Azumaya Diagrams

  • Carl Faith
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 191)


The UD theorem 18.18 is extended in this chapter to infinite Azumaya diagrams (AD’s) in an AB5 category 21.6. Other results are (1) the X-lemma 21.1; (2) the cancellation theorem 21.2; (3) I-adically complete rings 21.7–8; (4) summands of AD’s of injective modules are again AD’s 21.15 (cf. 21.14).


Direct Summand Injective Module Noetherian Ring Abelian Category Indecomposable Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [72]
    Anderson, F. W., Fuller, K. R.: Modules with decompositions that complement direct summands. J. Algebra 22, 241–253 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  2. [50]
    Azumaya, G.: Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt’s theorem. Nagoya Math. J. 1, 117–124 (1950).MathSciNetzbMATHGoogle Scholar
  3. [60]
    Bass, H.: Finitistic dimension and a homological generalization of semiprimary rings. Trans. Amer. Math. Soc. 95, 466–488 (1960).MathSciNetzbMATHCrossRefGoogle Scholar
  4. [75a]
    Camillo, V. P.: Commutative rings whose quotients are Goldie. Glasgow Math. J. 16, 32–33 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  5. [75b]
    Camillo, V.P.: Distributive modules. J. Algebra 36, 16–25 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  6. [64]
    Crawley, P., Jonsson, B.: Refinements for infinite direct decompositions of algebraic systems. Pac. J. Math. 14, 797–855 (1964).MathSciNetzbMATHGoogle Scholar
  7. [67]
    Endo, S.: Completely faithful modules and quasi-Frobenius algebras. J. Math. Soc. Japan 19, 437–456 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  8. [69]
    Fuchs, L.: On quasi-injective modules. Scuola Norm. Sup. Pisa 23, 541–546 (1968).Google Scholar
  9. [73]
    Fuller, K.R.: On generalized uniserial rings and decompositions that complement direct summands. Math. Ann. 200, 175–178 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  10. [71]
    Harada, M.: On categories of indecomposable modules II. Osaka J. Math. 8, 309–321 (1971).MathSciNetzbMATHGoogle Scholar
  11. [70]
    Haradaand SaiGoogle Scholar
  12. [58a]
    Kaplansky, I.: Projective modules. Ann. of Math. 68, 372–377 (1958).MathSciNetzbMATHCrossRefGoogle Scholar
  13. [58]
    Matlis, E.: Injective modules over noetherian rings. Pac. J. Math. 8, 511:528 (1958).MathSciNetGoogle Scholar
  14. [72]
    Monk, G.S.: A characterization of exchange rings. Proc. Amer. Math. Soc. 35, 349–353 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  15. [60]
    Swan, R.: Induced representations and projective modules. Ann. of Math. 71, 552–578 (1960).MathSciNetzbMATHCrossRefGoogle Scholar
  16. [68]
    Swan, R.G.: Algebraic K-Theory. Lecture Notes in Mathematics, vol.76. Springer, Berlin-Heidelberg-New York 1968.Google Scholar
  17. [66]
    Walker, C.L.: Relative homological algebra and abelian groups. Ill. J. Math. 10, 186–209 (1966).zbMATHGoogle Scholar
  18. [69b]
    Warfield, R.B., Jr.: Decompositions of injective modules. Pac. J. Math. 31, 263–276 (1969).MathSciNetzbMATHGoogle Scholar
  19. [69c]
    Warfield, R.B., Jr.: A Krull-Schmidt theorem for infinite sums of modules. Proc. Amer. Math. Soc. 22, 460–465 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  20. [72a]
    Warfield, R.B., Jr.: Rings whose modules have nice decompositions. Math. Z. 125, 187–192 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  21. [72b]
    Warfield, R.B., Jr.: Exchange rings and decompositions of modules. Math. Ann. 199, 31–36 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  22. [73]
    Yamagata, K.: A note on a problem of Matlis. Proc. Japan Acad. 49, 145–147 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  23. [60]
    Zariski-Samuel .Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Carl Faith
    • 1
    • 2
  1. 1.Rutgers, The State UniversityNew BrunswickUSA
  2. 2.The Institute for Advanced StudyPrincetonUSA

Personalised recommendations