properties of glial cells in the central nervous system of amphibi. A.J. Neurophysiol. 29, 768–787 (1966).Google Scholar
  197. Kuriyama, K., Sisken, B., Haber, B., Roberts, E.: The γ-aminobutyric acid system in rabbit retina. Brain Res. 9, 161–164 (1968).CrossRefGoogle Scholar
  198. Ladman, A.J.: The fine structure of the rod-bipolar cell synapse in the retina of the albino rat. J. biophys. biochem. Cytol. 4, 459–466 (1958).PubMedCrossRefGoogle Scholar
  199. Ladman, A.J., Hutchings, S.: Electron microscopic localization of cholinesterase activity in normal rat retina. Preliminary observations. Anat. Rec. 151, 375 (1965).Google Scholar
  200. Ladman, A.J., Soper, E.H.: Preliminary observations on the fine structure of Miiller’s cells of the avian retina. Proc. Fifth Internat. Congr. Electr. Micr. 2, R-6 (1962).Google Scholar
  201. Landolt, E.: Beitrag zur Anatomie der Retina vom Frosch, Salamander und Triton. Roux’ Arch. mikr. Anat. 7, 81–100 (1871).CrossRefGoogle Scholar
  202. Lasansky, A.: Morphological bases for a nursing role of glia in the toad retina. Electron microscope observations. J. biophys. biochem. Cytol. 11, 237–243 (1961).PubMedCrossRefGoogle Scholar
  203. Lasansky, A.: Functional implications of structural findings in retinal glial cells. In: Biology of neuroglia (Eds. de Robertis, E.D.P. and Carrea, R.). Amsterdam: Elsevier 1965.Google Scholar
  204. Lasansky, A.: Functional implications of structural findings in retinal glial cells Progr. Brain Res. 15, 48–72 (1965).CrossRefGoogle Scholar
  205. Lasansky, A.: The pathway between hyaloid blood and retinal neurons in the toad. Structural observations and permeability to tracer substances. J. Cell. Biol. 34, 617–626 (1967).PubMedCrossRefGoogle Scholar
  206. Lasansky, A.: Basal junctions at synaptic endings of turtle visual cells. J. Cell Biol. 40, 577–581 (1969).PubMedCrossRefGoogle Scholar
  207. Lasansky, A.: Synaptic organization of cone cells in the turtle retina. Phil. Trans. Roy. Soc. Lond. B, 262, 365–381 (1971).CrossRefGoogle Scholar
  208. Lasansky, A., Fuortes, M.G.F.: The site of origin of electrical responses in visual cells of the leech, Hirudo medicinalis. J. Cell Biol. 42, 241–252 (1969).PubMedCrossRefGoogle Scholar
  209. Lasansky, A., Wald, F.: The extracellular space in the toad retina as defined by the distribution of ferrocyanide. A light and electron microscope study. J. Cell Biol. 15, 463–479 (1962).PubMedCrossRefGoogle Scholar
  210. Laties, A.M., Jacobowitz, D.: A comparative study of the autonomic innervation of the eye in monkey, cat, and rabbit. Anat. Rec. 156, 383–396 (1966).PubMedCrossRefGoogle Scholar
  211. Laufer, M., Millán, E.: Spectral analysis of l-type S-potentials and their relation to photopigment absorption in a fish (Eugerres plumieri) retina. Vision Res. 10, 237–251 (1970).PubMedCrossRefGoogle Scholar
  212. Laufer, M., Millán, E., Vanegas, H.: Retinal adaptation and S-potentials. Proc. Int. Union Physiol. Sci., 25th Congr. Munich 1971. IX, 1000 (1971).Google Scholar
  213. Lázár, Gy.: Efferent paths of the frog’s optic centre. Acta morph. Acad. Sci. hung. 17, 341 (1969).Google Scholar
  214. Lee, S.H., Pak, S.Y., Choi, K.D.: A histochemical study of cholinesterase activity in rabbit’s retinae. Yonsei med. J. 8, 1–7 (1967).PubMedGoogle Scholar
  215. Leicester, J., Stone, J.: Ganglion, amacrine and horizontal cells of the cat’s retina. Vision Res. 7, 695–705 (1967).PubMedCrossRefGoogle Scholar
  216. Leplat, G., Gerebtzoff, M.A.: Localisation de l’acetylcholinesterase et des médiateurs diphénoliques dans la rétine. Ann. Oculist. 189, 121–128 (1956).Google Scholar
  217. Lessell, S., Kuwabara, T.: Retinal neuroglia. Arch. Ophthal. 70, 671–678 (1963).PubMedGoogle Scholar
  218. Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., Pitts, W.H.: What the frog’s eye tells the frog’s brain. Proc. I.R.E. 47, 1940–1951 (1959).CrossRefGoogle Scholar
  219. Lettvin, J.Y., Maturana, H.R., Pitts, W.H., McCulloch, W.S.: wo remarks on the visual system of the frog. In: Rosenblith, W.A. (Ed.): Sensory communication, pp. 757–776. Cambridge-New York: Technology Press and Wiley 1961.Google Scholar
  220. Lewis, P.R., Shute, C.C.D.: Fine localization of acetylcholinesterase in the optic nerve and retina of the rat. J. Physiol. (Lond.) 180, 8 P–10 P (1965).Google Scholar
  221. Liberman, R.: Retinal cholinesterase and glycolysis in rats raised in darkness. Science 135, 372–373 (1962).PubMedCrossRefGoogle Scholar
  222. Lipetz, L.E.: Glial control of neuronal activity. I.E.E.E. Trans. Milit. Electr. MIL-7,144–155 (1963).Google Scholar
  223. Lipetz, L.E.: Information processing in the frog’s retina. Document No. AD 614249, Clearinghouse for Federal Scientific and Technical Information, U.S. Dept. of Commerce. 75 pp. (1965).Google Scholar
  224. Lipetz, L.E.: The Landolt Club: I. Historical resume. In preparation.Google Scholar
  225. Locket, N.A.: The retina of Poromitra nigrofulvus (Garman): an optical and electron microscope study. Exp. Eye Res. 8, 265–275 (1969).PubMedCrossRefGoogle Scholar
  226. Locket, N.A.: Deep-sea fish retinas. Brit. med. Bull. 26, 107–111 (1970a).PubMedGoogle Scholar
  227. Locket, N.A.: Landolt’s club in the retina of the African lungfish, Protopterus aethiopicus Heckel. Vision Res. 10, 299–306 (1970b).PubMedCrossRefGoogle Scholar
  228. Lolley, R.N.: Metabolic and anatomical specialization within the retina. In: Lajtha, A. (Ed.): Handbook of Neurochemistry, Vol. 2, Chap. 20, pp. 473–504. New York: Plenum Press 1969.Google Scholar
  229. Macnichol, E.F., Jr., Macpherson, L., Svaetichin, G.: Studies on spectral response curves from the fish retina. Paper No. 39, Natl. Physical Lab., Teddington 1957.Google Scholar
  230. Macnichol, E.F., Jr., Svaetichik, G.: Electric responses from the isolated retinas of fishes. Amer. J. Ophthal. 46 (3, part II), 26–46 (1958).PubMedGoogle Scholar
  231. Maksimova, E.M.: Vliyanie vnutrikletochnoi polyarizatsii gorizontalnykh kletok na aktivnost’ ganglioznykh kletok setchatki ryb. Biofizika 14, 537–544 (1969). English Transl.: Effect of intracellular polarization of horizontal cells on ganglion cell activity in the fish retina. Neurosci. Transl. (F.A.S.E.B.) 11, 114–120 (1970).PubMedGoogle Scholar
  232. Malmfors, T.: Evidence of adrenergic neurons with synaptic terminals in the retina of rats demonstrated with fluorescence and electron microscopy. Acta, physiol. scand. 58, 99–100 (1963).CrossRefGoogle Scholar
  233. Marchesi, V.T., Sears, M.L., Barrnett, R.J.: Electron microscopic studies of nucleoside phosphatase activity in blood vessels and glia of the retina. Invest. Ophthal. 3,1–21 (1964).PubMedGoogle Scholar
  234. Marks, W.B.: Difference spectra of the visual pigments in single goldfish cones. Ph. D. Dissertation, The Johns Hopkins University 1963.Google Scholar
  235. Marks, W.B.: Visual pigments of single goldfish cones. J. Physiol. (Lond.) 178, 14–32 (1965a).Google Scholar
  236. Marks, W.B.: Visual pigments of single cones. In: Ciba Foundation Symposium on Colour Vision, pp. 208–213. Boston: Little, Brown and Comp. 1965b.Google Scholar
  237. Matsusaka, T.: Lamellar bodies in the synaptic cytoplasm of the accessory cone from the chick retina as revealed by electron microscopy. J. Ultrastruct. Res. 18, 55–70 (1967).PubMedCrossRefGoogle Scholar
  238. Maturana, H. R.: Efferent fibres in the optic nerve of the toad (Bufo bufo). J. Anat. 92, 21–27 (1958).PubMedGoogle Scholar
  239. Maturana, H. R., Frenk, S.: Synaptic connections of the centrifugal fibres in the pigeon retina. Science 150, 359–361 (1965).PubMedCrossRefGoogle Scholar
  240. Maturana, H. R., Lettvik, J.Y., McCulloch, W.S., Pitts, W.H.: Anatomy and physiology of vision of the frog (Rana pipiens). J. gen. Physiol. 43 (6 part 2), 129–175 (1960).PubMedCrossRefGoogle Scholar
  241. Maturana, H. R., Uribe, G., Frenk, S.: A biological theory of relativistic colour coding in the primate retina. Arch. biol. med. exp. Suppl. 1, 30 pp. (1968).Google Scholar
  242. McGill, J.L., Powell, T.P.S., Cowan, W.M.: The retinal representation upon the optic tectum and isthmo-optic nucleus in the pigeon. J. Anat. 100, 5–33 (1966a).PubMedGoogle Scholar
  243. McGill, J.L., Powell, T.P.S., Cowan, W.M.: The organization of the projection of the centrifugal fibres to the retina in the pigeon. J. Anat. 100, 35–49 (1966b).PubMedGoogle Scholar
  244. Meller, K., Eschner, J.: Vergleichende Untersuchungen über die Feinstruktur der Bipolarzellschicht der Vertebratenretina. Z. Zellforsch. 68, 550–567 (1965).PubMedCrossRefGoogle Scholar
  245. Miles, F.A.: Centrifugal effects in the avian retina. Science 170, 992–995 (1970).PubMedCrossRefGoogle Scholar
  246. Miller, R.F., Dowling, J.E.: Intracellular responses of the Müller (glial) cells of the mudpuppy retina: their relation to b-wave of the electroretinogram. J. Neurophysiol. 33, 323–341 (1970).PubMedGoogle Scholar
  247. Missotten, L.: Étude des synapses de la rétine humaine au microscope électronique. Proc. Eur. Reg. Conf. Electr. Micr., Delft 1960 2, 818–821 (1960).Google Scholar
  248. Missotten, L.: The Ultrastructure of the Human Retina. Brüssel: Arscia Uitgaven 1965a.Google Scholar
  249. Missotten, L.: The synapses in the human retina. In: Rohen, J. (Ed.): The Structure of the Eye, II. Symposium, Wiesbaden 1965, pp. 17–28. Stuttgart: Schattauer 1965b.Google Scholar
  250. Missotten, L.: The synaptic relations of visual cells and neurons in the human retina, studied by electron microscopy, after silver impregnation. Presented to Ass. Res. Ophthal, meeting, Chicago, Ill., Oct. 26, 1968.Google Scholar
  251. Missotten, L., Appelmans, M., Michiels, J.: L’ultrastructure des synapses des cellules visuelles de la rétine humaine. Bull. Mém. Soc. Franç. Ophthal. 76, 59–82 (1963).Google Scholar
  252. Mitarai, G.: The origin of the so-called cone potential. Proc. Jap. Acad. 34, 299–304 (1958).CrossRefGoogle Scholar
  253. Mitarai, G.: Determination of ultramicroelectrode tip position in the retina in relation to S-potential. J. gen. Physiol. 43 (6, part 2), 95–99 (1960).PubMedCrossRefGoogle Scholar
  254. Mitarai, G.: Function of glia (in Japanese). Seitai Kagaku 14, 36–48 (1963).Google Scholar
  255. Mitarai, G.: Further identification of the site of origin and the spectral response curve of S-potential (in Japanese). Seitai Kagaku 15, 38–46 (1964).Google Scholar
  256. Mitarai, G.: Glia-neuron interaction in carp retina, Glia potentials revealed by microelectrode with lithium carmine. In: Seno, S., Cowdry, E. V. (Eds.): Intracellular Membraneous Structure. Sympos. Soc. Cell Chem. Suppl. 14, 549–558 (1965).Google Scholar
  257. Mitarai, G., Svaetichin, G., Vallecalle, E., Fatehchand, R., Villegas, J., Laufer, M.: Glia-neuron interaction and adaptational mechanisms of the retina. In: Jung, R., Kornhuber, H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, Symposium Freiburg 1960, S. 463–481. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  258. Mizzuno, K.: Histochemical studies on the glial cell in the retina and optic nerve. Acta Soc. Ophthal. Jap. 68, 1567–1573 (1964).Google Scholar
  259. Motokawa, K.: Physiology of Color and Pattern Vision. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  260. Mountford, S.: Effects of light and dark adaptation on the vesicle populations of receptor-bipolar synapses. J. Ultrastruct. Res. 9, 403–418 (1963).CrossRefGoogle Scholar
  261. Müller, H.: Zur Histologie der Netzhaut. Z. wiss. Zool. 3, 234–237 (1851).Google Scholar
  262. Müller, H.: Anatomisch-physiologische Untersuchungen über die Retina bei Menschen und Wirbelthieren. Z. wiss. Zool. 8, 1–122 (1856).Google Scholar
  263. Müller, H.: Bau und Wachstum der Netzhaut des Guppy (Lebistes reticulatus). Zool. Jahrb., Abt. allgem. Zool. Physiol. Tiere 63, 275–322 (1952).Google Scholar
  264. Müller, W.: Über die Stammesentwicklung des Sehorgans der Wirbelthiere. Leipzig: Vogel 1874.Google Scholar
  265. Munk, O.: The eye of Calamoichthys calabaricus Smith, 1965 (Polypteridae, Pisces). Vidensk. Medd. Dansk naturh. Foren. 127, 113–126 (1964).Google Scholar
  266. Munk, O.: Omosudis lowei Gunther, 1887, a bathypelagic deep-sea fish with an almost pure-cone retina. Vidensk. Medd. Dansk naturh. Foren. 128, 341–355 (1965).Google Scholar
  267. Naka, K.-I.: Receptive field mechanism in the vertebrate retina. Science 171, 691–693 (1971).PubMedCrossRefGoogle Scholar
  268. Naka, K.-I., Nye, P.W.: Receptive field organization of the catfish retina: Are at least two lateral mechanisms involved? J. Neurophysiol. 33, 625–642 (1970).PubMedGoogle Scholar
  269. Naka, K.-I., Rushton, W.A.H.: The generation and spread of S-potentials in fish (Cyprinidae). J. Physiol. (Lond.) 192, 437–461 (1967).Google Scholar
  270. Nauta, W.J.H., Ebbesson, S.O.E. (Eds.): Contemporary research methods in neuroanatomy. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  271. Negishi, K.: Reduction and enhancement of S-potential observed with two simultaneous light stimuli in the isolated fish retina. Vision Res., Suppl. 3, 65–76 (1971).PubMedCrossRefGoogle Scholar
  272. Negishi, K., Laufer, M., Svaetichin, G.: Excitation spread along horizontal and amacrine cell layers in the teleost retina. Nature (Lond.) 218, 39–40 and 69 (1968).CrossRefGoogle Scholar
  273. Neumayer, L.: Der feinere Bau der Selachier-Retina. Arch. mikr. Anat. 48, 83–111 (1897).CrossRefGoogle Scholar
  274. Nichols, C.W., Jacobowitz, D., Hottenstein, M.: The influence of light and dark on the catecholamine content of the retina and choroid. Invest. Ophthal. 6, 642–646 (1967).PubMedGoogle Scholar
  275. Nichols, C.W., Koelle, G.B.: Acetylcholinesterase: method for demonstration in amacrine cells of rabbit retina. Science 155, 577–478 (1967).CrossRefGoogle Scholar
  276. Nichols, C.W., Koelle, G.B.: Comparison of the localization of acetylcholinesterase and non-specific cholinesterase activities in mammalian and avian retinas. J. comp. Neurol. 133, 1–15 (1969).CrossRefGoogle Scholar
  277. Nilsson, S.E.G.: An electron microscopic classification of the retinal receptors of the leopard frog (Rana pipiens). J. Ultrastruct. Res. 10, 390–416 (1964a).PubMedCrossRefGoogle Scholar
  278. Nilsson, S.E.G.: Interreceptor contacts in the retina of the frog (Rana pipiens). J. Ultrastruct. Res. 11, 147–165 (1964b).PubMedCrossRefGoogle Scholar
  279. Nilsson, S.E.G., Crescitelli, F.: Changes in ultrastructure and electroretinogram of bullfrog retina during development. J. Ultrastruct. Res. 27, 45–62 (1969).CrossRefGoogle Scholar
  280. Nilsson, S.E.G., Crescitelli, F.: A correlation of ultrastructure and function in the developing retina of the frog tadpole. J. Ultrastruct. Res. 30, 87–102 (1970).PubMedCrossRefGoogle Scholar
  281. Noell, W.K., Lasansky, A.: Effects of electrophoretically applied drugs and electrical currents on the ganglion cell of the retina. Fed. Proc. 18, 115 (1959).Google Scholar
  282. Norton, A.L., Spekreijse, H., Wolbarsht, M.L., Wagner, H.G.: Receptive field organization of the S-potential. Science 160, 1021–1022 (1968).PubMedCrossRefGoogle Scholar
  283. O’Connell, C.P.: The structure of the eye of Scardinops caerulea, Engraulis mordax, and four other pelagic marine teleosts. J. Morph. 113, 287–329 (1963).PubMedCrossRefGoogle Scholar
  284. O’Daly, J.A.: Ultraestructura y citoquímica de la retina de los teleósteos. Doctoral Thesis, Universidad Central de Venezuela (1967a).Google Scholar
  285. O’Daly, J.A.: ATPase activity at the functional contacts between retinal cells which produce S-potential. Nature (Lond.) 216, 1329–1331 (1967b).CrossRefGoogle Scholar
  286. Ofuchi, Y.: Electron microscopic histochemistry of nucleoside phosphatases of the retina. III. Fine structural localization of nucleoside phosphatases in the photoreceptor synapses. (In Japanese with English Summary). Acta Soc. Ophthal, jap. 72, 515–522 (1968).Google Scholar
  287. Ogden, T.E.: On the function of efferent retinal fibres. In: Structure and function of inhibitory neuronal mechanisms. Proc. 4th Internat. Meeting Neurobiol., Stockholm, 1966, pp. 89–109. Oxford-New York: Pergamon Press 1968.Google Scholar
  288. Oikawa, T., Ogawa, T., Motokawa, K.: Origin of so-called cone action potential. J. Neurophysiol. 22, 102–111 (1959).PubMedGoogle Scholar
  289. Oksche, A.: Survey of the development and comparative morphology of the pineal organ. Progr. Brain Res. 10, 3–29 (1965).CrossRefGoogle Scholar
  290. Oksche, A.Harnack, M. von: Elektronenmikroskopische Untersuchungen am Stirnorgan von Anuren (zur Frage der Lichtrezeptoren). Z. Zellforsch. 59, 239–288 (1963).PubMedCrossRefGoogle Scholar
  291. Olney, J.W.: Centripetal sequence of appearance of receptor-bipolar synaptic structures in developing mouse retina. Nature (Lond.) 218, 281–282 (1968a).CrossRefGoogle Scholar
  292. Olney, J.W.: An electron microscopic study of synapse formation, Receptor outer segment development, and other aspects of developing mouse retina. Invest. Ophthal. 7, 250–268 (1968b).PubMedGoogle Scholar
  293. Ordy, J.M., Samorajski, T.: Visual acuity and ERG-CFF in relation to the morphologic organization of the retina among diurnal and nocturnal primates. Vision Res. 8,1205–1225 (1968).PubMedCrossRefGoogle Scholar
  294. Orkand, R.K., Nicholls, J.G., Kuffler, S.W.: Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 788–806 (1966).PubMedGoogle Scholar
  295. Owsiannikow, s: Über das dritte Auge bei Petromyzon fluviatilis. Mem. Acad. Imp. Sci. St. Petersbourg 36, (9), 1–26 (1888).Google Scholar
  296. Pappas, G.D., Bennett, M.V.L.: Specialized junctions involved in electrical transmission between neurons. Ann. N.Y. Acad. Sci. 137, 495–508 (1966).PubMedCrossRefGoogle Scholar
  297. Parthe, V.: Células horizontales y amacrinas de la retina. Acta Cient. Venez. Supl. 3, 240–249 (1967).Google Scholar
  298. Parthe, V.: Células ganglionares dislocadas de la retina de los teleósteos. Acta Cient. Venez. 19, 13 (1968).Google Scholar
  299. Parthe, V.: Conexiones de las células horizontales y estrelladas de la retina de los teleósteos. Acta Cient. Venez. 20, 84 (1969).Google Scholar
  300. Parthe, V.: Clasificación morfológica de las células horizontales de la retina. Acta Cient. Venez. 21, (Supl. 1), 19 (1970).Google Scholar
  301. Parthe, V.: Horizontal, bipolar and oligopolar cells in the teleost retina. Internat. Sympos. Visual Processes in Vertebrates, Santiago 1970. Vision Res. 12: 395–406 (1972).PubMedCrossRefGoogle Scholar
  302. Pedler, C.: The radial fibres of the retina. Doc. Ophthalmol. 16, 208–220 (1962a).PubMedCrossRefGoogle Scholar
  303. Pedler, C.: Some observations on the fine structure of the visual-cell synapse. XIX. Concil. Ophthal. 1962. I, 645–651 (1962b).Google Scholar
  304. Pedler, C.: The fine structure of the radial fibres in the reptile retina. Exp. Eye Res. 2, 296–303 (1963).PubMedCrossRefGoogle Scholar
  305. Pedler, C.: Rods and cones: a fresh approach. In: Ciba Foundation Symposium on Colour Vision, pp. 52–83. Boston: Little, Brown and Comp. 1965.Google Scholar
  306. Pedler, C., Tansley, K.: The fine structure of the cone of a diurnal gecko (Phelsuma inunguis). Exp. Eye Res. 2, 39–47 (1963).PubMedCrossRefGoogle Scholar
  307. Pedler, C., Tilly, R.: The nature of the gecko visual cell. A light and electron microscopic study. Vision Res. 4, 499–510 (1964).PubMedCrossRefGoogle Scholar
  308. Pedler, C., Tilly, R.: The serial reconstruction of a complex receptor synapse. In: Rohen, J. (Ed.): The structure of the eye, II. Symposium, Wiesbaden 1965, S. 29–53. Stuttgart: Schattauer 1965.Google Scholar
  309. Pedler, C., Tilly, R.: The reconstruction of the outer plexiform layer in the retina. Proc. Sixth Internat. Congr. Electr. Micr. Kyoto, 1966, pp. 497–498. Tokyo: Maruzen 1966 a.Google Scholar
  310. Pedler, C., Tilly, R.: A new method of serial reconstruction from electron micrographs J. roy. micr. Soc. 86, 189–197 (1966b).PubMedGoogle Scholar
  311. Pedler, C., Tilly, R.: The retina of a fruit bat (Pteropus giganteus Brunnich). Vision Res. 9, 909–922 (1969).PubMedCrossRefGoogle Scholar
  312. Peters, A., Palay, S.L.: The morphology of laminae A and A1 of the dorsal nucleus of the lateral geniculate body of the cat. J. Anat. 100, 451–486 (1966).PubMedGoogle Scholar
  313. Polyak, S.L.: The retina. Chicago: University of Chicago Press 1941.Google Scholar
  314. Polyak, S.L.: The vertebrate visual system (Ed. Klüver, H.), pp. 207–287. Chicago: University of Chicago Press 1957.Google Scholar
  315. Pomeranz, B., Chung, S.H.: Dendritic-tree anatomy codes form-vision physiology in tadpole retina. Science 170, 983–984 (1970).PubMedCrossRefGoogle Scholar
  316. Prince, J.L., Powell, T.P.S.: An experimental study of the origin and the course of the centrifugal fibres to the olfactory bulb in the rat. J. Anat. 107, 215–237 (1970a).Google Scholar
  317. Prince, J.L., Powell, T.P.S.: The afferent connexions of the nucleus of the horizontal limb of the diagonal band. J. Anat. 107, 239–256 (1970b).Google Scholar
  318. Prince, J.L., Powell, T.P.S.: The morphology of the granule cells of the olfactory bulb. J. Cell Sci. 7, 91–124 (1970c).Google Scholar
  319. Prince, J.L., Powell, T.P.S.: The synaptology of the granule cells of the olfactory bulb. J. Cell Sci. 7, 125–156 (1970d).Google Scholar
  320. Prince, J.L., Powell, T.P.S.: An electron-microscopic study of the termination of the afferent fibres to the olfactory bulb from the cerebral hemisphere. J. Cell Sci. 7, 157–185 (1970e).Google Scholar
  321. Prince, J.H., Mcconnell, D.G.: Retina and optic nerve. In: Prince, J.H. (Ed.): The rabbit in eye research, Chapt. 13, pp. 385–448. Springfield, Illinois: C. C. Thomas 1964.Google Scholar
  322. Radnót, M., Lovás, B.: Beitrag zur Feinstruktur der Kaninchennetzhaut. Klin. Mbl. Augenheilk. 152, 242–246 (1968).PubMedGoogle Scholar
  323. Rall, W., Shepherd, G.M., Reese, T.S., Brightman, M.W.: Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp. Neurol. 14, 44–56 (1966).PubMedCrossRefGoogle Scholar
  324. Raviola, E., Raviola, G.: Ricerche istochimiche sulla retina di coniglio nel corso dello sviluppo postnatale. Z. Zellforsch. 56, 552–572 (1962).PubMedCrossRefGoogle Scholar
  325. Raviola, E., Raviola, G.: Subsurface cisterns in the amacrine cells of the rabbit retina. J. Submicr. Cytol. 1, 35–42 (1969).Google Scholar
  326. Raviola, G., Raviola, E.: Light and electron microscopic observations on the inner plexiform layer of the rabbit retina. Amer. J. Anat. 120, 403–426 (1967).PubMedCrossRefGoogle Scholar
  327. Raviola, G., Raviola, E., Tenconi, M.T.: Sulla organizzazione dello strato granulare esterno e della membrane limitante esterna nella retina di coniglio. Z. Zellforsch. 70, 532–553 (1966).PubMedCrossRefGoogle Scholar
  328. Raynauld, J.-P.: Rod and cone responses of ganglion cells in goldfish retina: A micro-electrode study. Ph. D. Dissertation. The Johns Hopkins University 1969.Google Scholar
  329. Retzius, G.: Über den Bau des sogenannten Parietalauges von Ammocoetes. Biol. Untersuch. N.F. 7, 22–25 (1895).Google Scholar
  330. Retzius, G.: Zur Kenntnis der Retina der Selachier. Zoologiska Studier, Festskr. W. Lilljeborg, pp. 19–28. Uppsala: Almqvist-Wiksells 1896.Google Scholar
  331. Richardson, T.M., Lipetz, L.E.: The Landolt club: IL Its fine structure in the retinas of frog and turtle. In preparation.Google Scholar
  332. Rohen, J.W.: Das Auge und seine Hilfsorgane. In: Handbuch der mikroskopischen Anatomie des Menschen (v. Möllendorff), III/4. Berlin-Gottingen-New York-Heidelberg: Springer 1964.Google Scholar
  333. Samorajski, T., Ordy, J.M., Keefe, J.R.: Structural organization of the retina in the tree shrew (Tupaia glis). J. Cell Biol. 28, 489–504 (1966).PubMedCrossRefGoogle Scholar
  334. Sano, Y., Yoshikawa, H., Konishi, M.: Fluorescence microscopic observations on the dog retina. Arch, histol. jap. 30, 75–81 (1968).Google Scholar
  335. Schaper, A.: Die nervösen Elemente der Selachier-Retina in Methylenblaupräparaten. Festschr. 70 Geburts. C. Kupffer, pp. 1–10. Jena: G. Fischer 1899.Google Scholar
  336. Schiefferdecker, P.: Studien zur vergleichenden Histologie der Retina. Arch. mikr. Anat. 28, 305–396 (1886).CrossRefGoogle Scholar
  337. Schultze, M.: Zur Anatomie und Physiologie der Retina. Arch. mikr. Anat. 2, 165–174, 175–286 (1866).Google Scholar
  338. Shen, S.-C., Greenfield, P., Boell, E.J.: Localization of acetylcholinesterase in chick retina during histogenesis. J. comp. Neurol. 106, 433–461 (1956).PubMedCrossRefGoogle Scholar
  339. Shibkova, S.A., Vladimirskii, B.M.: Strukturnaya organizatsiya ganglioznykh kletok temporal’noi oblasti setchatki koshki. (The structural organization of ganglion cells of the temporal region of the retina in the cat. In Russian). Dokl. Akad. Nauk S.S.S.R. 186, 461–464 (1969).Google Scholar
  340. Shiragami, M.: Electron microscopic study of synapses of visual cells. II. The morphogenesis of synapses of visual cells in the chick embryo (In Japanese). Acta Soc. Ophthal, jap. 72, 1060–1073 (1968).Google Scholar
  341. Shkol’nik-Yarros, E.G.: K morfologii bipolyarnykh kletok setchatki. Arhk. Anat. Gistol. Embriol. 54, 30–37 (1968). Engl. Transl.: Morphology of the bipolar cells of the retina. Neurosci. Transl. (F.A.S.E.B.) 7, 778–784 (1969).Google Scholar
  342. Sillman, A.J., Ito, H., Tomita, T.: Studies on the mass receptor potential of the isolated frog retina. I. General properties of the response. Vision Res. 9, 1435–1442 (1969).PubMedCrossRefGoogle Scholar
  343. Sjöstrand, F.S.: The ultrastructure of the retinal rod synapses of the guinea pig eye. J. appl. Phys. 24, 1422 (1953).Google Scholar
  344. Sjöstrand, F.S.: Die routinemäßige Herstellung von ultradünnen (ca. 200 Å) Gewebschnitten für elektronenmikroskopische Untersuchungen der Gewebszellen bei hoher Auflösung. Z. wiss. Mikr. 62, 65–86 (1954).PubMedGoogle Scholar
  345. Sjöstrand, F.S.: Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J. Ultrastruct. Res. 2, 122–170 (1958).PubMedCrossRefGoogle Scholar
  346. Sjöstrand, F.S.: The ultrastructure of the retinal receptors of the vertebrate eye. Ergeb. Biol. 21, 128–160 (1959).Google Scholar
  347. Sjöstrand, F.S.: Electron microscopy of the retina. In: Smelser, G.K. (Ed.): The structure of the eye, pp. 1–28. New York-London: Academic Press 1961a.Google Scholar
  348. Sjöstrand, F.S.: Topographic relationship between neurons, synapses and glia cells. In: Jung, R., Korhuber, H. (Eds.): Neurophysiologie und Psychophysik des visuellen Systems, Symposium Freiburg 1960, S. 13–22. Berlin-Göttingen-Heidelberg: Springer 1961b.Google Scholar
  349. Sjöstrand, F.S.: The synaptology of the retina. In: Ciba Foundation Symposium on Colour Vision, pp. 110–144. Boston: Little, Brown and Company 1965.Google Scholar
  350. Sjöstrand, F.S.: The outer plexiform layer and the neural organization of the retina. In: Straatsma, B.R., Hall, M.O., Allen, R.A., Crescitelli, F. (Eds.): The retina: Morphology, function and clinical characteristics. UCLA Forum in Medical Sciences No. 8, pp. 63–100. Berkeley-Los Angeles: University of California Press 1969.Google Scholar
  351. Sjöstrand, F.S., Nilsson, S.E.G.: The Structure of the rabbit retina as revealed by electron microscopy. In: Prince, J.H. (Ed.): The rabbit in eye research, Chapt. 14, pp. 449–513. Springfield, Ill.: C. C. Thomas 1964.Google Scholar
  352. Smelser, G.K., Ishikawa, T., Pei, Y.F.: Electron microscopic studies of intra-retinal spaces. Diffusion of particulate materials. In: Rohen, J.W. (Ed.): The structure of the eye, II. Symposium, Wiesbaden 1965, S. 109–120. Stuttgart: Schattauer 1965.Google Scholar
  353. Smith, C.A., Rasmussen, G.: Degeneration in the efferent nerve endings in the cochlea after axonal section. J. Cell Biol. 26, 63–77 (1965).PubMedCrossRefGoogle Scholar
  354. Sobrino, J.A., Gallego, A.: Granulated vesicles in the mammalian retina. An. Inst. Farm. Esp. 17–18, 343–347 (1968–1969).Google Scholar
  355. Steinberg, R.H.: Rod and cone contributions to S-potentials from the cat retina. Vision Res. 9, 1319–1329 (1969a).PubMedCrossRefGoogle Scholar
  356. Steinberg, R.H.: Rod-cone interaction in S-potentials from the cat retina. Vision Res. 9, 1331–1344 (1969b).PubMedCrossRefGoogle Scholar
  357. Stell, W.K.: Correlated light and electron microscope observations on Golgi preparations of goldfish retina. J. Cell Biol. 23, 89 A (1964).Google Scholar
  358. Stell, W.K.: Correlation of retinal cytoarchitecture and ultrastructure in Golgi preparations. Anat. Rec. 153, 389–397 (1965a).PubMedCrossRefGoogle Scholar
  359. Stell, W.K.: Discussion: Dendritic contacts of horizontal cell in monkey retina. In: Rohen, J. (Ed.): The structure of the eye, II. Symposium, Wiesbaden 1965, S. 27–28. Stuttgart: Schattauer 1965b.Google Scholar
  360. Stell, W.K.: Observations on some ultrastructural characteristics of goldfish cones. Amer. Zool. 5, 435 (1965c).Google Scholar
  361. Stell, W.K.: The structure of horizontal cells and synaptic relations in the outer plexiform layer of the goldfish retina, as revealed by the Golgi method and electron microscopy. Ph. D. Dissertation, University of Chicago 1966.Google Scholar
  362. Stell, W.K.: The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. Amer. J. Anat. 121, 401–424 (1967).PubMedCrossRefGoogle Scholar
  363. Stell, W.K.: The structure and morphologic relations of rods and cones in the retina of the spiny dogfish, Squalus. Comp. Bioch. Physiol. 42 (2A), 141–151(1972).CrossRefGoogle Scholar
  364. Stone, J.: A quantitative analysis of the distribution of ganglion cells in the cat’s retina. J. comp. Neurol. 124, 337–352 (1965).PubMedCrossRefGoogle Scholar
  365. Stone, J.: Structure of the cat’s retina after occlusion of the retinal circulation. Vision Res. 9, 351–356 (1969).PubMedCrossRefGoogle Scholar
  366. Straschill, s: Actions of drugs on single neurons in the cat’s retina. Vision Res. 8, 35–47 (1968).CrossRefGoogle Scholar
  367. Stretton, A.O.W., Kravitz, E.A.: Neuronal geometry: Determination with a technique of intracellular dye injection. Science 162, 132–134 (1968).PubMedCrossRefGoogle Scholar
  368. Svaetichin, G.: The cone action potential. Acta physiol. scand. 29 (Suppl. 106), 565–600 (1953).Google Scholar
  369. Svaetichin, G.: Spectral response curves from single cones. Acta physiol. scand. 39 (Suppl. 134), 17–46 (1956).Google Scholar
  370. Svaetichin, G.: Células horizontales y amacrinas de la retina: propiedades y mecanismos de control sobre las bipolares y ganglionares. Acta Cient. Venezolana, Suppl. 3, 254–276 (1967).Google Scholar
  371. Svaetichin, G., Laufer, M., Mitarai, G., Fatehchand, R., Vallecalle, E., Villegas, J.: Glial control of neuronal networks and receptors. In: Jung, R., Kornhuber, H. (Eds.): Neurophysiologie und Psychophysik des visuellen Systems, Symposium Freiburg 1960, S. 445–456. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  372. Svaetichin, G., Negishi, K., Fatehchand, R.: Cellular mechanisms of a Young-Hering Visual System. In: Ciba Foundation Symposium on Colour Vision, pp. 178–203. Boston: Little, Brown and Comp. 1965.Google Scholar
  373. Szentágothai, J.: The anatomical substrates of nervous inhibitory functions. Acta Morph. Acad. Sci. hung. 17, 325–327 (1969).Google Scholar
  374. Testa, A.S. de: Morphological studies on the horizontal and amacrine cells of the teleost retina. Vision Res. 6, 51–59 (1966).CrossRefGoogle Scholar
  375. Tomita, T.: A study on the origin of intraretinal action potential of cyprinid fish by means of pencil-type microelectrode. Jap. J. Physiol. 7, 80–85 (1957).CrossRefGoogle Scholar
  376. Tomita, T.: Electrical activity in the vertebrate retina. J. Opt. Soc. Amer. 53, 49–57 (1963).CrossRefGoogle Scholar
  377. Tomita, T.: Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spr. Harb. Sympos. quant Biol. 30, 559–566 (1965).Google Scholar
  378. Tomita, T.: Electrical activity of vertebrate photoreceptors. Quart. Rev. Biophys. 3, 179–222 (1970).CrossRefGoogle Scholar
  379. Tomita, T., Murakami, M., Sato, Y., Hashimoto, Y.: Further study on the origin of the so-called cone action potential (S-potential). Its histological determination. Jap. J. Physiol. 9, 63–68 (1959).CrossRefGoogle Scholar
  380. Toyoda, J.-I., Hashimoto, H., Ohtsu, K., Tomita, T.: Receptor-bipolar transmission in the retina. Personal communication. (Presented at Neurosciences Research Program Work Session on the Retina, March 23, 1970).Google Scholar
  381. Tretjakoff, D.: Die Parietalorgane von Petromyzon fluviatilis. Z. wiss. Zool. 113, 1–112 (1915).Google Scholar
  382. Uchizono, K.: Synaptic organization of the Purkinje cells in the cerebellum of the cat. Exp. Brain Res. 4, 97–113 (1967).PubMedCrossRefGoogle Scholar
  383. Uga, S., Nakao, F., Mimura, M., Ikui, H.: Some new findings on the fine structure of the human photoreceptor cells. J. Electr. Micr. 19, 71–84 (1970).Google Scholar
  384. Underwood, G.: Some suggestions concerning vertebrate visual cells. Vision Res. 8, 483–488 (1968).PubMedCrossRefGoogle Scholar
  385. Uyama, Y.: Die Retina des Säugetieres (II). Med. J. Osaka Univ. 2, 629–673 (1951).Google Scholar
  386. Val’tsev, V.B.: Role of cholinergic structures in outer plexiform layer in the electrical activity of frog retina (In Russian). Zh. Vysshei Nervnoi Deyatel’nosti (Pavlova) 15, 934 (1965). Engl. Transl. Fed. Proc. 25 (Transl. Suppl.), T 765–T 766 (1966).Google Scholar
  387. van de Kamer, J.C.: Histological structure and cytology of the pineal complex in fishes, amphibians and reptiles. Progr. Brain Res. 10, 30–48 (1965).CrossRefGoogle Scholar
  388. van Harreveld, A., Khattab, F.L.: Electron microscopy of the mouse retina prepared by freeze-substitution. Anat. Rec. 161, 125–140 (1968).PubMedCrossRefGoogle Scholar
  389. Ventura, J., Mathieu, M.: Exogenous fibres of the retina. Canad. Ophthal. Soc. Trans. 21, 184–196 (1959).Google Scholar
  390. Viale, G., Apponi, G.: Histochemische Untersuchungen über die Cholinesterasen in der menschlichen Netzhaut. Z. Zellforsch. 55, 673–678 (1961).PubMedCrossRefGoogle Scholar
  391. Villegas, G.M.: Electron microscopic study of the vertebrate retina. J. gen. Physiol. 43 (6, part 2), 15–43 (1960).PubMedCrossRefGoogle Scholar
  392. Villegas, G.M.: Comparative ultrastructure of the retina in fish, monkey and man. In: Jung, R., Kornhuber, H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, Symposium Freiburg 1960, S. 3–13. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  393. Villegas, G.M.: Ultrastructure of the human retina. J. Anat. 98, 501–513 (1964).PubMedGoogle Scholar
  394. Villegas, G.M., Villegas, R.: Neuron-glia relationship in the bipolar cell layer of the fish retina. J. Ultrastruct. Res. 8, 89–106 (1963).PubMedCrossRefGoogle Scholar
  395. Vivien-Roels, B.: Étude structurale et ultrastructurale de l’épiphyse d’un Reptile: Pseudemys scripta elegans. Z. Zellforsch. 94, 352–390 (1969).CrossRefGoogle Scholar
  396. Vogel, F.S., Kemper, L.: A modification of Hortega’s silver impregnation method to assist in the identification of astrocytes with electron microscopy. J. Neuropath, exp. Neurol. 21, 147–154 (1962).CrossRefGoogle Scholar
  397. Vrabec, Fr.: A new finding in the retina of a marine teleost, Callionymus lyra L. Folia Morphol. 14, 143–147 (1966).Google Scholar
  398. Vrabec, Fr., Obeisrberger, J., Bolkova, A.: Effect of intra vitreous vincristine sulfate on the rabbit retina. Amer. J. Ophthal. 66, 199–204 (1968).PubMedGoogle Scholar
  399. Walberg, F.: Axoaxonic contacts in the cuneate nucleus, probable basis for presynaptic depolarization. Exp. Neurol. 13, 218–231 (1965).PubMedCrossRefGoogle Scholar
  400. Wald, F., Robertis, E. de: The action of glutamate and the problem of the “extracellular space” in the retina. Z. Zellforsch. 55, 649–661 (1961).PubMedCrossRefGoogle Scholar
  401. Walls, G.L.: The visual cells of lampreys. Brit. J. Ophthalmol. 19, 129–148 (1935).CrossRefGoogle Scholar
  402. Walls, G.L.: The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills, Michigan: Cranbrook Institute of Science 1942. Reprinted. New York-London: Hafner 1963.Google Scholar
  403. Wartenberg, H.: The mammalian pineal organ: Electron microscopic studies on the fine structure of pinealocytes, glial cells and on the perivascular compartment. Z. Zellforsch. 86, 74–97 (1968).PubMedCrossRefGoogle Scholar
  404. Weidman, T.A., Kuwabara, T.: Correlation of morphogenesis and physiology of the developing retina. Invest. Ophthal. 6, 453 (1967).Google Scholar
  405. Weidman, T.A., Kuwabara, T.: Postnatal development of the rat retina. Arch. Ophthal. 79, 470–484 (1968).PubMedGoogle Scholar
  406. Weidman, T.A., Kuwabara, T.: Development of the rat retina. Invest. Ophthal. 8, 60–69 (1969).PubMedGoogle Scholar
  407. Werblin, F.S., Dowling, J.E.: Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339–355 (1969).PubMedGoogle Scholar
  408. Witkovsky, P.: An ontogenetic study of retinal function in the chick. Vision Res. 3, 341–355 (1963).CrossRefGoogle Scholar
  409. Witkovsky, P.: Synapses made by myelinated fibers running to teleost and elasmobranch retinas. J. Comp. Neurol. 142, 205–222 (1971).CrossRefGoogle Scholar
  410. Witkovsky, P., Dowling, J.E.: Synaptic relationships in the plexiform layers of carp retina. Z. Zellforsch. 100, 60–82 (1969).PubMedCrossRefGoogle Scholar
  411. Stell, W.K.: Gross morphology and synaptic relationships of bipolar cells in the retina of the smooth dogfish, Mustelus canis. Anat. Rec. 169, 456–457 (1971).Google Scholar
  412. Wolfe, D.E.: The epiphyseal cell: an electron-microscopic study of its intercellular relationships and intracellular morphology in the pineal body of the albino rat. Progr. Brain Res. 10, 332–376 (1965).CrossRefGoogle Scholar
  413. Wolter, J.R., Liss, L.: Zentrifugale (antidrome) Nervenfasern im menschlichen Sehnerven. Albrecht v. Graefes Arch. Ophthal. 158, 1–7 (1956).CrossRefGoogle Scholar
  414. Wolter, J.R.: Silver carbonate techniques for the demonstration of ocular histology. In: Smelser, G.K. (Ed.): The structure of the eye, pp. 117–138. New York-London: Academic Press 1961.Google Scholar
  415. Wolter, J.R.: The reactions of the centrifugal nerves of the human eye: After photocoagulation, occlusion of the central retinal artery and bilateral enucleation. In: Rohen, J.W. (Ed.): The structure of the eye, II. Symposium, Wiesbaden 1965, S. 85–95. Stuttgart: Schattauer 1965.Google Scholar
  416. Yamada, E.: Some observations on the fine structure of the human retina. Fukuoka Acta Med. 57, 163–182 (1966).Google Scholar
  417. Yamada, E., Ishikawa, T.: The fine structure of the horizontal cells in some vertebrate retinae. Cold Spr. Harb. Sympos. quant. Biol. 30, 383–392 (1965).Google Scholar
  418. Yamada, E., Ishikawa, T.: The so-called “synaptic ribbon” in the inner segment of the lamprey retina. Arch. histol. jap. 28, 411–417 (1967).PubMedGoogle Scholar
  419. Yamada, E., Ishikawa, T., Hatae, T.: Some observations on the retinal fine structure of the snake Elaphe climacophora. In: Uyeda, R. (Ed.): Electron Microscopy 1966. Proc. 6th Intl. Congr. Electr. Micr., Kyoto 1966, 2, 495–496. Tokyo: Maruzen Co. Ltd. 1966.Google Scholar
  420. Yasitzumi, G., Tezuka, O., Ikeda, T.: The submicroscopic structure of the inner segments of the rods and cones in the retina of Uroloncha striata var. domestica Flower. J. Ultrastruct. Res. 1, 295–306 (1958).CrossRefGoogle Scholar
  421. Young, J. Z.: The photoreceptors of lampreys. I. Light-sensitive fibres in the lateral line nerves. J. exp. Biol. 12, 229–238 (1935).Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • William K. Stell
    • 1
  1. 1.BethesdaUSA

Personalised recommendations