Advertisement

Inhibitory Interaction in the Retina of Limulus

  • Haldan K. Hartline
  • Floyd Ratliff
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 2)

Abstract

The interplay of excitation and inhibition lies at the foundation of nervous integrative function. Modern neurophysiology builds on Sherrington’s analysis of motor function, extending his concepts to all the sensory systems and to the infinite complexity of the higher nervous centers (cf. Granit, 1966). Antagonistic processes in vision recall Hering; the role of inhibition in vision was clearly recognized by Mach. Sherrington (1897) himself ventured into this field, but it was Granit’s work that played an essential role in introducing Sherringtonian concepts in the study of retinal function. “The retina is a nervous center” writes Granit, quoting Cajal, and this he proceeds to confirm, exhibiting the interplay of excitation and inhibition in the retinal action potential and in the unitary discharges of retinal ganglion cells.

Keywords

Horseshoe Crab Inhibitory Influence Inhibitory Interaction Retinular Cell Receptor Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolph, A. R.: Spontaneous slow potential fluctuations in theLimulus photoreceptor. J. Gen. Physiol. 48, 297–322 (1964).PubMedCrossRefGoogle Scholar
  2. Adolph, A. R.: Excitation and inhibition of electrical activity in the Limulus eye by neuropharmacological agents. In: Bernhard, C. G. (Ed.): The Functional Organization of the Compound Eye, pp. 465–482. Oxford: Pergamon Press 1966.Google Scholar
  3. Adrian, E.D., Bronx, D.W.: The discharge of impulses in motor nerve fibers. J. Physiol. (Lond.) 66, 81–101 (1928).Google Scholar
  4. Adrian, E.D., Matthews, R.: The action of light on the eye. Part I. The discharge of impulses in the optic nerve and its relation to the electric change in the retina. J. Physiol. (Lond.) 63, 378–414 (1927).Google Scholar
  5. Barlow, H.B., Hill, R.M.: Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 139, 412–414 (1963).PubMedCrossRefGoogle Scholar
  6. Barlow, H.B., Levick, W.R.: The mechanism of directionally selective units in the rabbit’s retina. J. Physiol. (Lond.) 178, 477–504 (1965).Google Scholar
  7. Barlow, R.B., Jr.: Inhibitory fields in the Limulus lateral eye. Thesis. The Rockefeller University, New York, N. Y. (1967).Google Scholar
  8. Barlow, R.B., Jr., Kaplan, Ehud: Limulus lateral eye: Properties of Receptor Units in the Unexcised Eye, Science 174, 1027–1029, 1971.PubMedCrossRefGoogle Scholar
  9. Barlow, R.B., Jr.: Inhibitory fields in the Limulus lateral eye. J. Gen. Physiol. 54, 383–396 (1969).PubMedCrossRefGoogle Scholar
  10. Baumgartner, G.: Kontrastlichteffekte an retinalen Ganglienzellen: Ableitungen vom Tractus opticus der Katze. In: Jung, R., Kornhuber, H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, S. 45–55. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  11. Behrens, M.E., Wulff, V.J.: Light-initiated responses of retinula and eccentric cells in the Limulus lateral eye. J. Gen. Physiol. 48, 1081–1093 (1965).PubMedCrossRefGoogle Scholar
  12. Behrens, M.E., Wulff,V.J.: Functional autonomy in the lateral eye of the horseshoe crab, Limuluspolyphemus. Vision Res. 7, 191–196 (1967).PubMedCrossRefGoogle Scholar
  13. Bicking, L. A.: Some quantitative studies on retinal ganglion cells. Thesis. The John Hopkins University (1965).Google Scholar
  14. Bishop, P.O., Rodieck, R.W.: Discharge patterns of cat retina ganglion cells. In: Nye, P.W. (Ed.): Proceedings of the Symposium on Information Processing in Sight Sensory Systems. pp. 116–127. California Institute of Technology, Pasadena, Calif. 1965.Google Scholar
  15. Campbell, F.W.: The human eye as an optical filter. Proc. IEEE. 56, 1009–1014 (1968).CrossRefGoogle Scholar
  16. De Lange, H.: Relationship between critical flicker-frequency and a set of low frequency characteristics of the eye. J. opt. Soc. Amer. 44, 380–389 (1952).Google Scholar
  17. De Lange, H.: Attenuation characteristics and phase-shift characteristics of the human fovea-cortex systems in relation to flicker-fusion phenomena. Thesis, Technical University, Delft, Holland (1957).Google Scholar
  18. De Lange,H.: Research into the dynamic nature of the human fovea — cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. II. Phaseshift in brightness and delay in color perception. J. opt. Soc. Amer. 48, 777–789 (1958).CrossRefGoogle Scholar
  19. Dodge, F.A., Jr.: Inhibition and excitation in the Limulus eye. In: Reichardt, W. (Ed.): Processings of Optical Data by Organisms and by Machines. Proceedings of the International School of Physics “Enrico Fermi” Course XLIII, pp. 341–365, 1969.Google Scholar
  20. Dodge, F.A., Jr., Knight, B.W., Toyoda, J.: Voltage noise in Limulus visual cells. Science 160, 88–90 (1968).PubMedCrossRefGoogle Scholar
  21. Dodge, F.A., Jr., Shapley, R.M., Knight, B W.: Linear systems analysis of the Limulus retina. Behav. Sci. 15, 24–36 (1970).PubMedCrossRefGoogle Scholar
  22. Fahrenbach, W.H.: The morphology of the eyes of Limulus. 1. Cornea and epidermis of the compound eye. Z. Zellforsch. 87, 278–291 (1968).PubMedCrossRefGoogle Scholar
  23. Fahrenbach, W.H.: The morphology of the eyes of Limulus. II. Ommatidia of the compound eye. Z. Zellforsch. 93, 451–483 (1969).PubMedCrossRefGoogle Scholar
  24. Fry, G.A.: Visibility of sine-wave gratings. J. opt. Soc. Amer. 59, 610–617 (1969).CrossRefGoogle Scholar
  25. Fuortes, M.G.F.: Initiation of impulses in visual cells of Limulus. J. Physiol. (Lond.) 148, 14–28 (1959).Google Scholar
  26. Fuortes, M.G.F.,Mantegazzini, F.: Interpretation of the repetitive firing of nerve cells. J. Gen. Physiol. 45, 1163–1179 (1962).PubMedCrossRefGoogle Scholar
  27. Fuortes, M.G.F., Poggio, G. F.: Transient responses to sudden illumination in cells of the eye in Limulus. J. Gen. Physiol. 46, 435–452 (1963).PubMedCrossRefGoogle Scholar
  28. Fuortes, M.G.F., Yeandle, S.: Probability of occurrence of discrete potential waves in the eye of Limulus. J. Gen. Physiol. 47, 443–463 (1964).PubMedCrossRefGoogle Scholar
  29. Gordon, J.: Edge accentuation in the frog retina. Thesis, Brown University (1969).Google Scholar
  30. Granit, R.: The components of the retinal action potential and their relation to the discharge in the optic nerve. J. Physiol. (Lond.) 77, 207–240 (1933).Google Scholar
  31. Granit, R.: Charles Scott Sherrington — An Appraisal. London: Thomas Nelson and Sons Ltd. 1966.Google Scholar
  32. Grenacher, H.: Untersuchungen über das Sehorgan der Arthropoden. Göttingen: Vandenhoeck und Ruprecht 1879.Google Scholar
  33. Hartline, H. K.: The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Amer. J. Physiol. 121, 400–415 (1938).Google Scholar
  34. Hartline, H. K.: The nerve messages in the fibers of the visual pathway. J. opt. Soc. Amer. 30, 239–247 (1940).CrossRefGoogle Scholar
  35. Hartline, H. K.: The neural mechanisms of vision. The Harvey Lectures. Series XXXVII. 39–68 (1941 to 1942).Google Scholar
  36. Hartline, H. K.: Inhibition of activity of visual receptors by illuminating nearby retinal elements in the Limulus eye. Fed. Proc. 8, 69 (1949).Google Scholar
  37. Hartline, H. K.: Receptor mechanisms and the integration of sensory information in the eye. Rev. Mod. Phys. 31, 515–523 (1959).CrossRefGoogle Scholar
  38. Hartline, H. K.: Inhibitory interaction in the retina. In: Straatsma, B.R., Hall, M.O., Allen, R.A., Crescitelli, F. (Eds.): The Retina: Morphology, Function and Clinical Characteristics. UCLA Forum in Medical Sciences, pp. 297–317. 1967.Google Scholar
  39. Hartline, H. K.: Visual receptors and retinal interaction. Science 164, 270–278 (1969).PubMedCrossRefGoogle Scholar
  40. Hartline, H. K., Graham, C.H.: Nerve impulses from single receptors in the eye. J. cell. comp. Physiol. 1, 277–295 (1932).CrossRefGoogle Scholar
  41. Hartline, H. K., Ratliff, F.: Inhibitory interaction of receptor units in the eye of Limulus. J. Gen. Physiol. 40, 357–376 (1957).PubMedCrossRefGoogle Scholar
  42. Hartline, H. K.: Spatial summation of inhibitory influences in the eye of Limulus, and the mutual interaction of receptor units. J. Gen. Physiol. 41, 1049–1066 (1958).PubMedCrossRefGoogle Scholar
  43. Hartline, H. K., Miller, W.H.: Inhibitory interaction in the retina and its significance in vision. In Florey, E. (Ed.): Nervous Inhibition, pp. 241–284. New York: Pergamon Press 1961.Google Scholar
  44. Hartline, H. K., Wagner, H.G.,Macnichol,E.F., Jr.: The peripheral origin of nervous activity in the visual system. Cold Spr. Harb. Symp. quant. Biol. 17, 125–141 (1952).Google Scholar
  45. Hartline, H. K., Wagner, H.G., Ratliff, F.: Inhibition in the eye of Limulus. J. Gen. Physiol. 39, 651–673 (1056).CrossRefGoogle Scholar
  46. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).Google Scholar
  47. Hubbard, R., Wald,G.: Visual pigment of the horseshoe crab, Limuluspolyphemus. Nature (Lond.) 186, 212–215 (1960).CrossRefGoogle Scholar
  48. Ives, H.E.: A theory of intermittent vision. J. opt. Soc. Amer. 6, 343–361 (1922).CrossRefGoogle Scholar
  49. Jenks, G.F., Brown,D. A.: Three-dimensional map construction. Science 154, 857–864 (1966).PubMedCrossRefGoogle Scholar
  50. Kikuchi, R.,Ueki,K.: Double-discharges recorded from single ommatidia of horseshoe crab Tachypleus tridentatus. Naturwissenschaften 52, 458–459 (1965).CrossRefGoogle Scholar
  51. Kirschfeld, K., Reichardt, W.: Die Verarbeitung stationärer optischer Nachrichten im Komplexauge von Limulus. Kybernetik 2, 43–61 (1964).PubMedCrossRefGoogle Scholar
  52. Knight, B.W., Toyoda, J., Dodge,F.A., Jr.: A quantitative description of the dynamics of excitation and inhibition in the eye of Limulus. J. Gen. Physiol. 56 (1970).Google Scholar
  53. Kuffler, S.W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. (Lond.) 16, 37–68 (1953).Google Scholar
  54. Lange, D.,Hartline, H.K., Ratliff, F.: The dynamics of lateral inhibition in the compound eye of Limulus. II. In: Bernhard, C.G. (Ed.): The Functional Organization of the Compound Eye, pp. 425–449. Oxford: Pergamon Press 1966.Google Scholar
  55. Lasansky, A.: Cell junctions in ommatidia of Limulus. J. Cell Biol. 33, 365–383 (1967).PubMedCrossRefGoogle Scholar
  56. Levinson, J.: Flicker fusion phenomena. Science 160, 21–28 (1968).PubMedCrossRefGoogle Scholar
  57. Macnichol, E.F.,Jr.: Visual receptors as biological transducers. In: Grenell, R.G., Mullins, L. J. (Eds.): Molecular Structure and Functional Activity of Nerve Cells, pp. 34–62. Washington, D. C.: Amer. Inst. Biol. Sci. 1965.Google Scholar
  58. Macnichol, E.F.,Jr., Hartline, H. K.: Responses to small changes of light intensity by the light-adapted photoreceptor. Fed. Proc. 7, 76 (1948).PubMedGoogle Scholar
  59. Melzak, Z.A.: On a uniqueness theorem and its application to a neurophysiological control mechanism. Information and Control 5, 163–172 (1962).CrossRefGoogle Scholar
  60. Miller, W.H.: Morphology of the ommatidia of the compound eye ofLimulus. J. biophys. biochem. Cytol. 3, 421–428 (1957).PubMedCrossRefGoogle Scholar
  61. Miller, W.H.: Fine structure of some invertebrate photoreceptors. Ann. N. Y. Acad. Sci. 74, 204–209 (1958).CrossRefGoogle Scholar
  62. Miller, W.H.: The anatomy of the neuropile in the compound eye ofLimulus. In: Rohen, J. W. (Ed.): Eye Structure, II. Symp., pp. 159–169. Stuttgart: Schattauer 1965.Google Scholar
  63. Miller, W.H., Ratliff, F., Hartline, H.K.: How cells receive stimuli. Sci. Amer. 205, 222–238 (1961).PubMedCrossRefGoogle Scholar
  64. Pinter, R.B.: Sinusoidal and delta function responses of visual cells of the Limulus eye. J. Gen. Physiol. 49, 565–593 (1966).PubMedCrossRefGoogle Scholar
  65. Purple, R. L.: The integration of excitatory and inhibitory influences in the eccentric cell in the eye of Limulus. Thesis. The Rockefeller Institute. (1964).Google Scholar
  66. Purple, R. L., Dodge, F. A.: Interaction of excitation and inhibition in the eccentric cell in the eye of Limulus. Cold Spr. Harb. Symp. quant. Biol. 30, 529–537 (1965).Google Scholar
  67. Ratliff, F.: Inhibitory interaction and the detection and enhancement of contours. In: Rosenblith, W.A. (Ed.): Sensory Communication, pp. 183–203. Cambridge: M. I. T. Press: New York: John Wiley and Sons 1961.Google Scholar
  68. Ratliff, F.: Mach Bands: Quantitative Studies on Neural Networks in the Retina. San Francisco, Calif.: Holden-Day 1965.Google Scholar
  69. Ratliff, F.: On fields of inhibitory influence in a neural network. In: Calaniello, E.R. (Ed.): Neural Networks, pp. 6–23. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  70. Ratliff, F., Hartline, H. K.: The responses of Limulus optic nerve fibers to patterns of illumination on the receptor mosaic. J. Gen. Physiol. 42, 1241–1255 (1959).PubMedCrossRefGoogle Scholar
  71. Ratliff, F., Hartline, H. K., Lange, D.: The dynamics of lateral inhibition in the compound eye of Limulus. I. In: Bernhard, CG. (Ed.): The Functional Organization of the Compound Eye, pp. 399–424. Oxford: Pergamon Press 1966.Google Scholar
  72. Ratliff, F., Hartline, H. K.,Lange,D.: Variability of interspike intervals in optic nerve fibers of Limulus. Effects of light and dark adaptation. Proc. nat. Acad. Sci. (Wash.) 60, 464–469 (1968).CrossRefGoogle Scholar
  73. Ratliff, F., Hartline, H. K.,Miller,W.H.: Spatial and temporal aspects of retinal inhibitory interaction. J. opt. Soc. Amer. 53, 110–120 (1963).CrossRefGoogle Scholar
  74. Ratliff, F., Knight,B.W., Graham,N.: On tuning and amplification by lateral inhibition. Proc. nat. Acad. Sci. (Wash.) 62, 733–740 (1969).CrossRefGoogle Scholar
  75. Ratliff, F., Knight, B.W., Milkman,N.: Superposition of excitatory and inhibitory influences in the retina of Limulus. The effect of delayed inhibition. Proc. nat. Acad. Sci. (Wash.) 67, 1558–1564 (1970).CrossRefGoogle Scholar
  76. Ratliff, F., Knight,B.W., Toyoda,J., Hartline,H.K.: Enhancement of flicker by lateral inhibition. Science 158, 392–393 (1967).PubMedCrossRefGoogle Scholar
  77. Ratliff, F., Mueller,C.G.: Synthesis of “On-Off” and “Off” responses in a visual-neural system. Science 126, 840–841 (1957).PubMedCrossRefGoogle Scholar
  78. Reichardt, W.,Macginitie, G.: Zur Theorie der lateralen Inhibition. Kybernetik 1/4, 155–165 (1962).CrossRefGoogle Scholar
  79. Rodieck, R.W.: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res. 5, 583–601 (1965).PubMedCrossRefGoogle Scholar
  80. Rushton, W.A.H.: A theoretical treatment of Fuortes’ observations upon eccentric cell activity in Limulus. J. Physiol. (Lond.) 148, 29–38 (1959).Google Scholar
  81. Schwartz, E.A.: Retinular and eccentric cell morphology in the neural plexus of Limulus lateral eye. J. Neurobiol. In press (1970).Google Scholar
  82. Shapley, R. M.: Fluctuations in the response to light of visual neurons in Limulus. Nature (Lond.) 221, 437–440 (1969).CrossRefGoogle Scholar
  83. Sherrington, C.S.: On reciprocal action in the retina as studied by means of some rotating discs. J. Physiol. (Lond.) 21, 33–54 (1897).Google Scholar
  84. Stevens, C.F.: Input-output relation for Limulus receptor cells. Biophysical Society, Abst. 7th ann. meeting, New York City, item WF6 (1963).Google Scholar
  85. Stevens, C.F.: A quantitative theory of neural interactions: theoretical and experimental investigations. Thesis. The Rockefeller Institute, New York (1964).Google Scholar
  86. Tomita, T.: Peripheral mechanisms of nervous activity in lateral eye of horseshoe crab. J. Neurophysiol. 20, 245–254 (1957).PubMedGoogle Scholar
  87. Tomita, T.: Mechanism of lateral inhibition in the eye ofLimulus. J. Neurophysiol. 21, 419–429 (1958).PubMedGoogle Scholar
  88. Tomita, T.,Kikuchi,R., Tanaka,L: Excitation and inhibition in lateral eye of horseshoe crab. In: Katsuki, Y. (Ed.): Electrical Activity of Single Cells, pp. 11–23. Tokyo: Igaku Shoin Ltd. 1960.Google Scholar
  89. Wagner, H.G., Macnichol, E.F., Jr., Wolbarsht, M.L.: The response properties of single ganglion cells in the goldfish retina. J. Gen. Physiol. 43, 45–62 (1960).PubMedCrossRefGoogle Scholar
  90. Wagner, H.G., Macnichol, E.F., Jr., Wolbarsht, M.L.: Functional basis for “On”-center and “Off-center receptive fields in the retina. J. opt. Soc. Amer. 53, 66–70 (1963).CrossRefGoogle Scholar
  91. Waterman, T.H.: Polarized light and angle of stimulus incidence in the compound eye of Limulus. Proc. nat. Acad. Sci. (Wash.) 40, 4, 258–262 (1954a).CrossRefGoogle Scholar
  92. Waterman, T.H.: Directional sensitivity of single ommatidia in the compound eye of Limulus. Proc. nat. Acad. Sci. (Wash.) 40, 252–257 (1954b).CrossRefGoogle Scholar
  93. Waterman, T.H., Wiersma, C. A. G.: The functional relation between retinal cells and optic nerve in Limulus. J. exp. Zool. 126, 59–86 (1954).CrossRefGoogle Scholar
  94. Whitehead, R.,Purple, R.L.: Synaptic organization of the neuropile of the lateral eye of Limulus. J. Vision Res. 10, 129–133 (1970).CrossRefGoogle Scholar
  95. Wolbarsht,M.L.,Yeandle, S.: Visual processes in the Limulus eye. Ann. Rev. Physiol. 29, 513–542 (1967).CrossRefGoogle Scholar
  96. Yeandle, S.: Evidence of quantized slow potentials in the eye ofLimulus. Amer. J. Ophthal. 46, No. 3, Part II, 82–87 (1968).Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • Haldan K. Hartline
    • 1
  • Floyd Ratliff
    • 1
  1. 1.New YorkUSA

Personalised recommendations