Advertisement

Optical Properties of Vertebrate Eyes

  • Gerald Westheimer
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 2)

Abstract

Starting with a simple photodetector in protozoa and some of the earliest multicellular invertebrates, evolution has fashioned very elaborate visual organs. For an understanding of these organs and of the way they tie in with the rest of the organism, it needs to be considered at the outset what kind of information they extract from the photic energy impinging on them.

Keywords

Spatial Frequency Retinal Image Modulation Transfer Function Pupil Diameter Light Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnulf, A., Dupuy, O.: La transmission des contrasts par le système optique de l’oeil et les seuils de contrastes rétiniens. C. R. Acad. Sci. (Paris) 250, 2757–59 (1960).Google Scholar
  2. Born, M., Wolf,E.: Principles of Optics. New York: Pergamon Press 1959.Google Scholar
  3. Boynton, R.M.,Enoch, J. M.,Bush,W.R.: Physical measures of stray light in excised eyes. J. Opt. Soc. Amer. 44, 879–886 (1954).CrossRefGoogle Scholar
  4. Campbell, F. W.: The depth of field of the human eye. Optica Acta 4, 157–164 (1957).CrossRefGoogle Scholar
  5. Campbell, F. W., Green, D.G.: Optical and retinal factors affecting visual resolution. J. Physiol. (Lond.) 176, 576–593 (1965).Google Scholar
  6. Campbell, F. W.,Gubisch, R. W.: Optical quality of the human eye. J. Physiol. (Lond.) 186, 558–578 (1966).Google Scholar
  7. Campbell, F. W., Rushton, W. A.H.: Measurement of the scotopic pigment in the living human eye. J. Physiol. (Lond.) 130, 131–147 (1955).Google Scholar
  8. Cornsweet, T.N., Crane, H.D.: Servo-controlled infrared optometer. J. Opt. Soc. Amer. 60, 548–554 (1970).CrossRefGoogle Scholar
  9. Demott, D.W.,Boynton, R.M.: Retinal distribution of entoptic stray light. J. Opt. Soc. Amer. 48, 13–21 (1958).CrossRefGoogle Scholar
  10. Flamant, F.: Etude de la repartition de lumière dans l’image rétinienne d’une fente. Rev. Opt. 34, 433–459 (1955).Google Scholar
  11. Fry, G. A.,Alpern, M.: Effect of a peripheral glare source upon the apparent brightness of an object. J. Opt. Soc. Amer. 43, 189–195 (1953).CrossRefGoogle Scholar
  12. Fry, G. A.,Cobb,P. W.: A new method for determining the blurredness of the retinal image. Trans. Amer. Acad. Ophthal. Otolaryng. 40, 423–438 (1935).Google Scholar
  13. Gauss, C.F.: Dioptrische Untersuchungen. Abh. Kgl. Gesellsch. f. Wissensch. Göttingen, Vol. 1. 1843.Google Scholar
  14. Goldman, H., Hagen, R.: Zur direkten Messung der Totalbrechkraft des lebenden menschlichen Auges. Ophthalmologica (Basel) 104, 15–22 (1942).CrossRefGoogle Scholar
  15. Gubisch, R.W.: Optical performance of the human eye. J. Opt. Soc. Amer. 57, 407–415 (1967).CrossRefGoogle Scholar
  16. Gullstrand, A.: In: Helmholtz, H. v.: Handbuch der Physiol. Optik. Bd. 1, Ed. 3. Hamburg: L. Voss 1909.Google Scholar
  17. Hartridge, H.: Recent Advances in the Physiology of Vision. London: J. and A. Churchill Ltd. 1950.Google Scholar
  18. Helmholtz, H.v.: Handbuch der Physiologischen Optik. Leipzig: L. Voss 1867.Google Scholar
  19. Herzberger, M.: Modern Geometrical Optics. New York: Interscience Publ. Inc. 1958.Google Scholar
  20. Hopkins, H.H.: Disturbance near the focus of a spherical wave showing a radial inhomogeneity of amplitude. In: Fleur y, P. (Ed.): La Theorie des Images Optiques, pp. 209–223. Paris: Editions de la Revue d’Optique 1949.Google Scholar
  21. Hopkins, H.H.: Wave Theory of Aberrations. Oxford: Clarendon Press 1950.Google Scholar
  22. Hughes, A.: A schematic eye for the rabbit. Vision Res. 12, 123–138 (1972).PubMedCrossRefGoogle Scholar
  23. Ivanoff, A.: Les aberrations de chromatisme et de sphericité de l’oeil. Rev. Opt. 26, 145–171 (1947).Google Scholar
  24. Jansson, F.: Measurements of Intraocular Distances by Ultra Sound. Acta Ophthal. (Kbh) Suppl. 74 (1963).Google Scholar
  25. Koomen, M., Tousey, R., Scolnik, R.: Spherical aberration of the eye. J. Opt. Soc. Amer. 39, 370–376 (1949).CrossRefGoogle Scholar
  26. Kühne, W.: Chemische Vorgänge in der Netzhaut. In: Hermann, L. (Ed.): Handbuch der Physiologie, 3. Bd., 1. Teil. Leipzig: F. C. W. Vogel 1879.Google Scholar
  27. LeGrand, Y.: Diffusion de la lumière dans l’oeil. Rev. Opt. 16, 201–241 (1937).Google Scholar
  28. Listing, J.B.: Mathematische Diskussion des Ganges der Lichtstrahlen im Auge. In: Wagner, R.: Handwörterbuch der Physiologie, Bd. IV, S. 451–504. Braunschweig: Vieweg 1853.Google Scholar
  29. Michelson, A.A.: Studies in Optics. Chicago: University of Chicago Press 1927.Google Scholar
  30. O’Neil, E.L.: Introduction to Statistical Optics. Reading, Mass: Addison-Wesley 1963.Google Scholar
  31. Ruddock, K. H.: Light transmission through the Ocular media and macular pigment and its significance for psychophysical investigation — Chapter 17, in Vol. VII/4 of this Handbook.Google Scholar
  32. Rushton, R.H.: The clinical measurement of the axial length of the living eye. Trans. Ophthal. Soc. U. K., 58, 136 (1938).Google Scholar
  33. Schouten, J.F., Ornstein, L.S.: Measurements on direct and indirect adaptation by means of a binocular method. J. Opt. Soc. Amer. 29, 168–182 (1939).CrossRefGoogle Scholar
  34. Seidel, L.: Zur Dioptrik: Über die Entwicklung der Glieder dritter Ordnung. Ast. Nachr. 43, 289–332 (1856).CrossRefGoogle Scholar
  35. Sorsby, A., Benjamin,B.,Davey, J. B., Sheridan, M., Tanner, J.M.: Emmetropia and its aberrations. Med. Res. Council (Great Britain) Special Report Series No. 293. London: H. M. Stationery Office 1957.Google Scholar
  36. Stenstrom, S.: Untersuchungen über die Variation and Kovariation der optischen Elemente des menschlichen Auges. Acta Ophthal. (Kbh.) Suppl. XXVI 1946.Google Scholar
  37. Tscherning, M.: Physiologic Optics. Philadelphia: The Keystone 1904.Google Scholar
  38. Vakkur, G.J.,Bishop,P.O.: The Schematic Eye in the Cat. Vision Res. 3, 357–381 (1963).CrossRefGoogle Scholar
  39. Walls, G. L.: The vertebrate eye. Bloomfield Hills, Mich.: Cranbrook Institute of Science 1942.Google Scholar
  40. Westheimer, G.: Spherical aberration of the eye. Optica Acta 2, 151 (1955).CrossRefGoogle Scholar
  41. Westheimer, G.: Line-spread function of living cat eye. J. Opt. Soc. Amer. 52, 1326 (1962).Google Scholar
  42. Westheimer, G.: Optical and motor factors in the formation of the retinal image. J. Opt. Soc. Amer. 53, 86–93 (1963).CrossRefGoogle Scholar
  43. Westheimer, G.: The Maxwellian View. Vision Res. 6, 669–682 (1966).PubMedCrossRefGoogle Scholar
  44. Westheimer, G.: The Eye. In: Mountcastle, Vernon B. (Ed.): Medical Physiology, 12th Ed. pp. 1532–1553. St. Louis: C. V. Mosby Co. 1968.Google Scholar
  45. Westheimer, G.: Campbell, F.W.: Light distribution in the image in the living human eye. J. Opt. Soc. Amer. 52, 1040–1044 (1962).CrossRefGoogle Scholar
  46. Wright, W.D.: Researches in Normal and Defective Colour Vision. London: H. Kimpton 1946.Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • Gerald Westheimer
    • 1
  1. 1.BerkeleyUSA

Personalised recommendations