Advertisement

Optical Properties of the Compound Eye

  • C. G. Bernhard
  • G. Gemne
  • G. Seitz
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 2)

Abstract

The interest in the dioptric apparatus of the arthropod compound eye goes back to the microscopic studies made about 300 years ago by Hodierna (1644), Hooke (1665), Swammerdam (1644–1673, see 1737–1738) and van Leeuwenhoek (1698, see 1800 and 1939). One and a half centuries later, Müller (1826) presented his mosaic theory according to which an erect image is formed in the eye due to the alleged circumstance that each ommatidium only monitors light coming from that part of the object directly facing it. On the basis of the optical characteristics, Exner (1891) differentiated between three main types of compound eyes, one catoptric, and the two dioptric (apposition and superposition) types. In the catoptric type, the light is transmitted to the photoreceptors by total reflection from the walls of the proximal corneal prolongations. This uncommon type of eye (in e.g. the crab, Phronima) will not be treated in the present review.

Keywords

Point Light Source Acta Physiol Selective Reflection Crystalline Cone Pigment Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J. L.: The optical functioning of the superposition eye of a nocturnal moth. Thesis, Massachusetts Institute of Technology 1968.Google Scholar
  2. Allen, J. L., Bernard, G. D.: Superposition optics, a new theory, Massachusetts Institute of Technology, Research Laboratory of Electronics. Quart. Progr. Rep. No. 86, 113–122 (1967).Google Scholar
  3. Autrum, H., Stumpf, H.: Das Bienenauge als Analysator für polarisiertes Licht. Z. Naturforsch. 5B, 116–122 (1950).Google Scholar
  4. Autrum, H., Wiedemann, I.: Versuche über den Strahlengang im Insektenauge (Appositionsauge). Z. Naturforsch. 17, 480–482 (1962).Google Scholar
  5. Autrum, H., Zwehl, V. von: Zur spektralen Empfindlichkeit einzelner Sehzellen der Drohne (Apis mellifica). Z. vergl. Physiol. 46, 8–12 (1962).CrossRefGoogle Scholar
  6. Baelow, H.B.: The size of ommatidia in apposition eyes. J. exp. Biol. 29, 667–674 (1952).Google Scholar
  7. Bernard, G. D., Miller, W. H.: Interference filters in the corneas of Diptera, Investigative Ophthalmology 7 (4), 416–434 (1968a).PubMedGoogle Scholar
  8. Bernard, G. D., Miller, W. H.: Physical optics of invertebrate eyes, Massachusetts Institute of Technology, Research Laboratory of Electronics. Quart. Progr. Rep. No. 88, 106–111 (1968b).Google Scholar
  9. Bernhard, C.G.: Structural and functional adaptation in a visual system. Endeavour 26, 79–84 (1967).Google Scholar
  10. Bernhard, C.G., Boëthius, J., Gemne, G., Struwe, G.: Eye ultrastructure, colour reception and behaviour. Nature (Lond.) 226, 865–866 (1970b).CrossRefGoogle Scholar
  11. Bernhard, C.G., Gemne, G., Møller, A.R.: Modification of specular reflexion and light transmission by biological surface structures. Quart. Rev. Biophys. 1, 89–105 (1968).CrossRefGoogle Scholar
  12. Bernhard, C.G., Gemne, G., Sällström, J.: Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Z. vergl. Physiol. 67, 1–25 (1970a).CrossRefGoogle Scholar
  13. Bernhard, C.G., Höglund, G., Ottoson, D.: On the relation between pigment position and light sensitivity of the compound eye in different nocturnal insects. J. Insect Physiol. 9, 573–586 (1963).CrossRefGoogle Scholar
  14. Bernhard, C.G., Miller, W.H.: A corneal nipple pattern in insect compound eyes. Acta physiol. scand. 56, 385–386 (1962).PubMedCrossRefGoogle Scholar
  15. Bernhard, C.G., Miller, W.H., Møller, A. R.: Function of the corneal nipples in the compound eyes of insects. Acta physiol. scand. 58, 381–382 (1963).PubMedCrossRefGoogle Scholar
  16. Bernhard, C.G., Miller, W.H., Møller, A. R.: The insect corneal nipple array. Acta physiol. scand. 63, Suppl. 243 (1965).Google Scholar
  17. Bernhard, C.G., Ottoson, D.: Quantitative studies on pigment migration and light sensitivity in the compound eye at different light intensities. J. gen. Physiol. 47, 465–478 (1964).PubMedCrossRefGoogle Scholar
  18. Borsellino, A., Fuortes, M.G.F., Smith, T.G.: Visual response in Limulus. Cold Spr. Harb. Symp. quant. Biol. 30, 429–443 (1965).Google Scholar
  19. Braitenberg, V.: Unsymmetrische Projektion der Retinulazellen auf die Lamina ganglionaris bei der Fliege Musca domestica. Z. vergl. Physiol. 50, 212–214 (1966).CrossRefGoogle Scholar
  20. Braitenberg, V.: Patterns of projections in the visual system of the fly. 1. Retina-Lamina projections. Exp. Brain Res. 3, 271–298 (1967).PubMedCrossRefGoogle Scholar
  21. De Bruin, G.H.P., Crisp, D.T.: The influence of pigment migration on the vision of higher Crustacea. J. exp. Biol. 34, 447 (1957).Google Scholar
  22. Burkhardt, D., De la Motte, I., Seitz, G.: Physiological optics of the compound eye of the blow fly. In: Bernhard, C.G. (Ed.): The Functional Organization of the Compound Eye. Wenner-Gren Center International Symposium series, Vol. 7, pp. 51–62. Oxford: Pergamon Press 1966.Google Scholar
  23. Burkhardt, D., Wendler, L.: Ein direkter Beweis für die Fähigkeit einzelner Sehzellen des Insektenauges, die Schwingungsrichtung polarisierten Lichtes zu analysieren. Z. vergl. Physiol. 43, 687–692 (1960).CrossRefGoogle Scholar
  24. Cajal, S.R., Sánchez, D.: Contribución al conocimiento de los insectos. Trab. Lab. Invest. Biol. Madrid 13, 1–168 (1915).Google Scholar
  25. Crane, J.: Imaginai behaviour of a Trinidad butterfly, Heliconius erato hydara Hewitron, with special reference to the social use of color. Zoologica 40, 167–195 (1955).Google Scholar
  26. Denton, E. J.: The contributions of the orientated photosensitive and other molecules to the absorption of whole retina. Proc. roy. Soc. B 150, 78 (1959).CrossRefGoogle Scholar
  27. Dietrich, W.: Die Facettenaugen der Dipteren. Z. wiss. Zool. 92, 465–539 (1909).Google Scholar
  28. Døving, K.B., Miller, W. H.: Function of insect compound eyes containing crystalline tracts. J. gen. Physiol. 54, 250–267 (1969).PubMedCrossRefGoogle Scholar
  29. Eguchi, E.: Rhabdom structure and receptor potentials in single crayfish retinular cells. J. cell. comp. Physiol. 66, 411 (1965).CrossRefGoogle Scholar
  30. Eguchi, E., Waterman, T.H.: Fine structure patterns in crustacean rhabdoms. In: Bernhard, C.G. (Ed.): The Functional Organization of the Compound Eye. Wenner-Gren Center International Symposium Series, Vol. 7, p. 105. Oxford: Pergamon Press 1966.Google Scholar
  31. Eguchi, E., Waterman, T.H.: Cellular basis for polarized light perception in the spider crab, Libinia. Z. Zellforsch. 84, 87 (1968).PubMedCrossRefGoogle Scholar
  32. Eichenbaum, D.M., Goldsmith, T.H.: Properties of intact photoreceptor cells lacking synapses. J. exp. Zool. 169, 15–32 (1968).PubMedCrossRefGoogle Scholar
  33. Exner, S.: Die Physiologie der facettirten Augen von Krebsen und Insekten. Leipzig-Wien: F. Deuticke 1891.Google Scholar
  34. Fahrenbach, W.H.: The morphology of the eyes of Limulus. II. Ommatidia of the compound eye. Z. Zellforsch. 93, 451–483 (1969).PubMedCrossRefGoogle Scholar
  35. Fernandez-Morán, H.: Fine structure of the insect retinula as revealed by electron microscopy. Nature (Lond.) 177, 742–743 (1956).CrossRefGoogle Scholar
  36. Fernandez-Morán, H.: Fine structure of the light receptors in the compound eyes of insects. Exp. Cell Res. Suppl. 5, 586–644 (1958).Google Scholar
  37. Frisch, K. von: Demonstration von Versuchen zum Nachweis des Farbensinnes bei angeblich total farbenblinden Tieren. Verhandl. Dtsch. Zool. Ges. in Freiburg. Berlin 1914.Google Scholar
  38. Frisch, K. von: Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia (Basel) 5, 142–148 (1949).CrossRefGoogle Scholar
  39. Frisch, K. von: Tanzsprache und Orientierung der Bienen. Berlin-Göttingen-Heidelberg: Springer 1965.Google Scholar
  40. Frisch, K. von: The dance language and orientation of bees. London: Oxford University Press 1968Google Scholar
  41. Gemne, G.: Ultrastructural ontogenesis of cornea and corneal nipples in the compound eye of insects. Acta physiol. scand. 66, 511–512 (1966a).PubMedCrossRefGoogle Scholar
  42. Gemne, G.: Fine structure of the insect cornea and corneal nipples during ontogenesis. In: “Electron Microscopy 1966”. Proc. Sixth Internat. Congr. El. Micr., Kyoto, Vol. II, pp. 511–512. Tokyo: Maruzen Co. 1966b.Google Scholar
  43. Gemne, G.: Ultrastructure of epicorneal topography and morphogenesis in insects with aspects on phylogenesis and function. Thesis, Karolinska Institutet (1970).Google Scholar
  44. Gemne, G.: Ontogenesis of corneal surface ultrastructure in nocturnal Lepidoptera. Phil. Trans, roy. Soc. (Lond.) B 262 (843), 343–363 (1971).CrossRefGoogle Scholar
  45. Gemne, G., Seitz, G.: Electron and light microscopic evidence for a light-induced pupil reaction in the apposition eye of the blowfly. Acta physiol. scand. 79, 30A (1970).PubMedGoogle Scholar
  46. Giulio, L.: Elektroretinographische Beweisführung dichroitischer Eigenschaften des Komplexauges bei Zweiflüglern. Z. vergl. Physiol. 46, 491–495 (1963).CrossRefGoogle Scholar
  47. Goldsmith, T. H.: The visual system of the honeybee. Proc. nat. Acad. Sci. (Wash.) 44, 123–126 (1958).CrossRefGoogle Scholar
  48. Goldsmith, T. H.: Fine structure of the retinulae in the compound eye of the honeybee. J. Cell Biol. 14, 489–494 (1962).PubMedCrossRefGoogle Scholar
  49. Goldsmith, T. H.: The visual system of insects. In: Rockstein, M. (Ed.): The Physiology of Insecta, Vol. 1 pp. 397–462. New York: Academic Press 1964.Google Scholar
  50. Hertz, M.: Die Organisation des optischen Feldes bei der Biene. I. Z. vergl. Physiol. 8, 693–748 (1929).CrossRefGoogle Scholar
  51. Hertz, M.: Die Organisation des optischen Feldes bei der Biene. III. Z. vergl. Physiol. 11, 107–145 (1930).Google Scholar
  52. Hertz, M.: Die Organisation des optischen Feldes bei der Biene. III. Z. vergl. Physiol. 14, 629–674 (1931).CrossRefGoogle Scholar
  53. Hodierna, G.B.: L’occhio delia mosca. Discorso fisico. Palermo: Per Decio Cirillo 1644.Google Scholar
  54. Höglund, G.: Glow, sensitivity changes and pigment migration in the compound eye of nocturnal Lepidoptera. Life Sci. 1963, 275–280.Google Scholar
  55. Höglund, G.: Pigment migration, light screening and receptor sensitivity in the compound eye of nocturnal Lepidoptera. Acta physiol. scand. 69, Suppl. 282 (1966).Google Scholar
  56. Höglund, G., Langer, H., Struwe, G., Thorell, B.: Spectral absorption by screening pigment granules in the compound eyes of a moth and a wasp. Z. vergl. Physiol. 67, 238–242 (1970).CrossRefGoogle Scholar
  57. Höglund, G., Struwe, G.: Pigment migration and spectral sensitivity in the compound eye of moths. Z. vergl. Physiol. 67, 229–237 (1970).CrossRefGoogle Scholar
  58. Höglund, G., Struwe, G.: Pigment migration and illumination of single photoreceptors in a moth. Z. vergl. Physiol. 74, 336–339 (1971).CrossRefGoogle Scholar
  59. Hooke, R.: Micrographia Obs. XXXIX: Of the eyes and head of a grey drone-fly, and of several other creatures. 175–180 (1665).Google Scholar
  60. Horridge, G.A.: Perception of edges versus areas by the crab, Carcinus. J. exp. Biol. 44, 247–254 (1966).PubMedGoogle Scholar
  61. Horridge, G.A.: Perception of polarization plane, colour and movement in two dimensions by the crab, Carcinus. Z. vergl. Physiol. 55, 207 (1967).CrossRefGoogle Scholar
  62. Horridge, G.A.: Pigment movement and the crystalline threads of the firefly eye. Nature (Lond.) 218, 778–779 (1968).CrossRefGoogle Scholar
  63. Horridge, G.A.: Unit studies on the retina of dragonflies. Z. vergl. Physiol. 62, 1–37 (1969a).CrossRefGoogle Scholar
  64. Horridge, G.A.: The eye of the firefly, Photuris. Proc. roy. Soc. B 171, 445–463 (1969b).CrossRefGoogle Scholar
  65. Horridge, G.A.: Alternatives to superposition images in clear-zone compound eyes. Proc. roy. Soc. B 179, 97–124 (1971).CrossRefGoogle Scholar
  66. Horridge, G.A., Barnard, P. B. T.: Movement of palisade in locust retinula cells when illuminated. Quart. J. Micr. Sci. 106, 131–135 (1965).Google Scholar
  67. Kirchhoffer, O.: Untersuchungen über die Augen pentamer Käfer. Arch. Biontol. (Berl.) 5, 235–287 (1908).Google Scholar
  68. Kirschfeld, K.: Das anatomische und das physiologische Sehfeld der Ommatidien im Komplexauge von Musca. Kybernetik 2, 249 (1965).PubMedCrossRefGoogle Scholar
  69. Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248 (1967).PubMedCrossRefGoogle Scholar
  70. Kirschfeld, K., Reichardt, W.: Die Verarbeitung stationärer optischer Nachrichten im Komplexauge von Limulus. Kybernetik 2, 43–61 (1964).PubMedCrossRefGoogle Scholar
  71. Kirschfeld, K., Franceschini, N.: Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik 5, 47–52 (1968).PubMedCrossRefGoogle Scholar
  72. Kirschfeld, K., Franceschini, N.: Ein Mechanismus zur Steuerung des Lichtflusses in der Rhabdomeren des Komplexauges von Musca. Kybernetik 6, 13–21 (1969).PubMedCrossRefGoogle Scholar
  73. Kuiper, J.W.: The optics of the compound eye. Symp. Soc. exp. Biol. 16, 58 (1962).Google Scholar
  74. Kunze, P.: Die Orientierung der Retinulazellen im Auge von Ocypode. Z. Zellforsch. 90, 454 (1968).PubMedCrossRefGoogle Scholar
  75. Kunze, P.: Eye glow in the moth and superposition theory. Nature (Lond.) 223, 1172–1174 (1969).CrossRefGoogle Scholar
  76. Kunze, P.: Verhaltensphysiologische und optische Experimente zur Superpositionstheorie der Bildentstehung in Komplexaugen. Verh. dtsch. Zool. Ges. (Köln) 64, 234–238 (1970).Google Scholar
  77. Kunze, P.: Comparative studies of arthropod superposition eyes. Z. vergl. Physiol. 76, 347–357 (1972).CrossRefGoogle Scholar
  78. Kuwabara, M., Naka, K.: Response of a single retinula cell to polarized light. Nature (Lond.) 184, 455–456 (1959).CrossRefGoogle Scholar
  79. Langer, H.: Nachweis dichroitischer Absorption des Sehfarbstoffes in den Rhabdomeren des Insektenauges. Z. vergl. Physiol. 51, 258–263 (1965).CrossRefGoogle Scholar
  80. Langer, H.: Grundlagen der Wahrnehmung von Wellenlänge und Schwingungsebene des Lichtes. Verh. dtsch. Zool. Ges. (Göttingen) 195–233 (1966).Google Scholar
  81. Langer, H., Schneider, L.: Zur Struktur und Funktion offener Rhabdome in Facettenaugen. Verh. dtsch. Zool. Ges. (Würzburg) 1969.Google Scholar
  82. Langer, H., Schneider, L.: Zur Struktur und Funktion offener Rhabdome in Facettenaugen. Zool. Anz. Suppl. 33, 494–503 (1969).Google Scholar
  83. Langer, H., Thorell, B.: Microspectrophotometric assay of visual pigments in single rhabdomeres of the insect eye. In: Bernhard, C.G. (Ed.): The Functional Organization of the Compound Eye. Wenner-Gren Center International Symposium Series, Vol. 7, p. 145. Oxford: Pergamon Press 1966 a.Google Scholar
  84. Langer, H., Thorell, B.: Microspectrophotometry of single rhabdomeres in the insect eye. Exp. Cell Res. 41, 673–676 (1966b).PubMedCrossRefGoogle Scholar
  85. Leeuwenhoek, A. van: The select works of Antoni van Leeuwenhoek. Translated from the Dutch and Latin editions published by Samuel Hoole. London: G. Sidney 1800.Google Scholar
  86. Leeuwenhoek, A. van: Alle de brieven van Antoni van Leeuwenhoek (in Dutch and English). Deel I. Amsterdam: Swets and Zeitlinger 1939.Google Scholar
  87. Leydig, F.: Das Auge der Gliederthiere. Tübingen: Laupp 1864.Google Scholar
  88. Liebman, P.A.: In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J. 2, 161 (1962).PubMedCrossRefGoogle Scholar
  89. Lüdtke, H.: Beziehungen des Feinbaues im Rückenschwimmerauge zu seiner Fähigkeit, polarisiertes Licht zu analysieren. Z. vergl. Physiol. 40, 329–344 (1957).CrossRefGoogle Scholar
  90. Mazokhin-Porschnyakov, G. A.: Insect vision. New York: Plenum Press 1969.Google Scholar
  91. Meyer, G.F.: Versuch einer Darstellung von Neurofibrillen im Zentralnervensystem verschiedener Insekten. Zool. Jb., Abt. Anat. u. Ontog. 71, 413–426 (1951).Google Scholar
  92. Miller, W.H., Bernard, G. D.: Skipper glow. Massachusetts Institute of Technology, Research Laboratory of Electronics. Quart. Progr. Rep. No. 88, 114–119 (1968).Google Scholar
  93. Miller, W.H., Bernard, G. D., Allen, J.L.: The optics of insect compound eyes. Science 162, 760 (1968).PubMedCrossRefGoogle Scholar
  94. Miller, W.H., Møller, A.R., Bernhard, C.G.: The corneal nipple array. In: Bernhard, C.G. (Ed.): The Functional Organization of the Compound Eye. Wenner-Gren Center International Symposium Series, Vol. 7, pp. 51–62. Oxford: Pergamon Press 1966.Google Scholar
  95. Müller, J.: Zur vergleichenden Physiologie des Gesichtsinnes des Menschen und der Thiere. Leipzig: C. Cnobloch 1826.Google Scholar
  96. Nunnemacher, R.F.: The retinal image of arthropod eyes. Anat. Rec. 134, 618 (1959).Google Scholar
  97. Nunnemacher, R.F.: The structure and function of arthropod eyes. Proc. 3rd Intern. Congr. Photobiol. Copenhagen, 428–429 (1960).Google Scholar
  98. Parker, G.H.: The retina and optic ganglia in decapods, especially in Astacus. Mitt. Zool. Station Neapel 12, 1 (1895).Google Scholar
  99. Pedler, C., Goodland, H.: The compound eye and first optic ganglion of the fly. J. roy. Micr. Soc. 84, 161–179 (1965).PubMedGoogle Scholar
  100. Post, CT., Jr., Goldsmith, T.H.: Pigment migration and light-adaptation in the eye of the moth, Galleria mellonella. Biol. Bull. 128, 473–487 (1965).CrossRefGoogle Scholar
  101. Ratliff, F.: Selective adaptation of local regions of the rhabdom in an ommatidium of the compound eye of Limulus. In: Bernhard, C.G. (Ed.): The Functional Organization of the Compound Eye. Wenner-Gren Center International Symposium Series, Vol. 7, pp. 187–191. Oxford:Pergamon Press 1966.Google Scholar
  102. Reichardt, W.: Über das optische Auflösungsvermögen der Facettenaugen von Limulus. Kybernetik 1, 57–69 (1961).PubMedCrossRefGoogle Scholar
  103. Rutherford, D. J., Horridge, G. A.: The rhabdom of the lobster eye. Quart. J. micr. Sci. 106, 119 (1965).Google Scholar
  104. Schmidt, W. J.: Dichroismus des Außengliedes der Stäbchenzellen der Froschnetzhaut verursacht durch den Sehpurpur. Naturwissenschaften 22, 206 (1934).CrossRefGoogle Scholar
  105. Schmidt, W. J.: Doppelbrechung, Dichroismus und Feinbau des Außengliedes der Sehzellen vom Frosch. Z. Zellforsch. 22, 485 (1935).CrossRefGoogle Scholar
  106. Schmidt, W. J.: Polarisationsoptische Analyse eines Eiweiß-Lipoid-Systems, erläutert am Außenglied der Sehzellen. Kolloid-Z. 85, 137 (1938).CrossRefGoogle Scholar
  107. Schneider, L., Langer, H.: Die Feinstruktur des Überganges zwischen Kristallkegel und Rhabdomeren im Facettenauge von Calliphora. Z. Naturforsch. 21B, 196–197 (1966).Google Scholar
  108. Scholes, J., Reichardt, W.: The quantal content of optomotor stimuli and the electrical responses of receptors in the compound eye of the fly Musca. Kybernetik 6, 74–80 (1969).PubMedCrossRefGoogle Scholar
  109. Seitz, G.: Der Strahlengang im Appositionsauge von Calliphora erythroeephala (Meig.). Z. vergl. Physiol. 59, 205–231 (1968a).Google Scholar
  110. Seitz, G.: Der dioptrische Apparat im Insektenauge. Verh. dtsch. Zool. Ges. (Innsbruck) 361–367 (1968b).Google Scholar
  111. Seitz, G.: Polarisationsoptische Untersuchungen am Auge von Calliphora erythroeephala (Meig.). Z. Zellforsch. 93, 525–529 (1969a).PubMedCrossRefGoogle Scholar
  112. Seitz, G.: Untersuchungen am dioptrischen Apparat des Leuchtkäferauges. Z. vergl. Physiol. 62, 61–74 (1969b).CrossRefGoogle Scholar
  113. Seitz, G.: Nachweis einer Pupillenreaktion im Auge der Schmeißfliege. Z. vergl. Physiol. 69, 169–185 (1970).CrossRefGoogle Scholar
  114. Seletskaya, L.I.: Perception of polarized light by the compound eye, in bees. Biofizika 1, 155–157 (1956).Google Scholar
  115. Shaw, S.R.: Polarized light responses from crab retinula cells. Nature (Lond.) 211, 92 (1966).CrossRefGoogle Scholar
  116. Shaw, S.R.: Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res. 9, 999–1029 (1969).PubMedCrossRefGoogle Scholar
  117. Smith, T. G., Baumann, F., Fuortes, M.G.F.: Electrical connections between visual cells in the ommatidium of Limulus. Science 147, 1446–1448 (1965).PubMedCrossRefGoogle Scholar
  118. Stockhammer, K.: Zur Wahrnehmung der Schwingungsrichtung linear polarisierten Lichtes bei Insekten. Z. vergl. Physiol. 38, 30–83 (1956).CrossRefGoogle Scholar
  119. Swammerdam, J.: Bybel der Natuure, Vols. I–II. Published by H. Boerhaave. Leyden: Severinus, B. Vander and P. Vander 1737–1738.Google Scholar
  120. Swihart, S.L., Gordon, W.C.: Red photoreceptor in butterflies. Nature (Lond.) 231, 126–127 (1971).CrossRefGoogle Scholar
  121. Trujillo-Cenóz, O.: Some aspects of the structural organization of the arthropod eye. In: Cold Spr. Harb. Symp. quant. Biol. 30, 371–381 (1965).Google Scholar
  122. Trujillo-Cenóz, O., Melamed, J.: Electron microscope observations on the peripheral and intermediate retinas of dipterans. In: Bernhard, C.G. (Ed.): The Functional Organization of the Compound Eye. Wenner-Gren Center International Symposium Series, Vol. 7, pp. 339–361. Oxford: Pergamon Press 1966.Google Scholar
  123. Tunstall, J., Horridge, G.A.: Electrophysiological investigation of the optics of the locust retina. Z. vergl. Physiol. 55, 167–182 (1967).CrossRefGoogle Scholar
  124. Tuurala, O.: Histologische und physiologische Untersuchungen über die photomechanischen Erscheinungen in den Augen der Lepidopteren. Suomal. Tiedeakat. Toim. (Annls Acad. scient, fennicae) A4 24, 1–69 (1954).Google Scholar
  125. Varela, F. G., Porter, K.R.: Fine structure of the visual system of the honey-bee (Apis mellifera). I. The retina. J. Ultrastruct. Res. 29, 236–259 (1969).CrossRefGoogle Scholar
  126. Verkhovskaya, I.S.: Effect of polarized light on phototaxis. Byull. Mosk. o-va Isp. Prip. Otd. Biol. 49, 101–113 (1940).Google Scholar
  127. Vowles, D.M.: The receptive fields of cells in the retina of the housefly (Muscadomestica). Proc. roy. Soc. B 164, 552–576 (1966).CrossRefGoogle Scholar
  128. De Vries, H., Spoor, A., Jelof, R.: Properties of the eye with respect to polarized light. Physica 19, 419–432 (1953).CrossRefGoogle Scholar
  129. Wada, S., Schneider, G.: Eine Pupillenreaktion im Ommatidium von Tenebrio molitor. Naturwissenschaften 54, 542 (1967).PubMedCrossRefGoogle Scholar
  130. Wada, S., Schneider, G.: Circadianer Rhythmus der Pupillenweite im Ommatidium von Tenebrio molitor. Z. vergl. Physiol. 58, 395–397 (1968).CrossRefGoogle Scholar
  131. Walcott, B.: Movement of retinula cells in insect eyes in light adaptation. Nature (Lond.) 223, 971–972 (1969).CrossRefGoogle Scholar
  132. Wald, G., Brown, P. K., Gibbons, I. R.: Visual excitation: a chemo-anatomical study. In: Beament, J.W.L. (Ed.): Biological Receptor Mechanisms. Symp. Soc. exp. Biol. 16, 32 (1962).Google Scholar
  133. Wald, G., Brown, P. K., Gibbons, I. R.: The problem of visual excitation. J. opt. Soc. Amer. 53, 20 (1963).CrossRefGoogle Scholar
  134. Washizu, Y., Burkhardt, D., Streck, P.: Visual field of single retinula cells and interommatidial inclination in the compound eye of the blowfly Calliphoraerythrocephala. Z. vergl. Physiol. 48, 413–428 (1964).CrossRefGoogle Scholar
  135. Waterman, T. H.: A light polarization analyzer in the compound eye of Limulus. Science 111, 252–254 (1950).PubMedCrossRefGoogle Scholar
  136. Waterman, T. H.: Directional sensitivity of single ommatidia in the compound eye of Limulus. Proc. nat. Acad. Sci. (Wash.) 40, 252 (1954).CrossRefGoogle Scholar
  137. Waterman, T. H.: Polarotaxis and primary photoreceptor events in Crustacea. In: Bernhard, C.G. (Ed.): The Functional Organization of the Compound Eye. Wenner-Gren Center International Symposium Series, Vol. 7, p. 493. Oxford: Pergamon Press 1966.Google Scholar
  138. Waterman, T. H.: Systems theory and biology — view of a biologist. In: Mesarović, M.D. (Ed.): Systems Theory and Biology (Proceedings of the 3rd Systems Symposium, Case Institute of Technology), p. 1. New York: Springer-Verlag 1968.Google Scholar
  139. Waterman, T. H., Fernández, H. R., Goldsmith, T.H.: Dichroism of photosensitive pigment in rhabdoms of the crayfish, Orconectes. J. gen. Physiol. 54, 415–432 (1969).PubMedCrossRefGoogle Scholar
  140. Weber, H.: Grundriß der Insektenkunde, 3. Aufl. Stuttgart: Fischer 1954.Google Scholar
  141. Wiedemann, I.: Versuche über den Strahlengang im Insektenauge (Appositionsauge). Z. vergl. Physiol. 49, 526–542 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • C. G. Bernhard
    • 1
  • G. Gemne
    • 1
  • G. Seitz
    • 2
  1. 1.StockholmSweden
  2. 2.ErlangenGermany

Personalised recommendations