Coastal and Open Ocean Waters

  • Winona B. Vernberg
  • F. John Vernberg


The entire water mass covering the bottom, or benthic zone, of the ocean is generally termed the pelagic zone. It is arbitrarily divided into two major subdivisions: the coastal waters or neritic zone, and the open ocean waters. Although the dividing line between these two areas is not well defined, the water over the continental shelves is considered neritic (Hedgpeth, 1957). The range of variation in physical factors typically is greater in coastal water than in oceanic water. These factors vary seasonally as well as geographically, for run-off from land and freshwater systems results in sediment, salinity, and nutrient fluctuations. Since coastal areas are shallow (less than 200 meters), wave action stirs up bottom sediments, allowing mixing and recycling of nutrients. The chemical composition of waters near the shore also varies more than that of oceanic water.


Open Ocean Gulf Stream Hermit Crab Antarctic Fish Capacity Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, M. D., E. S. Haslewood, G. A. D. Haslewood, D. C. Watts, and R. L. Watts (1968). Osmotic control and urea biosynthesis in Selachians. Comp. Biochem. Physiol., 26:971–978.PubMedCrossRefGoogle Scholar
  2. Altman, P. L., and D. S. Dittmer (1971). Respiration and Circulation. Federation of American Societies for Experimental Biology, Bethesda, Maryland.Google Scholar
  3. Ansell, A. D. (1969). Defensive adaptations to predation in the Mollusca. Proc. Symp.Mollusca, 2:487–512.Google Scholar
  4. Armitage, K. B. (1962). Temperature and oxygen consumption of Orchomonella chi-lensis (Heller) (Amphipoda: Gammeroidea). Biol. Bull., 123:225–232.CrossRefGoogle Scholar
  5. Arnold, J. M. (1962). Mating behavior and social structure in Loligo pealei. Biol.Bull., 123:53–57.CrossRefGoogle Scholar
  6. Badcock, J. (1970). The vertical distribution of mesopelagic fishes collected on the SOND cruise. J. mar. biol. Ass. U.K., 50:1001–1044.CrossRefGoogle Scholar
  7. Bardach, J. E., H. E. Winn, and D. W. Menzel (1959). The role of the senses in the feeding of the nocturnal reef predators Gymnothorax moringa and G. vicinus. Copeia, 2:133–139.CrossRefGoogle Scholar
  8. Bayly, I. A. E. (1969). The body fluids of some centropagid copepods: total concentration and amounts of sodium and magnesium. Comp. Biochem. Physiol., 28:1403–1409.CrossRefGoogle Scholar
  9. Beamish, F. W. H. (1964). Respiration of fishes with special emphasis on standard oxygen consumption III. Influence of oxygen. Can. J. Zool., 42:355–366.CrossRefGoogle Scholar
  10. Blaxter, J. H. S. (1970). Light-fishes. In Marine Ecology. O. Kinne, ed. Wiley-Inter-science. 1:213–320Google Scholar
  11. Boden, B. P., and E. M. Kampa (1967). The influence of natural light on vertical migrations of an animal community in the sea. Symp. Zool. Soc. Lond., 19:1526.Google Scholar
  12. Boolootian, R. A. (1966). Reproductive physiology. In Physiology of Echinodermata. R. A. Boolootian, ed. Interscience Publ., New York. Pp. 561–613.Google Scholar
  13. Brand, G. W., and I. A. E. Bayly (1971). A comparative study of osmotic regulation in four species of calanoid copepod. Comp. Biochem. Physiol., 38B:361–371.Google Scholar
  14. Brett, J. R. (1970). Temperature and fish. In Marine Ecology. O. Kinne, ed. Wiley-Interscience. 1:515–560.Google Scholar
  15. Brongersma-Sanders, M. (1957). Mass mortality in the sea. In Treatise on Marine Ecology and Paleoecology. J. W. Hedgpeth, ed. Geol. Soc. Am. Mem. No. 67, Washington, D.C. 1:941–1010.Google Scholar
  16. Burger, J. W., and W. N. Hess (1959). Function of the rectal gland in the spiny dogfish. Science, 131:670–671.CrossRefGoogle Scholar
  17. Burger, J. W., and W. N. Hess, and D. C. Tosteson (1966). Sodium influx and efflux in the spiny dogfish Squalus acanthias. Comp. Biochem. Physiol., 19:649–653.CrossRefGoogle Scholar
  18. Caldwell, R., and F. J. Vernberg (1970). The influence of acclimation temperature on the lipid composition of fish gill mitochondria. Comp. Biochem. Physiol., 34:179–192.CrossRefGoogle Scholar
  19. Carefoot, T. H. (1967). Growth and nutrition of Aplysia punctata feeding on a variety of marine algae. J. mar. biol. Ass. U.K., 47:565–589.CrossRefGoogle Scholar
  20. Carey, F. G., and J. M. Teal (1969a). Mako and porbeagle: warm-bodied sharks. Comp. Biochem. Physiol., 28:199–204.CrossRefGoogle Scholar
  21. Carey, F. G., and J. M. Teal (1969b). Regulation of body temperature by the bluefin tuna. Comp.Biochem. Physiol., 28:205–213.Google Scholar
  22. Caspers, H. (1957). Black sea and sea of Azov. In Treatise on Marine Ecology and Paleoecology. J. W. Hedgpeth, ed. Geol. Soc. Am. Mem. No. 67, Washington, D.C. 1:801–889.Google Scholar
  23. Castilla, J. C., and D. J. Crisp (1970). Responses of Asterias rubens to olfactory stimuli. J mar. biol. Ass. U.K., 50:829–847.CrossRefGoogle Scholar
  24. Cerame-Vivas, M. J., and I. E. Gray (1966). The distributional pattern of benthic invertebrates of the continental shelf off North Carolina. Ecology, 47:260–270.CrossRefGoogle Scholar
  25. Christensen, A. M. (1970). Feeding biology of the sea star Astropecten irregularis Pen-nant. Ophelia, 8:1–134.Google Scholar
  26. Childress, J. J. (1968). Oxygen minimum layer. Vertical distribution and respiration of the Mysid Gnathophausia ingens. Science, 160:1242–1243.Google Scholar
  27. Clarke, G. L., and R. H. Baccus (1964). Interrelations between the vertical migration of deep scattering layers, bioluminescence, and changes in daylight in the sea. Bull. Inst. Oceanogr. Monaco, No. 1318:1–36.Google Scholar
  28. Clarke, G. L., and R. H. Baccus and E. J. Denton (1962). Light and animal life. In The Sea. M. N. Hill, ed.1:456--468.Google Scholar
  29. Clarke, G. L., and R. H. Baccus and C. J. Hubbard (1959). Quantitative records of the luminescent flashing of oceanic animals at great depths. Limnol. Oceanogr., 4:163–180.CrossRefGoogle Scholar
  30. Clarke, W. D. (1963). Functions of bioluminescence in mesopelagic organisms. Nature,198:1244–2–46.Google Scholar
  31. Clarke, W. D. (1966). Bathyphotometric Studies of the Light Regime of Organisms of the Deep Scattering Layers. A. G. C. Res. and Dev. Rep. Tr 66–02. G. M. Defense Res. Lab., Santa Barbara, Calif.Google Scholar
  32. Conover, R. J. (1959). Regional and seasonal variation in the respiratory rate of marine copepods. Limnol. Oceanogr., 4:259–268.CrossRefGoogle Scholar
  33. Conover, R. J. (1962). Metabolism and growth in Calanus hyperboreus in relation to its life cycle. Rapp. et Proc.-Verb Cons. Interna. Explor. de la Mer. 153:190–197.Google Scholar
  34. Conover, R. J. (1966). Feeding on large particles of Calanus hyperboreus (Kröyer). In Some Contemporary Studies in Marine Science. H. Barnes, ed. George Allen and Unwin Ltd., Pp. 187–194.Google Scholar
  35. Conover, R. J. (1968). Zooplankton-life in a nutritionally dilute environment. Am. Zool.8:107–118.Google Scholar
  36. Cooper, R. A., and J. R. Uzmann (1971). Migrations and growth of deep-sea lobsters, Homarus americanus. Pp. 288–290.Google Scholar
  37. Courtney, W. A. M., and R. C. Newell (1965). Ciliary activity and oxygen uptake in Branchiostoma lanceolatum (Pallas). J. exp. Biol., 43:1–12.PubMedCrossRefGoogle Scholar
  38. Crisp, D. J. (1964). The effects of the winter of 1962/63 on the British marine fauna. Helgol. Wiss. Meeresunters., 10:313–327.CrossRefGoogle Scholar
  39. Cuttress, C., D. M. Ross, and L. Sutton (1970). The association of Calliactis tricolor with its pagurid, calappid, and majid partners in the Caribbean. Can. J. Zool. 48:371–376.CrossRefGoogle Scholar
  40. Dall, W., and N. E. Milward (1969). Water intake, gut absorption and sodium fluxes in amphibious and aquatic fishes. Comp. Biochem. Physiol., 30:247–260.PubMedCrossRefGoogle Scholar
  41. Das, B. K. (1934). The habitats and structure of Pseudapocryptes lanceolatus,a fish in the first stages of structural adaptation to aerial respiration. Proc. Roy. Soc. London, B 115:422–430.CrossRefGoogle Scholar
  42. Davison, R. C., W. P. Breese, C. E. Warren, and P. Doudoroff (1959). Experiments on the dissolved oxygen requirements of cold-water fishes. Sewage Ind. Wastes,31:950–966.Google Scholar
  43. Dean, J. M. (1972). The response of fish to a modified thermal environment. In Response of Fish to Environmental Change. W. Chavin, ed. Charles C Thomas, Springfield, Ill. In press.Google Scholar
  44. Decleir, W., and A. Richard (1970). A study of the blood proteins in Sepia officinalis L. with special reference to embryonic hemocyanin. Comp. Biochem. Physiol.,34:203–211.CrossRefGoogle Scholar
  45. DeJorge, F. B., A. S. F. Ditadi, and J. A. Petersen (1969). Influence of prolonged fasting on the biochemistry of Lissomyema exilii (Echiura). Comp. Biochem. Physiol., 31:483–492.CrossRefGoogle Scholar
  46. Denton, E. J. (1964). The buoyancy of marine mollusks. In Physiology of Mollusca I.Google Scholar
  47. K. M. Wilber and C. M. Yonge,Academic Press, New York. Pp. 425–434., and J. A. C. Nicol (1966). A survey of reflectivity in silvery teleosts. J. mar.biol. Ass. U.K., 46:685–722.Google Scholar
  48. K. M. Wilber and C. M. Yonge, and T. I. Shaw (1962). The buoyancy of gelatinous marine animals. J.Physiol., 161:14P–15P.Google Scholar
  49. Djangmah, J. S., and D. J. Grove (1971). Oxygen affinity of haemocyanin in diluted blood of Crangon. Comp. Biochem. Physiol.,38A:461–464.CrossRefGoogle Scholar
  50. Dunson, W. A. (1970). Some aspects of electrolyte and water balance in three estuarine reptiles, the diamondback terrapin, American and “salt water” crocodiles. Comp. Biochem. Physiol., 32:161–174.PubMedCrossRefGoogle Scholar
  51. Ekberg, D. R. (1958). Respiration in tissues of goldfish adapted to high and low temperatures. Biol. Bull., 114:308–316.CrossRefGoogle Scholar
  52. Evans, D. H. (1968). Measurement of drinking rates in fish. Comp. Biochem. Physiol., 25:751–753.PubMedCrossRefGoogle Scholar
  53. Studies on the permeability to water of selected marine, freshwater and euryhaline teleosts. J. exp. Biol., 50:689–703.Google Scholar
  54. Feder, H. M., and A. M. Christensen (1966). Aspects of asteroid biology. In Physiology of Echinodermata. R. Boolootian, ed. John Wiley and Sons, New York. Pp. 88–127.Google Scholar
  55. Fish, M. P. (1954). The character and significance of sound production among fishes of the western North Atlantic. Bull. Bingham Oceanogr. Coll., 14:1–109.Google Scholar
  56. A. S. Kelsey, Jr., and W. H.Mowbray (1952). Studies on the production of underwater sound by North Atlantic coastal fishes. J. Mar. Res., 11:180–193.Google Scholar
  57. Fontaine, A. R. (1965). The feeding mechanisms of the ophiuroid Ophiocomina nigra.J. mar. biol. Ass. U.K., 45:373–385.CrossRefGoogle Scholar
  58. Fox, H. M. (1936). The activity and metabolism of poikilothermal animals in different latitudes. Proc. Zool. Soc. London,1936:945–955.Google Scholar
  59. and C. A. Wingfield (1937). The activity and metabolism of poikilothermal animals in different latitudes. Proc. Zool. Soc. London, Part III: 275–282.Google Scholar
  60. Foxton, P. (1970). The vertical distribution of pelagic decapods (Crustacea: Natantia) Collected on the SOND Cruise 1965. II. The Penaeidae and general discussion. J. mar. biol. Ass. U.K.,50:961–1000.CrossRefGoogle Scholar
  61. Fraser, J. (1962). Nature Adrift. The Story of Marine Plankton. G. T. Foulis and Company, London. 178 pp.Google Scholar
  62. Fry, F. E. J. (1964). Animals in aquatic environments: fishes. In Handbook of Physi-ology. Section 4, Adaptation to the Environment. D. B. Dill, ed. Am. Physiol. Soc., Washington, D.C. Pp. 715–728.Google Scholar
  63. Giese, A. C. (1959). Comparative physiology: annual reproductive cycles of marine invertebrates. Ann. Rev. Physiol., 21:547–576.CrossRefGoogle Scholar
  64. Giese, A. C. and A. Farmanfarmaian (1963). Resistance of the purple sea urchin to os-motic stress. Biol. Bull., 124:182–192.CrossRefGoogle Scholar
  65. Glynn, J. P. (1968). Studies on the ionic, protein and phosphate changes associated with the moult cycle of Homarus vulgaris. Comp. Biochem. Physiol.,26:937946.Google Scholar
  66. Glynn, P. W. (1968). Mass mortalities of echinoids and other reef flat organisms coincident with midday low water exposures in Puerto Rico. Mar. Biol., 1:226–243.CrossRefGoogle Scholar
  67. Goldstein, L., and R. P. Forster (1965). The role of uricolysis in the production of urea by fishes and other aquatic vertebrates. Comp. Biochem. Physiol., 14:567576.Google Scholar
  68. Grigg, G. C. (1967). Some respiratory properties of the blood of four species of Antarctic fishes. Comp. Biochem. Physiol., 23:139–148.PubMedCrossRefGoogle Scholar
  69. Gunter, G. (1945). Studies on marine fishes of Texas. Publ. Inst. Mar. Sci. Univ. Tex., 1:1–190.Google Scholar
  70. Gunter, G. (1957). Temperature. In Treatise on Marine Ecology and Paleoecology. J. W.Hedgpeth, ed. Geol. Soc. Am. Mem. No. 67, Washington, D.C. 1:159–184.Google Scholar
  71. Gunther, E. R. (1936). A report on oceanographical investigations in the Peru coastal current. Discovery Reports, 13:107–276.Google Scholar
  72. Halcrow, K. (1963). Acclimation to temperature in the marine copepod, Calanus fimmarchicus (Gunner). Limnol. Oceanogr.,8:1–8.CrossRefGoogle Scholar
  73. Hall, F. G. (1929). The influence of varying oxygen tensions upon the rate of oxygen consumption in marine fishes. Am. J. Physiol.,88:212–218.Google Scholar
  74. Hall, F. G. (1930). The ability of the common mackerel and certain other marine fishes to remove dissolved oxygen from sea water. Am. J. Physiol., 93:412–471.Google Scholar
  75. Hall, F. G. and I. E. Gray (1929). The hemoglobin concentration of the blood of marine fishes. J. Biol. Chem., 81:589–594.Google Scholar
  76. Hall, F. G. and F. H. McCutcheon (1938). The affinity of hemoglobin for oxygen in marine fishes. J. Cell. Comp. Physiol., 11:205–212.CrossRefGoogle Scholar
  77. Haschemeyer, A. E. V. (1972). Control of protein synthesis in the acclimation of fish to environmental temperature changes. In Response of Fish to Environmental Change. W. Chavin, ed. Charles C. Thomas, Springfield, Ill. In press.Google Scholar
  78. Hastings, J. W. (1971.) Light to hide by: ventral luminescence to camouflage the silhouette. Science, 173:1016–1017.Google Scholar
  79. Hedgpeth, J. W. (1957). Classification of marine environments. In Treatise on Marine Ecology and Paleoecology. J. W. Hedgpeth, ed. Geol. Soc. Am. Mem. No. 67, Washington, D.C. 1:17–28.Google Scholar
  80. Hickman, C. P.,Jr. (1959). The osmoregulatory role of the thyroid gland in the starry flounder, Platichthys stellatus. Can. J. Zool., 37:997–1060.CrossRefGoogle Scholar
  81. Hickman, C. P., Jr. (1968a). Glomerular filtration and urine flow in the euryhaline southern flounder, Paralichthys lethostigma, in sea water. Can. J. Zool., 46:427–437.CrossRefGoogle Scholar
  82. Hickman, C. P., Jr. (1968b). Ingestion, intestinal absorption and elimination of seawater and salts in the southern flounder, Paralichthys lethostigma. Can. J. Zool., 46:457–466.CrossRefGoogle Scholar
  83. Hickman, C. P., Jr. and B. F. Trump (1969). The kidney. In Fish Physiology. W. S. Hoar and D. J. Randall, Academic Press, New York. 1:91–239.Google Scholar
  84. Hochachka, P. (1966). Lactic dehydrogenases in poikilotherms: definition of a complex isozyme system. Comp. Biochem. Physiol., 18:261–269.PubMedCrossRefGoogle Scholar
  85. Hochachka, P. (1967). Organization of metabolism during temperature compensation. In Molecular Mechanisms of Temperature Adaptation. C. L. Prosser, ed. AAAS, Washington, D.C. Pp. 177–203.Google Scholar
  86. Hochachka, P. and F. R. Hayes (1962). The effect of temperature acclimation on pathways of glucose metabolism in the trout. Can. J. Zool., 40:261–270.CrossRefGoogle Scholar
  87. Holeton, G. F. (1970). Oxygen uptake and circulation by a hemoglobinless Antarctic fish (Chaenocephalus aceratus Lonnberg) compared with three red-blooded Antarctic fish. Comp. Biochem. Physiol., 34:457–471.PubMedCrossRefGoogle Scholar
  88. Holland, N. D. (1967). Gametogenesis during the annual reproductive cycle in a cidaroid sea urchin (Stylocidaris affinis). Biol. Bull.,133:578–590.CrossRefGoogle Scholar
  89. Hopper, A. F. (1960). The resistance of marine zooplankton of the Caribbean and South Atlantic to changes in salinity. Limnol. Oceanogr., 5:43–47.CrossRefGoogle Scholar
  90. Houston, A. H. (1959). Osmoregulatory adaptation of the steelhead trout (Salmo gairdnerii Richardson) to sea water. Can. J. Zool., 37:729–748.CrossRefGoogle Scholar
  91. Huggins, A. K., and L. Colley (1971). The changes in the non-protein nitrogenous contituents of muscle during the adaptation of the eel Anguilla anguilla L. from fresh water to sea water. Comp. Biochem. Physiol., 38B:537–541.Google Scholar
  92. Hwang, J. C., and C. P. Fung (1970). Effect of calcium ions on oxygen equilibrium of hemocyanin of Asiatic horseshoe crab Tachypleus tridentatus. Comp. Biochem. Physiol., 37:573–579.Google Scholar
  93. Hyman, L. H. (1929). The effect of oxygen tension on oxygen consumption in Planaria and some echinoderms. Physiol. Zool., 2:505–534.Google Scholar
  94. Kellogg, W. N. (1961). Porpoises and Sonar. University of Chicago Press, Chicago.Google Scholar
  95. Komatsu, S. K., H. T. Miller, A. L. DeVries, D. T. Osuga, and R. E. Feeney (1970).Blood plasma proteins of cold-adapted Antarctic fishes. Comp. Biochem. Physiol.,32:519–527.Google Scholar
  96. Korringa, P. (1957). Lunar periodicity. In Treatise on Marine Ecology and Paleo-ecology. J. W. Hedgpeth ed. Geol. Soc. Am. Mem, No. 67, Washington, D.C. 1:917–934.Google Scholar
  97. Krogh, A. (1939). Osmotic Regulation in Aquatic Animals. Dover, New York.Google Scholar
  98. Künnemann, H., H. Laudien, and H. Precht (1970). Der Einfluss von Temperaturän-derungen auf Enzyme der Fischmuskulator. Versuche mit Goldorfen Idus idus.Mar. Bol., 7:73–81.Google Scholar
  99. Lance, J. (1965). Respiration and osmotic behaviour of the copepod Acartia tonsa in diluted sea water. Comp. Biochem. Physiol., 14:155–165.PubMedCrossRefGoogle Scholar
  100. Landenberger, D. E. (1968). Studies on selective feeding in the Pacific starfish Pisaster in southern California. Ecology, 49:1062–1074.CrossRefGoogle Scholar
  101. Lawrence, A. L., J. M. Lawrence, and A. C. Giese (1971). Carbohydrate and lipid levels in the blood of Urechis caupo (Echiura). Comp. Biochem. Physiol., 38B: 463–465.Google Scholar
  102. Lenfant, C., and K. Johansen (1966). Respiratory function in the elasmobranch Squalus suckleyi G. Respir. Physiol., 1:13–29.PubMedCrossRefGoogle Scholar
  103. Limbaugh, C. (1963). Fie ld notes on sharks. In Sharks and Survival. P. W. Gilbert, ed. D. C. Heath and Company, Boston. Pp. 63–94.Google Scholar
  104. Longhurst, A. R. (1967). Vertical distribution of zooplankton in relation to the eastern Pacific oxygen minimum. Deep-Sea Res., 14:51–63.Google Scholar
  105. MacGinitie, G. E., and N. MacGinitie (1949). Natural History of Marine Animals. McGraw-Hill, New York. 473 pp.Google Scholar
  106. Macintyre, I. G., and O. H. Pilkey (1969). Tropical reef corals: tolerance of low tem- peratures on the North Carolina continental shelf. Science, 166:374–375.PubMedCrossRefGoogle Scholar
  107. Mackay, W. C., and C. L. Prosser (1970). Ionic and osmotic regulation in the king crab and two other North Pacific crustaceans. Comp. Biochem. Physiol., 34:273280.Google Scholar
  108. Marshall, N. B. (1954). Aspects of Deep Sea Biology. Philosophical Library, New York.Google Scholar
  109. Marshall, S. M., A. G. Nicholls, and A. P. Orr (1934). On the biology of Calanus finmarchicus. VI. Oxygen consumption in relation to environmental conditions. J. mar. biol. Ass. U.K.,20:1–28.Google Scholar
  110. McDowall, R. M. (1969). Lunar rhythms in aquatic animals. A general review. Tuatara, 17:133–144.Google Scholar
  111. McFarland, W. N., and S. A. Moss (1967). Internal behavior in fish schools. Science, 156:260–262.PubMedCrossRefGoogle Scholar
  112. McLeese, D. W. (1956). Effects of temperature, salinity and oxygen on the survival of the American lobster. J. Fish. Res. Bd. Can.,13:247–272.CrossRefGoogle Scholar
  113. McPherson, B. F. (1968). Feeding and oxygen uptake of the tropical sea urchin Eucidaris tribuloides (Lamarck). Biol. Bull.,135:308–321.CrossRefGoogle Scholar
  114. Miles, H. M. (1971) Renal function in migrating adult coho salmon. Comp. Biochem. Physiol., 38A:787–826.CrossRefGoogle Scholar
  115. Moore, H. B. (1931). The muds of the Clyde Sea area. III. Chemical and physical conditions; rate and nature of sedimentation; and fauna. I. mar. biol. Ass. U.K., 17:325–358.CrossRefGoogle Scholar
  116. Mori, S., and K. Matutani (1952). Studies on the daily rhythmic activity of the starfish, Astropecten polyacanthus Müller et Troschel and the accompanied physiological rhythms. Publ. Seto mar. biol. Lab., 2:213–225.Google Scholar
  117. Morris, R. W. (1960). Temperature, salinity and southern limits of three species of Pacific cottid fishes. Limnol. Oceanogr., 5:175–179.CrossRefGoogle Scholar
  118. Moulton, J. M. (1960). Swimming sounds and the schooling of fishes. Biol. Bull.,119:210–223.CrossRefGoogle Scholar
  119. Mullin, M. M. (1966). Selective feeding by calanoid copepods from the Indian Ocean. In Some Contemporary Studies in Marine Science. H. Barnes, ed. George Allen and Unwin Ltd., London. Pp. 545–554.Google Scholar
  120. Nagabhushanam, A. K. (1965). On the biology of the commoner gadoids in Manx waters. J. mar. biol. Ass. U.K.,45:615–657.CrossRefGoogle Scholar
  121. Nemoto, T. (1959). Food of baleen whales with reference to whale movements. Scient. Rep. Whales Res. Inst., Tokyo,14:149–290.Google Scholar
  122. Nemoto, T.(1970). Feeding pattern of baleen whales in the ocean. In Marine Food Chains.J. H. Steele, ed. University of California Press, Berkeley and Los Angeles. Pp. 241–252.Google Scholar
  123. Newell, R. C., and W. A. M. Courtney (1965). Respiratory movement in Holothuria forskali Delle Chiaje. J. exp. Biol., 42:45–57.Google Scholar
  124. Ockelmann, K. W. (1958). The zoology of East Greenland marine Lamellibranchiata. Medde. GrOn., 122:1–256.Google Scholar
  125. Oglesby, L. C. (1968). Some osmotic responses of the sipunculid worm Themiste dyscritum. Comp. Biochem. Physiol.,26:155–177.CrossRefGoogle Scholar
  126. Orton, J. H. (1920). Sea temperature, breeding and distribution in marine animals. J. mar. biol. Ass. U.K., 12:339–366.CrossRefGoogle Scholar
  127. Pandian, T. J. (1967). Intake, digestion, and absorption and conversion of food in the fishes Megalops cyprinoides and Ophiocyphalus striatus. Mar. Biol., 1:16–32.Google Scholar
  128. Panikkar, N. K. (1940). Influence of temperature on osmotic behaviour of some crus-tacea and its bearing on problems of animal distribution. Nature, 146:366–367.CrossRefGoogle Scholar
  129. Parry, G. (1960). The development of salinity tolerance in the salmon, Salmo salar Land some related species. J. exp. Biol., 37:425–434.Google Scholar
  130. Patent, D. H. (1969). The reproductive cycle of Gorgonocephalus caryi (Echinodermata: Ophiuroidea). Biol. Bull., 136:241–252.PubMedCrossRefGoogle Scholar
  131. Pearse, J. S. (1968). Patterns of reproductive periodicities in four species of Indo-Pacific echinoderms. Proc. Indian Acad. Sci.,B6:247–279.Google Scholar
  132. Pearse, J. S. (1969). Reproductive periodicities of Indo-Pacific invertebrates in the Gulf ofSuez. I. The Echinoids Prionocidaris baculosa (Lamarck) and Lovenia elongata (Gray). Bull. Mar. Sci., 19:323–350.Google Scholar
  133. Peiss, C. N., and J. Field (1950). The respiratory metabolism of excised tissues of warm-and cold-adapted fishes. Biol. Bull., 99:213–224.PubMedCrossRefGoogle Scholar
  134. Pickens, P. E. (1965). Heart rate of mussels as a function of latitude, intertidal height and acclimation temperature. Physiol. Zool., 38:390–405.Google Scholar
  135. Potts, W. T. W., M. A. Foster, P. P. Rudy, and H. G. Parry (1967). Sodium and water balance in the ichlid teleost, Tilapia mossambica. J. exp. Biol., 47:461–470.Google Scholar
  136. Prosser, C. L. (1958). General summary: The nature of physiological adaptation. In Physiological Adaptation. Am. Physiol. Soc., Washington, D.C. Pp. 167–180.Google Scholar
  137. Metabolic and central nervous acclimation of fish to cold. In The Cell and Environmental Temperature. A. S. Troshin, ed. Pergamon Press, New York. Pp. 375–383.Google Scholar
  138. L. M. Barr, R. D. Pinc, and C. Y. Lauer (1957). Acclimation of goldfish to low concentrations of oxygen. Physiol. Zool., 30:137–141.Google Scholar
  139. Rao, K. P. (1967). Some biochemical mechanisms of low temperature acclimation in tropical poikilotherms. In The Cell and Environmental Temperature. A. S. Troshin, ed. Pergamon Press, New York. Pp. 98–112.Google Scholar
  140. Read, L. J. (1968) A study of ammonia and urea production and excretion in the fresh-water-adapted form of the Pacific lamprey, Entosphenus tridentatus. Comp. Biochem. Physiol.,26:455–466.CrossRefGoogle Scholar
  141. Redmond, J. R. (1955). The respiratory function of haemocyanin in crustacea. J. Cell. Comp. Physiol., 46:209–247.CrossRefGoogle Scholar
  142. Redmond, J. R. (1968). The respiratory function of haemocyanin. In Biochemistry and Physi-ology of Haemocyanins. F. Ghiretti, ed. Academic Press, New York. Pp. 5–23.Google Scholar
  143. Reese, E. S. (1964). Ethology and marine zoology. Oceanogr. Mar. Biol. Ann. Rev.,2:455–488.Google Scholar
  144. Reiswig, H. M. (1970). Porifera: Sudden sperm release by tropical demospongiae. Science, 170:538–539.PubMedCrossRefGoogle Scholar
  145. Roots, B. I. (1968). Phospholipids of goldfish (Carassius auratus L.) brain: the influ- ence of environmental temperature. Comp. Biochem. Physiol., 25:457–466.PubMedCrossRefGoogle Scholar
  146. Rosenthal, H., and G. Hempel (1970). Experimental studies in feeding and food requirements of herring larvae Clupea harengus L. In Marine Food Chains. J. H. Steele, ed. University of California Press, Berkeley and Los Angeles. Pp. 344–364.Google Scholar
  147. Royce, W. F., L. S. Smith, and A. C. Hartt (1968). Models of oceanic migrations of Pacific salmon and comments on guidance mechanisms. U. S. Fish Wildlife Sera. Fish. Bull., 66:441–462.Google Scholar
  148. Rozin, P., and J. Mayer (1964). Some factors influencing short-term food intake of the goldfish. Am. J. Physiol., 206:1430–1436.PubMedGoogle Scholar
  149. Rudy, P. R., and R. C. Wagner (1970). Water permeability in the Pacific hagfish Polistotrema stouti and the staghorn sculpin Leptocottus armatus. Comp. Biochem. Physiol., 34:399–403.CrossRefGoogle Scholar
  150. Ruud, J. T. (1954). Vertebrates without erythrocytes and blood pigment. Nature,173: 848–850.PubMedCrossRefGoogle Scholar
  151. Rutman, J., and L. Fishelson (1969). Food composition and feeding behaviour of shallow-water crinoids at Eilat (Red Sea). Mar. Biol., 3:46–57.CrossRefGoogle Scholar
  152. Ryan, E. P. (1966). Pheromone: Evidence in a decapod crustacean. Science, 151:340–341.PubMedCrossRefGoogle Scholar
  153. Ryland, J. S. (1964). The feeding of plaice and sand-eel larvae in the southern North Sea. J. mar. biol. Ass. U.K., 44:343–364.CrossRefGoogle Scholar
  154. Salanki, J. (1966). Comparative studies on the regulation of the periodic activity in marine lamellibranchs. Comp. Biochem. Physiol., 18:829–843.PubMedCrossRefGoogle Scholar
  155. Sassaman, C., and C. P. Mangum (1970). Patterns of temperature adaptation in North American Atlantic coastal actinians. Mar. Biol., 7:123–130.CrossRefGoogle Scholar
  156. Schlieper, C. (1957). Comparative study of Asterias rubens and Mytilus edulis from the North Sea (30 0/00 S) and the western Baltic Sea (15 0/00 S). Ann. Biol., 33:117–127.Google Scholar
  157. H. Flugel, and J. Rudolf (1960). Temperature and salinity relationships in marine bottom invertebrates. Experientia, 16:1–8.CrossRefGoogle Scholar
  158. Schmidt-Nielsen, K., C. B. Jörgensen, and H. Osaki (1958). Extrarenal salt excretion in birds. Am. J. Physiol.,193:101–107.PubMedGoogle Scholar
  159. Scholander, P. F., W. Flagg, V. Walters, and L. Irving (1953). Climatic adaptation in Arctic and tropical poikilotherms. Physiol. Zool., 26:67–92.Google Scholar
  160. Scholander, P. F., W. Flagg, V. Walters, and L. Irving and L. Van Dam (1957). The concentration of hemoglobin in some cold water Arctic fishes. J. Cell. Comp. Physiol.,49:1–4.CrossRefGoogle Scholar
  161. Small, L. F., J. F. Hebard, and C. D. McIntire (1966). Respiration in euphausiids (Euphausia pacifica). Nature, 211:1210–1211.CrossRefGoogle Scholar
  162. Smith, H. W. (1930). The absorption and excretion of water and salts by marine teleosts. Am. J. Physiol., 93:480–505.Google Scholar
  163. Snodgrass, P. J., and J. E. Halver (1971). Potassium, sodium, magnesium and calcium contents of Chinook Salmon tissues during various stages of the life cycle. Comp. Biochem. Physiol., 38A:99–199.CrossRefGoogle Scholar
  164. Somero, G. N., and A. L. DeVries (1967). Temperature tolerance of some Antarctic fishes. Science,156:257–258.PubMedCrossRefGoogle Scholar
  165. A. C. Giese, and D. E. Wohlschlag (1968). Cold adaptation of the Antarctic fish Trematomus bernacchii. Comp. Biochem. Physiol., 26:223–233.Google Scholar
  166. A. C. Giese and P. W. Hochachka (1971). Biochemical adaptation to the environment. Am. Zool., 11:157–167.Google Scholar
  167. Southward, A. J., and D. J. Crisp (1965). Activity rhythms of barnacles in relation to respiration and feeding. J. mar. biol. Ass. U.K.,45:161–185.CrossRefGoogle Scholar
  168. Sparck, R. (1936). On the relation between metabolism and temperature in some marine lamellibranchs and its zoogeographical significance. Biol. Medd., 13: No. 5.Google Scholar
  169. Staaland, H. (1970). Volume regulation in the common whelk, Buccinum undatum L. Comp. Biochem. Physiol., 34:355–365.CrossRefGoogle Scholar
  170. Steele, J. H. (1965). Some problems in the study of marine resources. Spec. Publ. int. Comm. N.W. Atlant. Fish., 6:463–476.Google Scholar
  171. Steinbach, H. B. (1963). Sodium, potassium, and chloride in selected hydroids. Biol. Bull., 124:322–336.CrossRefGoogle Scholar
  172. Stevens, E. D., and F. E. J. Fry (1971). Brain and muscle temperatures in ocean caught and captive skipjack tuna. Comp. Biochem. Physiol., 38A:203–212.CrossRefGoogle Scholar
  173. Storey, M., and E. W. Gudger (1936). Mortality of fishes due to cold at Sanibel Island, Florida, 1886–1936. Ecology,17:640–648.CrossRefGoogle Scholar
  174. Subrahmanyan, C. B. (1962). Oxygen consumption in relation to body weight and oxygen tension in the prawn Penaeus indicus (Milne Edwards). Proc. Indian Acad. Sci., 55:152–161.Google Scholar
  175. Summers, W. C. (1969). Winter populations of Loligo pealei in the mid-Atlantic bight. Biol. Bull., 137:202–216.CrossRefGoogle Scholar
  176. Sundnes, G. (1957). On the transport of live cod and coalfish. J. Cons. perm. int. Explor. Mer., 22:191–196.Google Scholar
  177. Tagatz, M. E. (1961). Reduced oxygen tolerance and toxicity of petroleum products to juvenile American shad. Chesapeake Sci.,2:65–71.CrossRefGoogle Scholar
  178. Teal, J. M., and F. G. Carey (1967). The metabolism of marsh crabs under conditions of reduced oxygen pressure. Physiol. Zool.,40:83–91.Google Scholar
  179. Telford, M. (1968). Changes in blood sugar composition during the molt cycle of the lobster Homarus americanus. Comp. Biochem. Physiol., 26:917–926.CrossRefGoogle Scholar
  180. Theede, H., A. Ponat, K. Huroki, and. C. Schlieper (1969). Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulphide. Mar. Biol., 2:325–337.Google Scholar
  181. Thomas, H. J. (1954). The oxygen uptake of the lobster (Homarus vulgaris Edw.). J. exp. Biol., 31:228–251.Google Scholar
  182. Thorson, G. (1936). The larval development, growth, and metabolism of Arctic marine bottom invertebrates compared with those of other seas. Medd. Gr0nland, 100: No. 6.Google Scholar
  183. Thorson, G.(1950). Reproductive and larval ecology of marine bottom invertebrates.Biol. Rev., 25:1–45.CrossRefGoogle Scholar
  184. Thorson, T. B.. C. M. Cowan, and D. E. Watson (1967). Potamotrygon spp: Elasmobranchs with low urea content. Science,158:375–377.PubMedCrossRefGoogle Scholar
  185. Townsend, L. D., and D. Earnest (1940). The effects of low dissolved oxygen and other extreme conditions on salmonoid fishes. Proc. Pacif. Sci. Congr.,3:345351.Google Scholar
  186. Trevallion, A., R. R. C. Edwards, and J. H. Steele (1970). Dynamics of a benthic bivalve. In Marine Food Chains. J. H. Steele, ed. University of California Press, Berkeley and Los Angeles. Pp. 285–295.Google Scholar
  187. Tulkki, P (1965). Disappearance of the benthic fauna from the Basin of Bornholm (Southern Baltic) due to oxygen deficiency. Cah. Biol. Mar., 6:455–463.Google Scholar
  188. Utida, S., M. Kamiya, and N. Shairai (1971). Relationship between the activity of Na+ - K* - activated adenosinetriphosphatase and the number of chloride cells in eel gills with special reference to sea-water adaptation. Comp. Biochem. Physiol., 38A:443–447.CrossRefGoogle Scholar
  189. Vernberg, F. J. (1954). The respiratory metabolism of tissues of marine teleosts in relation to activity and body size. Biol. Bull., 106:360–370.CrossRefGoogle Scholar
  190. Vernberg, F. J. (1972). Genetic and phenotypic plasticity of oceanic invertebrates. Archivio di Oceanografia e Limnologia. In press.Google Scholar
  191. Vernberg, F. J. and I. E. Gray (1953). A comparative study of the respiratory metabolism of excised brain tissue of marine teleosts. Biol. Bull., 104:445–449.CrossRefGoogle Scholar
  192. Vernberg, F. J. and I. E. Gray and W. B. Vernberg (1970). Lethal limits and the zoogeography of the faunal assemblages of coastal Carolina waters. Mar. Biol., 6:26–32.CrossRefGoogle Scholar
  193. Vernberg, W. B., and F. J. Vernberg (1970). Metabolic diversity in oceanic animals. Mar. Biol., 6:33–42.CrossRefGoogle Scholar
  194. Vernberg, W. B., and F. J. Vernberg (1972). The effect of mercury on the fiddler crab. Uca pugilator. In press. Fish. Bull. Google Scholar
  195. Vyncke, W. (1970). Influence of biological and environmental factors in nitrogenous extractives of the spurdog Squalus acanthias. Mar. Biol.,6:248–255.CrossRefGoogle Scholar
  196. Waterman, T. H., and R. B. Forward, Jr. (1970). Field evidence for polarized light sensitivity in the fish Zenarchopterus. Nature, 228:85–87.CrossRefGoogle Scholar
  197. Wells, H. W., and I. E. Gray (1960). The seasonal occurrence of Mytilus edulis on the Carolina coast as a result of transport around Cape Hatteras. Biol. Bull., 119:550–559.CrossRefGoogle Scholar
  198. Werner, B. (1963). Experimentelle Beobachtungen über die Wirksamkeit von Aussenfaktoren in der Entwicklung der Hydrozoen und Erörterung ihrer Bedeutung für die Evolution, Drittes maresbiologisches Symposion. Pp. 153–177.Google Scholar
  199. Wiebe, J. P. (1968). The effects of temperature and day-length on the reproductive physiology of the viviparous seaperch, Cymatogaster aggregata Gibbons. Can. J. Zool., 46:1207–1219.CrossRefGoogle Scholar
  200. Williams, A. B. (1960). The influence of temperature on osmotic regulation in two species of estuarine shrimps (Penaeus). Biol. Bull., 119:560–571.CrossRefGoogle Scholar
  201. Winn, H. E. (1964). The biological significance of fish sounds. In Marine Bio-Acoustics. Proc. Symp. Bimini, Bahamas. Pergamon Press, New York. Pp. 213–231.Google Scholar
  202. J. A. Marshall, and B. Hazlett (1964). Behavior, diel activities and stimuli that elicit sound production and reactions to sound in the Longspine Squirrel-fish. Copeia, 2:413–425.Google Scholar
  203. M. Salmon and N. Roberts (1964). Sun-compass orientation by parrot fishes.Zeit. für Tierpsych. 21:798–812.Google Scholar
  204. Winter, J. (1970). Filter feeding and food utilization in Arctica islandica L. and Modiolus modiolus L. at different food concentrations. In Marine Food Chains. J. H. Steele, ed. University of California Press, Berkeley and Los Angeles. Pp. 196–206.Google Scholar
  205. Wisby, W. J., and D. R. Nelson (1964). Airplane observations of acoustic orientation in sharks. (Abstr.) Amer. Fisheries Soc. Conf., Session on fish behavior and sensory physiology.Google Scholar
  206. Wood, J. D. (1958). Nitrogen excretion in some marine teleosts. Can. J. Biochem. Physiol., 36:1237–1242.PubMedCrossRefGoogle Scholar
  207. Zein-Eldin, Z. P., and D. V. Aldrich (1965). Growth and survival of post-larval Penaeus aztecus under controlled conditions of temperature and salinity. Biol. Bull., 129:199–216.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1972

Authors and Affiliations

  • Winona B. Vernberg
    • 1
  • F. John Vernberg
    • 1
  1. 1.Belle W. Baruch Coastal Research InstituteUniversity of South CarolinaUSA

Personalised recommendations