Skip to main content

The Electroretinogram, as Analyzed by Microelectrode Studies

  • Chapter
Physiology of Photoreceptor Organs

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 2))

Abstract

It was more than a century ago that Holmgren (1865) discovered the electrical response of the retina to light, the electroretinogram (ERG) of the present day. The ERG is usually recorded with a pair of electrodes placed on the opposite sides of the retina. The ERG may differ in shape according to the species and the state of adaptation (Fig. 1), but typically it starts with a cornea-negative deflection termed the a-wave, followed by a cornea-positive deflection (b-wave). At the termination of light there occurs another deflection (d-wave), the polarity of which is either cornea-positive or cornea-negative, depending on the species used. In the dark adapted retina, there is also a very slow cornea-positive deflection (c-wave).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arden, G.B., Brown, K.T.: Some properties of components of the cat electroretinogram revealed by local recording under oil. J. Physiol. (Lond.) 176, 429–461 (1965).

    CAS  Google Scholar 

  • Armington, J.C.: A component of the human electroretinogram associated with red color vision. J. Opt. Soc. Amer. 42, 393–401 (1952).

    Article  CAS  Google Scholar 

  • Armington, J.C.: Electrical responses of the light-adapted eye. J. Opt. Soc. Amer. 43, 450–456 (1953).

    Article  CAS  Google Scholar 

  • Asher, H.: The electroretinogram of the blind spot. J. Physiol. (Lond.) 112, 40P (1951).

    Google Scholar 

  • Bernhard, C.G.: The negative component PIII in the retinogram of the tortoise. Acta physiol. scand. 3, 132–136 (1941).

    Article  Google Scholar 

  • Bornschein, H., Hanitzsch,R., Lützow, A.v.: Off-Effekt und negative ERG-Komponente des enukleierten Bulbus und der isolierten Retina des Kaninchens. I. Einfluß der Reizparameter. Vision Res. 6, 251–259.

    Google Scholar 

  • Bortoff, A.: Localization of slow potential responses in the Necturus retina. Vision Res. 4, 627–636 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Boynton, R.M.: Stray light and the human electroretinogram. J. Opt. Soc. Amer. 43, 442–449 (1953).

    Article  CAS  Google Scholar 

  • Boynton, R.M., Riggs, L.A.: The effect of stimulus area and intensity upon the human retinal response. J. exp. Psychol. 42, 217–226 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Brindley, G.S.: The passive electrical properties of the frog’s retina, choroid and sclera for radial fields and currents. J. Physiol. (Lond.) 134, 339–352 (1956a).

    CAS  Google Scholar 

  • Brindley, G.S.: The effect on the frog’s electroretinogram of varying the amount of retina illuminated. J. Physiol. (Lond.) 134, 353–359 (1956b).

    CAS  Google Scholar 

  • Brindley, G.S.: Responses to illumination recorded by microelectrodes from the frog’s retina. J. Physiol. (Lond.) 134, 360–384 (1956c).

    CAS  Google Scholar 

  • Brindley, G.S.: The sources of slow electrical activity in the frog’s retina. J. Physiol. (Lond.) 140, 247–261 (1958).

    CAS  Google Scholar 

  • Brindley, G.S.: Physiology of the Retina and Visual Pathway. London: Edward Arnold Publ. Ltd. 1960.

    Google Scholar 

  • Brindley, G.S., Hamasaki, D.I.: The properties and nature of the R-membrane of the frog’s eye. J. Physiol. (Lond.) 167, 599–606 (1963).

    CAS  Google Scholar 

  • Brown, K.T.: The analysis of ERG and the origin of its components. Jap. J. Ophthal. 10, Suppl. (Proc. 4th ISCERG Symp.) 130–140 (1966).

    Google Scholar 

  • Brown, K.T.: The electroretinogram: Its components and their origins. Vision Res. 8, 633–677 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Brown, K.T., Murakami, M.: A new receptor potential of the monkey retina with no detectable latency. Nature (Lond.) 201, 626–628 (1964).

    Article  CAS  Google Scholar 

  • Brown, K.T., Tasaki, K.: Localization of electrical activity in the cat retina by an electrode marking method. J. Physiol. (Lond.) 158, 281–295 (1961).

    CAS  Google Scholar 

  • Brown, K.T., Watanabe, K.: Isolation and identification of a receptor potential from the pure cone fovea of the monkey retina. Nature (Lond.) 193, 958–960 (1962a).

    Article  Google Scholar 

  • Brown, K.T., Watanabe, K.: Rod receptor potential from the retina of the night monkey. Nature (Lond.) 196, 547–550 (1962b).

    Article  CAS  Google Scholar 

  • Brown, K.T., Watanabe, K., Murakami, M.: The early and late receptor potentials of monkey cones and rods. Cold Spr. Harb. Symp. quant. Biol. 30, 457–482 (1965).

    CAS  Google Scholar 

  • Brown, K.T., Wiesel, T.N.: Intraretinal recording in the unopened cat eye. Amer. J. Ophthal. 46, 91–96, (1958).

    PubMed  CAS  Google Scholar 

  • Brown, K.T., Wiesel, T.N.: Intraretinal recording with micropipette electrodes in the intact cat eye. J. Physiol. (Lond.) 149, 537–562 (1959).

    CAS  Google Scholar 

  • Brown, K.T., Wiesel, T.N.: Analysis of the intraretinal electroretinogram in the intact cat eye. J. Physiol. (Lond.) 158, 229–256 (1961a).

    CAS  Google Scholar 

  • Brown, K.T., Wiesel, T.N.: Localization of origins of electroretinogram components by intraretinal recording in the intact cat eye. J. Physiol. (Lond.) 158, 257–280 (1961b).

    CAS  Google Scholar 

  • Byzov, A.L.: Sources of the impulses recorded from the inner layers of the frog retina (in Russian). Biofizika 4, 414–421 (1959).

    PubMed  CAS  Google Scholar 

  • Byzov, A.L.: Functional properties of different cells in the retina of cold-blooded vertebrates. Cold Spr. Harb. Symp. quant. Biol. 30, 547–558 (1965).

    CAS  Google Scholar 

  • Crescitelli, F.: The e-wave and inhibition in the developing retina of the frog. Vision Res. 10, 1077–1091 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Crescitelli, F., Sickel, W.: Delayed off-responses recorded from the isolated frog retina. Vision Res. 8, 801–816 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Faber, D.S.: Analysis of the Slow Transretinal Potentials in Response to Light (Ph.D. Thesis). University of New York at Buffalo 1969.

    Google Scholar 

  • Fry, G.A., Bartley, S.H.: The relation of strong light in the eye to the retinal action potential. Amer. J. Physiol. 111, 335–340 (1935).

    Google Scholar 

  • Gouras, P.: Spreading depression of activity in amphibian retina. Amer. J. Physiol. 195, 28–32 (1958).

    PubMed  CAS  Google Scholar 

  • Gouras, P.: Graded potentials of bream retina. J. Physiol. (Lond.) 152, 487–505 (1960).

    CAS  Google Scholar 

  • Granit, R.: The components of the retinal action potential and their relation to the discharge in the optic nerve. J. Physiol. (Lond.) 77, 207–240 (1933).

    CAS  Google Scholar 

  • Granit, R.: Sensory Mechanisms of the Retina. London-New York-Toronto: Oxford Univ. Press 1947.

    Google Scholar 

  • Granit, R.: Neurophysiology of the retina. In: Davson, H. (Ed.): The Eye, Vol. 2. The Visual Process. New York-London: Academic Press 1962.

    Google Scholar 

  • Granit, R., Riddell, H.A.: The electrical responses of light- and dark-adapted frog’s eyes to rhythmic and continuous stimuli. J. Physiol. (Lond.) 81, 1–28 (1934).

    CAS  Google Scholar 

  • Hanitzsch, R., Trifonow, J.: Intraretinal abgeleitete ERG-Komponenten der isolierten Kaninchennetzhaut. Vision Res. 8, 1445–1455 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Holmgren, F.: Method att objectivera effecten av ljusintryck pa retina. Upsala Läk.-Fören. Förh. 1, 177–191 (1865–1866).

    Google Scholar 

  • Kakeko, A.: Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J. Physiol. (Lond.) 207, 623–633 (1970).

    Google Scholar 

  • Kakeko, A., Hashimoto, H.: Localization of spike-producing cells in the frog retina. Vision Res. 8, 259–262 (1968).

    Article  Google Scholar 

  • Kakeko, A., Hashimoto, H.: Electrophysiological study of single neurons in the inner nuclear layer of the carp retina. Vision Res. 9, 37–55 (1969).

    Article  Google Scholar 

  • Knave, B., Møller, A., Persson, H.: A component analysis of the electroretinogram. Vision Res. (in press).

    Google Scholar 

  • Kuffler, S.W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).

    PubMed  CAS  Google Scholar 

  • Leão, A.A.P.: Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7, 359–390 (1944).

    Google Scholar 

  • MacNichol, E.F., Svaetichin, G.: Electric responses from isolated retinas of fishes. Amer. J. Ophthal. 46, Pt. 2, 26–40 (1958).

    PubMed  CAS  Google Scholar 

  • Meservey, A.B., Chaffee, E.L.: Electrical response of the retina in different types of coldblooded animals. J. Opt. Soc. Amer. 15, 311–330 (1927).

    Article  Google Scholar 

  • Michaelson, I.C.: Retinal Circulation in Man and Animals. Springfield: Charles C. Thomas 1954.

    Google Scholar 

  • Miller, R.E., Dowling, J.E.: Intracellular responses of the Müller (glial) cells of mudpuppy retina: Their relation to b-wave of the electroretinogram. J. Neurophysiol. 33, 323–341 (1970).

    PubMed  CAS  Google Scholar 

  • Mitarai, G.: The origion of the so-called cone action potential. Proc. Japan Acad. 34, 299–304 (1958).

    Article  Google Scholar 

  • Mitarai, G.: Glia-neuron interaction in carp retina, glia potentials revealed by microelectrode with lithium carmine. In: Seno, S., Cowdry, E.V. (Eds.): Intracellular Membraneous Structure. Okayama: Japan Soc. Cell Biol. 1965.

    Google Scholar 

  • Mitarai, G., Watanabe, L, Niimi, K.: Further study on the origin of S-potentials and the function of glia cells in the retina. Proc. 23rd Intn. Congr. Physiol. Sci., Abstr. 838 (1965).

    Google Scholar 

  • Motokawa, K.: Electrogenesis of ERG and optic nerve discharge. Jap. J. Ophthal. 10, Suppl. (Proc. 4th ISCERG Symp.) 141–148 (1966).

    Google Scholar 

  • Motokawa, K., Mita,T.: Ãœber einfachere Untersuchungsmethoden und Eigenschaften der Aktionsströme der Netzhaut des Menschen. Tohoku J. exp. Med. 42, 114–133 (1942).

    Article  Google Scholar 

  • Motokawa, K., Oikawa, T., Tasaki, K., Ogawa, T.: The spatial distribution of electric responses to focal illumination of the carp’s retina. Tohoku J. exp. Med. 70, 151–164 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Motokawa, K., Yamashita, E., Ogawa, T.: The physiological basis of simultaneous contrast in the retina. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics. Berlin-Heidelberg-New York: Springer 1961.

    Google Scholar 

  • Müller-Limmroth, W., Blümer, H.: Ãœber den Einfluß von Mono Jodessigsäure, Natriumazid und Natriumjodat auf das Ruhepotential und das Electroretinogramm des Froschauges. Z. Biol. 109, 420–439 (1957).

    PubMed  Google Scholar 

  • Murakami, M., Kaneko, A.: Differentiation of PIII subcomponents in cold-blooded vertebrate retinas. Vision Res. 6, 627–636 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Murakami, M., Sasaki, Y.: Analysis of spatial distribution of the ERG comp onents in the carp retina. Jap. J. Physiol. 18, 326–336 (1968a).

    Article  CAS  Google Scholar 

  • Murakami, M., Sasaki, Y.: Localization of the ERG components in the carp retina. Jap. J. Physiol. 18, 337–349 (1968b).

    Article  CAS  Google Scholar 

  • Noell, W.K.: Studies on the Electrophysiology and the Metabolism of the Retina. School of Aviation Med. Rep. No. 1. Randolph Field, Texas 1953.

    Google Scholar 

  • Noell, W.K.: The origin of the electroretinogram. Amer. J. Ophthal. 38, 78–90 (1954).

    PubMed  CAS  Google Scholar 

  • Oikawa, T., Ogawa, T., Motokawa, K.: Origin of so-called cone action potential. J. Neurophysiol. 22, 102–111 (1959).

    PubMed  CAS  Google Scholar 

  • Orkand, R.K., Nicholls, J.G., Kuffler, S.W.: Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 788–806 (1966).

    PubMed  CAS  Google Scholar 

  • Ottoson, D., Svaetichin, G.: Electrophysiological investigations of the frog retina. Cold Spr. Harb. Symp. quant. Biol.17, 165–173 (1952).

    CAS  Google Scholar 

  • Ottoson, D., Svaetichin, G.: Electrophysiological investigations of the origin of the ERG of the frog retina. Acta physiol. scand. 29, Suppl. 106, 538–564 (1953).

    Google Scholar 

  • Polyak, S.: The Vertebrate Visual System. Chicago: University of Chicago Press 1957.

    Google Scholar 

  • Rodieck, R.W., Ford, R.W.: The cat local electroretinogram to incremental stimuli. Vision Res. 9, 1–24 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R., Steinberg, R.H.: Rod-dependent intracellular responses to light recorded from the pigment epithelium of the cat retina. J. Physiol. (Lond.) 217, 71–91 (1971).

    CAS  Google Scholar 

  • Schubert, G., Bornschein, H.: Beitrag zur Analyse des menschlichen Elektroretinogramms. Ophthalmologe (Basel) 123, 396–413 (1952).

    Article  CAS  Google Scholar 

  • Sickel, W.: Retinal metabolism in dark and light. This Volume, Chapter 18.

    Google Scholar 

  • Sickel, W., Crescitelli, F.: Delayed electrical responses from the isolated frog retina. Pflügers Arch, ges. Physiol. 297, 266–269 (1967).

    Article  Google Scholar 

  • Steinberg, R.H.: Comparison of the intraretinal b-wave and d.c. component in the area centralis of cat retina. Vision Res. 9, 317–331 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, R.H., Schmidt, R.: Identification of horizontal cells as S-potential generators in the cat retina by intracellular dye injection. Vision Res. 10, 817–820 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, R.H., Schmidt, R., Brown, K.T.: Intracellular responses to light from cat pigment epithelium: Origin of the electroretinogram c-wave. Nature (Lond.) 227, 728–730 (1970).

    Article  CAS  Google Scholar 

  • Stone, J.: Structure of the cat’s retina after occlusion of the retinal circulation. Vision Res. 9, 351–356 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Svaetichin, G.: The cone action potential. Acta physiol. scand. 29, Suppl. 106, 565–600 (1953).

    Google Scholar 

  • Svaetichin, G., Laufer, M., Mitarai, G., Fatehchakd, G., Vallecalle, E., Villegas, J.: Glial control of neuronal networks and receptors. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Tansley, K.: Comparative anatomy of the mammalian retina with respect to the electroretinographic response to light. In: Smelser, G.K. (Ed.): The Structure of the Eye. New York: Academic Press 1961.

    Google Scholar 

  • Tomita, T.: Studies on the intraretinal action potential. Part I. Relation between the localization of micropipette in the retina and the shape of the intraretinal action potential. Jap. J. Physiol. 1, 110–117 (1950).

    Article  Google Scholar 

  • Tomita, T.: A study on the origin of intraretinal action potential of the cyprinid fish by means of pencil-type microelectrode. Jap. J. Physiol. 7, 80–85 (1957).

    Article  CAS  Google Scholar 

  • Tomita, T.: A compensation circuit for coaxial and double-barreled microelectrodes. IRE Trans, biomed. Electron. 9, 138–141 (1962).

    Article  Google Scholar 

  • Tomita, T.: Electrical activity in the vertebrate retina. J. Opt. Soc. Amer. 53, 49–57 (1963).

    Article  CAS  Google Scholar 

  • Tomita, T., Funaishi, A.: Studies on intraretinal action potential with low resistance microelectrode. J. Neurophysiol. 15, 75–84 (1952).

    PubMed  CAS  Google Scholar 

  • Tomita, T., Funaishi, A., Shino, H.: Studies on the intraretinal action potential. Part II. Effects of some chemical agents upon it. Jap. J. Physiol. 2, 147–153 (1951).

    Article  CAS  Google Scholar 

  • Tomita, T., Mizuno, H., Ida, T.: Studies on the intraretinal action potential. Part III. Intraretinal negative potential as compared with b-wave in the ERG. Jap. J. Physiol. 2, 171–176 (1952).

    Article  CAS  Google Scholar 

  • Tomita, T., Murakami, M., Hashimoto, Y.: On the R membrane in the frog’s eye. Its localization, and relation to the retinal action potential. J. gen. Physiol. 43, Pt. 2, 81–94 (1960).

    Article  PubMed  Google Scholar 

  • Tomita, T., Murakami, M., Hashimoto, Y., Sasaki, Y.: Electrical activity of single neurons in the frog’s retina. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Tomita, T., Murakami, M., Sato, Y., Hashimoto, Y.: Further study on the origin of the so-called cone action potential (S-potential). Its histological determination. Jap. J. Physiol. 9, 63–68 (1959).

    Article  CAS  Google Scholar 

  • Tomita, T., Torihama, Y.: Further study on the intraretinal action potentials and on the site of ERG generation. Jap. J. Physiol. 6, 118–136 (1956).

    Article  CAS  Google Scholar 

  • Tomita, T., Tosaka, T., Watanabe, K., Sato, Y.: The fish EIRG in response to different types of illumination. Jap. J. Physiol. 8, 41–50 (1958).

    Article  CAS  Google Scholar 

  • Werblin, F.S.: Functional Organization of the Vertebrate Retina Studied by Intracellular Recording from the Retina of the Mudpuppy, Necturus maculosus. Doctoral Dissertation. The Johns Hopkins Univ., Baltimore 1968.

    Google Scholar 

  • Werblin, F.S., Dowling, J.E.: Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339–355 (1969).

    PubMed  CAS  Google Scholar 

  • Witkovsky, P.: Peripheral mechanisms of vision. Ann. Rev. Physiol. 33, 257–280 (1971).

    Article  CAS  Google Scholar 

  • Yonemura, D., Hatta, M.: Localization of the minor components of the frog’s electroretinogram. Jap. J. Ophthal. 10, Suppl. (Proc. 4th ISCERG Symp.) 149–154 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Tomita, T. (1972). The Electroretinogram, as Analyzed by Microelectrode Studies. In: Fuortes, M.G.F. (eds) Physiology of Photoreceptor Organs. Handbook of Sensory Physiology, vol 7 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65340-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65340-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65342-1

  • Online ISBN: 978-3-642-65340-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics