Light and Dark Adaptation

  • Peter Gouras
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 2)


Living photoreceptor systems modify their behavior to light stimulation. After exposure to light, their sensitivity decreases and this is accompanied by a speeding up of responses and an increase in space-time resolution; in darkness the entire process is reversed. These changes, called light — and dark — adaptation have evolved to optimize the function of visual receptor systems in an ever-changing external world so that they can enhance sensitivity at the expense of spatial and temporal accuracy when light energy is scarce or do the converse when energy is abundant.


Dark Adaptation Horizontal Cell Spatial Summation Visual Adaptation Cone Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, E.D.: Rod and cone components in the electric response of the eye. J. Physiol. (Lond.) 105, 24–37 (1946).Google Scholar
  2. Aguilar, M., Stiles, W.S.: Saturation of the rod mechanism of the retina at high levels of stimulation. Optica Acta 1, 59–65 (1964).CrossRefGoogle Scholar
  3. Alpern, M.: Rod-cone independence in the after-flash effects. J. Physiol. (Lond.) 176, 462–471 (1965).Google Scholar
  4. Alpern, M., Campbell, F.W.: The behavior of the pupil during dark adaptation. J. Physiol. (Lond.) 165, 5–7 (1963).Google Scholar
  5. Andrews, D. P., Hammond, P.: Mesopic increment threshold spectral sensitivity of single optic tract fibres in the cat cone-rod interaction. J. Physiol. (Lond.) 209, 65–81 (1970a).Google Scholar
  6. Andrews, D. P., Hammond, P.: Suprathreshold spectral properties of single optic tract fibres in cat, under mesopic adaptation, cone-rod interaction. J. Physiol. (Lond.) 209, 83–103 (1970b).Google Scholar
  7. Arden, G.B., Weale, R.A.: Nervous mechanisms and dark-adaptation. J. Physiol. (Lond.) 125, 417–426 (1954).Google Scholar
  8. Armington, J.C., Johnson, E. P., Riggs, L.A.: The scotopic a-wave in the electrical response of the human retina. J. Physiol. (Lond.) 118, 289–298 (1952).Google Scholar
  9. Auerbach, E., Wald, G.: Indentification of a violet receptor in human color vision. Science 120, 401–405 (1954).PubMedCrossRefGoogle Scholar
  10. Baker, H.D., Rushton, W.A.H.: The red-sensitive pigment in normal cones. J. Physiol. (Lond.) 176, 56–72 (1965).Google Scholar
  11. Barlow, H.B.: Temporal and spatial summation in human vision at different background intensities. J. Physiol. (Lond.) 141, 337–350 (1958).Google Scholar
  12. Barlow, H.B., Andrews, D. P.: Sensitivity of receptors and “receptor pools”. J. Opt. Soc. Amer. 57, 837–838 (1967).CrossRefGoogle Scholar
  13. Barlow, H.B., Fitzhugh, R., Kuffler, S. W.: Change of organization in the receptive fields of the cat’s retina during dark adaptation. J. Physiol. (Lond.) 137, 338–354 (1957).Google Scholar
  14. Barlow, H.B., Sparrock, J. M.B.: The role of after images in dark adaptation. Science 144, 1309–1314 (1964).PubMedCrossRefGoogle Scholar
  15. Battersby, W.S., Wagman, I.H.: Light adaptation kinetics: the influence of spatial factors. Science 143, 1029–1031 (1964).PubMedCrossRefGoogle Scholar
  16. Baumann, Ch., Scheibner, H.: Die Dunkeladaptation einzelner Neurone in der isolierten, umspülten Froschnetzhaut. Pflügers Arch. ges. Physiol. 197, 85 (1967d).Google Scholar
  17. Baumann, F.: Slow and spike potentials recorded from retinula cells of the Honeybee Drone in response to light. J. gen. Physiol. 52, 855–875 (1968).PubMedCrossRefGoogle Scholar
  18. Baumgardt, E.: Les théories photochimiques classique et quantiques de la vision et l’inhibition nerveuse en vision liminaire. Rev. Opt. (théor. instrum.) 28, 453–478 (1949).Google Scholar
  19. Baumgardt, E.: Visual spatial and temporal summation. Nature (Lond.) 184, 1951–1952 (1959).CrossRefGoogle Scholar
  20. Baylor, D., Fuortes, M.G.F., O’Bryan, P.: J. Physiol. (Lond.) 214, 265–294 (1971).Google Scholar
  21. Blakemore, C.B., Rushton, W.A.H.: Dark adaptation and increment threshold in a rod monochromat. J. Physiol. (Lond.) 181, 612–628 (1965a).Google Scholar
  22. Blakemore, C.B., Rushton, W.A.H.: The rod increment threshold during dark adaptation in normal and rod monochromat. J. Physiol. (Lond.) 181, 629–640 (1965b).Google Scholar
  23. Blanchard, J.: The brightness sensibility of the retina. Phys. Rev. Ser. 1, 11, 81–99 (1918).Google Scholar
  24. Bortoff, A.: Localization of slow potential responses in the Necturus retina. Vision Res. 4, 627–633 (1964).PubMedCrossRefGoogle Scholar
  25. Bouman, M.A.: Peripheral contrast thresholds of the human eye. J. Opt. Soc. Amer. 40, 825–832 (1950).CrossRefGoogle Scholar
  26. Bouman, M.A.: Peripheral contrast thresholds for various and different wavelengths for adapting field and test stimulus. J. Opt. Soc. Amer. 42, 820–831 (1952).CrossRefGoogle Scholar
  27. Bouman, M.A.: On foveal and peripheral interaction binocular vision. Optica Acta 1, 177–183 (1955).CrossRefGoogle Scholar
  28. Boycott, B.B., Dowling, J.E.: Organization of the primate retina: light microscopy. Phil. trans. B 255, 109–184 (1969).CrossRefGoogle Scholar
  29. Boynton, R.M., Ikeda, M., Stiles, W.S.: Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds. Vision Res. 4, 87–117 (1964).PubMedCrossRefGoogle Scholar
  30. Brindley, G.S.: The effects on colour vision of adaptation to very bright lights. J. Physiol. (Lond.) 122, 332–350 (1953).Google Scholar
  31. Brown, J. L., Kuhns, M.P., Adler, H. E.: Relation of threshold criterion to the functional receptors of eye. J. Opt. Soc. Amer. 47, 198–204 (1957).CrossRefGoogle Scholar
  32. Brown, K.T., Murakami, M.: Rapid effects of light and dark adaptation upon the receptive field organization of S-potentials and late receptor potentials. Vision Res. 8, 1145–1171 (1968).PubMedCrossRefGoogle Scholar
  33. Brown, K.T., Watanabe, K., Murakami, M.: The early and late receptor potentials of monkey cones and rods. Cold Spr. Harb. Symp. quant. Biol. 30, 457–482 (1965).Google Scholar
  34. Brown, P. K., Wald, G.: Visual pigments in single rods and cones of the human retina. Science 144, 44–51 (1964).CrossRefGoogle Scholar
  35. Cajal, S.Ramón: Die Retina der Wirbelthiere. Wiesbaden: Bergmann 1894.Google Scholar
  36. Campbell, F. W., Rushton, W.A.H.: Measurement of the scotopic pigment in the living human eye. J. Physiol. (Lond.) 130, 131–147 (1955).Google Scholar
  37. Cleland, B. G., Enroth-Cugell, C.: Quantitative aspects of sensitivity and summation in the cat retina. J. Physiol. (Lond.) 198, 17–38 (1968).Google Scholar
  38. Commichau, R.: Adaptationszustand und Unterschiedsschwellenenergie für Lichtblitze. Z. Biol. 108, 145–160 (1968).Google Scholar
  39. Cone, R.A.: The rat electroretinogram I. Contrasting effects of adaptation on the amplitude and latency of the b-wave. J. gen. Physiol. 47, 1089–1105 (1964).PubMedCrossRefGoogle Scholar
  40. Craik, K., Vernon, M.: The nature of dark adaptation. Brit. J. Psychol. 32, 62–81 (1941).Google Scholar
  41. Craik, K.J.W.: The effect of adaptation upon acuity. Brit. J. Physiol. 29, 252–266 (1939).Google Scholar
  42. Crawford, B.H.: The effect of field size and pattern on the change of visual sensitivity with time. Proc. roy. Soc. B 129, 94–106 (1940).CrossRefGoogle Scholar
  43. Crawford, B.H.: Visual adaptation in relation to brief conditioning stimuli. Proc. roy. Soc. B 134, 283–302 (1947).CrossRefGoogle Scholar
  44. Das, S.R.: Foveal increment thresholds in dark adaptation. J. Opt. Soc. Amer. 54, 541–546 (1964).CrossRefGoogle Scholar
  45. De Lange, H.: Research into the dynamic nature of the human fovea cortex system with intermittent and modulated light. J. Opt. Soc. Amer. 48, 777–789 (1959).Google Scholar
  46. Denton, E. J., Warren, F. J.: Study of the photosensitive pigments in the retinas of deep-sea fish. J. Mar. Biol. Ass. UK. 36, 651–662 (1957).CrossRefGoogle Scholar
  47. De Vries, H.: The quantum character of light and its bearing upon the threshold of vision, the differential sensitivity and visual acuity of the eye. Physica 19, 553–564 (1943).Google Scholar
  48. Dodt, E.: Cone electroretinogram by flicker. Nature 168, 783 (1957).Google Scholar
  49. Dodt, E.: Echte, K.: Dark and light adaptation in pigmented and white rat as measured electroretinogram threshold. J. Neurophysiol. 14, 427–445 (1961).Google Scholar
  50. Donner, K.O., Reuter, T.: Visual adaptation of the rhodopsin rods in the frog’s retina. J. Physiol. (Lond.) 199, 49–87 (1968).Google Scholar
  51. Dowling, J.D., Wald, G.: The biological function of vitamin A acid. Proc. nat. Acad. Sci. (Wash.) 46, 587–608 (1960).CrossRefGoogle Scholar
  52. Dowling, J. E.: Chemistry of visual adaptation in the rat. Nature (Lond.) 188, 114–118 (1960).CrossRefGoogle Scholar
  53. Dowling, J. E.: Neural and photochemical mechanisms of visual adaptation in the rat. J. Gen. Physiol. 46, 1287–1301 (1963).PubMedCrossRefGoogle Scholar
  54. Dowling, J. E.: The site of visual adaptation. Science 155, 273–279 (1967).PubMedCrossRefGoogle Scholar
  55. Dowling, J. E., Hubbard, R.: Effects of brillant flashes on light and dark adaptation. Nature (Lond.) 199, 972–975 (1963).CrossRefGoogle Scholar
  56. Dowling, J. E., Ripps, H.: Visual adaptation in the retina of the skate. J. gen. Physiol. 56, 491–520 (1970).PubMedCrossRefGoogle Scholar
  57. DuCroz, J. J., Rushton, W.A.H.: The separation of cone and mechanisms in dark adaptation. J. Physiol. (Lond.) 183, 481–496 (1966).Google Scholar
  58. Easter, S.S., Jr.: Adaptation in the goldfish retina. J. Physiol. (Lond.) 195, 273–281 (1968).Google Scholar
  59. Frank, R.N., Dowling, J. E.: Rhodopsin effects on electoretinogram sensitivity in isolated perfused rat retina. Science 161, 487–489 (1968).PubMedCrossRefGoogle Scholar
  60. Fuortes, M.G.F., Gunkel, R.D., Rushton, W.A.H.: Increment thresholds in a subject deficient in cone vision. J. Physiol. (Lond.) 156, 179–192 (1961).Google Scholar
  61. Fuortes, M.G.F., Hodgkin, A. L.: Changes in time scale and sensitivity in the ommatidia of Limulus. J. Physiol. (Lond.) 172, 239–263 (1964).Google Scholar
  62. Glezer, V.D.: The receptive fields of the retina. Vision Res. 5, 497–525 (1965).PubMedCrossRefGoogle Scholar
  63. Gouras, P.: Saturation of the rods in rhesus monkey. J. Opt. Soc. Amer. 55, 86–91 (1965).CrossRefGoogle Scholar
  64. Gouras, P.: Rod and cone independence in the electroretinogram of the dark-adapted monkey’s perifovea. J. Physiol. (Lond.) 187, 455–464 (1966).Google Scholar
  65. Gouras, P.: The effects of light-adaptation on rod and cone receptive field organization of monkey ganglion cells. J. Physiol. (Lond.) 192, 747–760 (1967).Google Scholar
  66. Graham, C.H., Margaria, R.: Area and the intensity-time relation in the peripheral retina. Amer. J. Physiol. 113, 299–305 (1935).Google Scholar
  67. Granit, R., Holmberg, T., Zewi, M.: On the mode of action of visual purple on the rod cell. J. Physiol. (Lond.) 94, 430–440 (1938).Google Scholar
  68. Green, D.G.: The contrast sensitivity of the colour mechanisms of the human eye. J. Physiol. (Lond.) 196, 415–429 (1968).Google Scholar
  69. Hagins, W. A.: The quantum efficiency of bleaching rhodopsin in situ. J. Physiol. (Lond.) 129, 22P–23P (1955).Google Scholar
  70. Hagins, W. A., Zonana, H. V., Adams, R. G.: Local membrane current in the outer segments of squid photoreceptors. Nature (Lond.) 194, 844–847 (1962).CrossRefGoogle Scholar
  71. Hartline, H.K., Ratliff, F., Miller, W.H.: Inhibitory interaction in the retina and its significance in vision. In: Florey, E. (Ed.): Nervous Inhibition, pp. 141–184. New York: Pergamon Press 1961.Google Scholar
  72. Hecht, S.: The relation between visual acuity and illumination. J. gen. Physiol. 11, 155–281 (1928).Google Scholar
  73. Hecht, S.: Rods, cones and the chemical basis of vision. Physiol. Rev. 17, 239–290 (1937).Google Scholar
  74. Hecht, S.: The chemistry of visual substance. Ann. Rev. Biochem. 11, 465–496 (1942).CrossRefGoogle Scholar
  75. Hecht, S., Haig, C., Chase, A.M.: The influence of light-adaptation on subsequent dark-adaptation of the eye. J. gen. Physiol. 20, 831–850 (1937).PubMedCrossRefGoogle Scholar
  76. Hecht, S., Hsia, Y.: Dark adaptation following light adaptation to red and white lights. J. Opt. Soc. Amer. 35, 261–267 (1945).CrossRefGoogle Scholar
  77. Johnson, E.P., Cornsweet, T.N.: Electroretinal photopic sensitivity curves. Nature (Lond.) 174, 614–615 (1954).CrossRefGoogle Scholar
  78. Jones, R.C.: Quantum efficiency of human vision. J. Opt. Soc. Amer. 49, 645–653 (1959).CrossRefGoogle Scholar
  79. Kaneko, A.: Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J. Physiol. (Lond.) 207, 623–633 (1970).Google Scholar
  80. Koenig, A., Ritter, R.: Über den Helligkeitswerthe der Spektralfarben bei verschiedener absoluter Intensität. Arch. Psychol. Physiol. Sinnesorg. 9, 81 (1891).Google Scholar
  81. Kolb, H.: Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. Phil. Trans. B 258, 261–283 (1970).CrossRefGoogle Scholar
  82. Lipetz, L.: A mechanism of light adaptation. Science 133, 639–640 (1961).PubMedCrossRefGoogle Scholar
  83. Lythgoe, R.J.: The mechanism of dark adaptation. A critical resume. Brit. J. Ophthal. 27, 21–43 (1940).CrossRefGoogle Scholar
  84. Marks, W.B., Dobelle, W.H., MacNichol, E.F.: Visual pigments of single primate cones. Science 143, 1181–1183 (1964).PubMedCrossRefGoogle Scholar
  85. McKee, S.P., Westheimer, G.: Specificity of cone mechanisms in lateral interaction. J. Physiol. (Lond.) 206, 117–128 (1970).Google Scholar
  86. Missoten, L.: The Ultrastructure of the Retina. Bruxelles: Editions Arscia S. A. 1965.Google Scholar
  87. Müller, G.E.: Anatomisch-physiologische Untersuchungen über die Retina des Menschen und der Wirbelthiere. Z. wiss. Zool. 8, 1 (1856–1857).Google Scholar
  88. Newsome, D.: After-image and pupillary activity following strong light exposure. Vision Res. 11, 275–288 (1971).PubMedCrossRefGoogle Scholar
  89. Parinaud, H.: La vision. Paris: Octave Doin 1898. Pinter, R.B.: Sinusoidal and delta function responses of visual cells of the Limulus eye. J. gen. Physiol. 49, 565–593 (1966).CrossRefGoogle Scholar
  90. Pirenne, M.H.: Contribution to the discussion of the paper by Stiles. Proc. Phys. Soc. Lond. 56, 354–355 (1944).Google Scholar
  91. Pirenne, M.H.: Some aspects of the sensitivity of the eye. Ann. N. Y. Acad. Sci. 74, 377–384 (1958).CrossRefGoogle Scholar
  92. Pirenne, M.H., Denton, E.J.: Accuracy and sensitivity of the human eye. Nature (Lond.) 170, 1039–1042 (1952).CrossRefGoogle Scholar
  93. Polyak, S.L.: The Retina. Chicago: Univ. of Chicago Press 1941.Google Scholar
  94. Purkinje, J.: Beobachtungen und Versuche zur Physiologie der Sinne, Bd. 2, S. 109–110. Berlin: G. Reimer 1825.Google Scholar
  95. Ratliff, F.: Selective adaptation of local regions of the rhabdom in an ommatidium of the compound eye of Limulus. In: Bernhard, C. G. (Ed.): The Functional Organization of the Compound Eye, Vol. 7. London: Pergamon Press 1965.Google Scholar
  96. Ratoosh, P., Graham, C.H.: Areal effects in foveal brightness discrimination. J. exp. Psychol. 42, 367–375 (1951).PubMedCrossRefGoogle Scholar
  97. Rinalducct, E.J., Higgins, K.E., Cramer, J.A.: Nonequivalence of backgrounds during photopic dark adaptation. J. Opt. Soc. Amer. 60, 1518–1524 (1970).CrossRefGoogle Scholar
  98. Ripps, H., Weale, R.A.: Analysis of foveal densitometry. Nature (Lond.) 205, 52–56 (1965).CrossRefGoogle Scholar
  99. Rose, A.: The sensitivity performance of the human eye on an absolute scale. J. Opt. Soc. Amer. 38, 196–208 (1948).CrossRefGoogle Scholar
  100. Rushton, W. A. H.: Rhodopsin measurement and dark-adaptation in a subject deficient in cone vision. J. Physiol. (Lond.) 156, 193–205 (1961a).Google Scholar
  101. Rushton, W. A. H.: A foveal pigment in the deuteranope. J. Physiol. (Lond.) 176, 24–37 (1965a).Google Scholar
  102. Rushton, W. A. H.: The sensitivity of rods under illumination. J. Physiol. (Lond.) 178, 141–160 (1965b).Google Scholar
  103. Rushton, W. A. H.: Bleached rhodopsin and visual adaptation. J. Physiol. (Lond.) 181, 645–655 (1965c).Google Scholar
  104. Rushton, W. A. H.: The Ferrier Lecture, 1962. Visual adaptation. Proc. roy. Soc. B 162, 20–46 (1965d).CrossRefGoogle Scholar
  105. Rushton, W. A. H.: Rod/cone rivalry in pigment regeneration. J. Physiol. (Lond.) 198, 219–236 (1968).Google Scholar
  106. Cohen, R.D.: Visual purple and the course of dark adaptation. Nature (Lond.) 173, 301–302 (1954).CrossRefGoogle Scholar
  107. Westheimer, G.: The effect upon the rod threshold of bleaching neighboring rods. J. Physiol. (Lond.) 164, 318–329 (1962).Google Scholar
  108. Schultze, M.: Zur Anatomie und Physiologie der Retina. Arch. mikr. Anat. 1, 165–286 (1866).Google Scholar
  109. Sjöstrand, F.S.: The ultrastructure of the outer segments of rods and coneds of the eye as revealed by the electron microscope. J. cell. comp. Physiol. 42, 15–44 (1953).CrossRefGoogle Scholar
  110. Smith, S.W., Morris, A., Dimmick, F.L.: Effects of exposure to various red lights upon subsequent dark adaptation measured by the method of constant stimuli. J. Opt. Soc. Amer. 45, 502–506 (1955).CrossRefGoogle Scholar
  111. Steinberg, R. H.: Rod and cone contributions to S-potentials from the cat retina. Vision Res. 9, 1319–1329 (1969a).PubMedCrossRefGoogle Scholar
  112. Steinberg, R. H.: Rod-cone interaction in S-potentials from the cat retina. Vision Res. 9, 1331–1344 (1969b).PubMedCrossRefGoogle Scholar
  113. Stell, W.K.: The structure and relationship of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. Amer. J. Anat. 121, 401–424 (1967).PubMedCrossRefGoogle Scholar
  114. Stiles, W. S.: The directional sensitivity of the retina and the spectral sensitivities of the rods and cones. Proc. roy. Soc. B 127, 64–105 (1939).CrossRefGoogle Scholar
  115. Stiles, W.S.: Increment thresholds and the mechanisms of colour vision. Docum. Ophthal. (Den Haag) 3, 138–165 (1949).CrossRefGoogle Scholar
  116. Stiles, W.S.: Color vision: the approach through incremental threshold sensitivity. Proc. nat. Acad. Sci. (Wash.) 45, 100–114 (1959).CrossRefGoogle Scholar
  117. Stiles, W.S., Crawford, B.H.: Equivalent adaptation levels in localized retinal areas. In: Report of Discussion on Vision, pp. 194–211. London: Physical Society 1932.Google Scholar
  118. Stiles, W.S., Crawford, B.H.: The luminous efficiency of rays entering the eye pupil at different points. Proc. roy. Soc. B 112, 428–540(1933).CrossRefGoogle Scholar
  119. Teller, D.Y., Matter, C.F., Phillips, W.D.: Sensitization by annular surrounds: Spatial summation properties. Vision Res. 10, 549–561 (1970).PubMedCrossRefGoogle Scholar
  120. Tomita, T.: Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spr. Harb. Symp. quant. Biol. 30, 559–566 (1965).Google Scholar
  121. von Kries, J.: Über die Funktion der Netzhautstäbchen. Z. Psychol. Physiol. Sinnesorg. 9, 81–123 (1896).Google Scholar
  122. Wald, G.: Human vision and the spectrum. Science 101, 653–658 (1945).PubMedCrossRefGoogle Scholar
  123. Wald, G.: On the mechanism of the visual threshold and visual adaptation. Science 119, 887–892 (1954).PubMedCrossRefGoogle Scholar
  124. Wald, G.: Retinal chemistry and the physiology of vision, Selig-Hecht commemorative lecture. In: Visual Problems of Colour, Vol. 1, pp. 7–61. London: H.M.S.O. 1959.Google Scholar
  125. Wald, G.: The receptors of human color vision. Science 145, 1007–1017 (1964).PubMedCrossRefGoogle Scholar
  126. Wald, G., Clark, A.: Visual adaptation and chemistry of the rods. J. gen. Physiol. 21, 39–105 (1937).CrossRefGoogle Scholar
  127. Wagman, I.H., Battersby, W.S.: Neural limitations of visual excitability II. Retrochiasmal interaction. Amer. J. Physiol. 197, 1237–1242 (1959).Google Scholar
  128. Walls, G.L.: The Vertebrate Eye and its Adaptive Radiation. Bloomfield Hills, Mich.: Cranbrook Inst. Sci. 1942.Google Scholar
  129. Weale, R. A.: Relation between dark adaptation and visual pigment regeneration. J. Opt. Soc. Amer. 54, 128–129 (1964).CrossRefGoogle Scholar
  130. Westheimer, G.: Spatial interaction in the human retina during scotopic vision. J. Physiol. (Lond.) 181, 882–894 (1965).Google Scholar
  131. Westheimer, G.: Bleached rhodopsin and retinal interaction. J. Physiol. (Lond.) 195, 97–105 (1968).Google Scholar
  132. Westheimer, G.: Rod-cone independence for sensitizing interaction in the human retina. J. Physiol. (Lond.) 206, 109–116 (1970).Google Scholar
  133. Westheimer, G.: Wiley, R.W.: Distance effects in human scotopic retinal interaction. J. Physiol. (Lond.) 206, 129–144 (1970).Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • Peter Gouras
    • 1
  1. 1.BethesdaUSA

Personalised recommendations