Advertisement

Catecholamines pp 538-617 | Cite as

Fundamental Mechanisms in the Release of Catecholamines

  • A. D. Smith
  • H. Winkler
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 33)

Abstract

In some endocrine tissues, such as the steroid-secreting glands, the release of the hormone is tightly coupled to its rate of biosynthesis because the tissue does not contain a significant store of the hormone (see Vogt, 1943; Holzbauer, 1957). The tissues which synthesise and release catecholamines do, however, contain a store of the amines, at least part of which is located in subcellular particles. Although some aspects of the release of catecholamines can be studied without reference to the store, an understanding of the fundamental mechanisms involved requires a detailed study of the nature of the store.

Keywords

Chromaffin Cell Adrenal Medulla Chromaffin Granule Noradrenaline Content Acta Physiol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akabane, J., Nakanishi, S., Kohei, H., Asakawa, S., Matsumura, R., Ogata, H., Miyazawa, T.: Studies on sympathomimetic action of acetaldehyde. 2. Secretory response of the adrenal medulla to acetaldehyde: experiment with the perfused cat adrenals. Jap. J. Pharmacol. 15, 217–222 (1965).Google Scholar
  2. Al-Lami, F.: Light and electron microscopy of the adrenal medulla of Macaca mulata monkey.Anat. Rec. 164, 317–332 (1969).Google Scholar
  3. Amsterdam, A., Ohad, I., Schramm, M.: Dynamic changes in the ultrastructure of the acinarcell of the rat parotid gland during the secretory cycle. J. Cell Biol. 41, 753–773 (1969).PubMedGoogle Scholar
  4. Bachmann, R.: Die Nebenniere. In: Handbuch der Mikroskopischen Anatomie des Menschen, 6, part 5, 1–952 (1954).Google Scholar
  5. Baldessarini, R.J., Kopin, I.J.: The effect of drugs on the release of norepinephrine–3H from central nervous system tissues by electrical stimulation in vitro. J. Pharmacol, exp. Ther. 156, 31–38 (1967).Google Scholar
  6. Bangham, A.D., Horne, R.W.: Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. molec. Biol. 8, 660–668 (1964).PubMedGoogle Scholar
  7. Banks, P.: A study of the biochemical pharmacology of the chromaffin cell. D. Phil. Thesis, University of Oxford (1964).Google Scholar
  8. Banks, P.: Effects of stimulation by carbachol on the metabolism of the bovine adrenal medulla. Biochem. J. 97, 555–560 (1965a).PubMedGoogle Scholar
  9. Banks, P.: The adenosine-triphosphatase activity of adrenal chromaffin granules. Biochem. J. 95, 490–496 (1965b).PubMedGoogle Scholar
  10. Banks, P.: The release of adenosine triphosphate catabolites during the secretion of catecholamines by bovine adrenal medulla. Biochem. J. 101, 536–541 (1966a).PubMedGoogle Scholar
  11. Banks, P.: Ail interaction between chromaffin granules and calcium ions. Biochem. J. 101, 18C–20C (1966b).PubMedGoogle Scholar
  12. Banks, P.: The effect of ouabain on the secretion of catecholamines and on the intracellular concentration of potassium. J. Physiol. (Lond.) 193, 631–637 (1967).Google Scholar
  13. Banks, P.: Involvement of calcium in the secretion of catecholamines. In: A Symposium on Calcium and Cellular Function, pp. 148–162. Ed. Cuthbert, A.W. London: MacMillan Ltd. 1970.Google Scholar
  14. Banks, P., Helle, K.: The release of protein from the stimulated adrenal medulla. Biochem. J. 97, 40C–41C (1965).PubMedGoogle Scholar
  15. Banks, P., Helle, K., Helle, K., Mayor, D.: Evidence for the presence of a chromogranin-like protein in bovine splenic nerve granules. Molec. Pharmacol. 5, 210–212 (1969a).Google Scholar
  16. Banks, P., Biggins, R., Bishop, R., Christian, B., Currie, N.: Sodium ions and the secretion of catecholamines. J. Physiol. (Lond.) 200, 797–805 (1969b).Google Scholar
  17. Banks, P., Biggins, R., Bishop, R., Christian, B., Currie, N., Magnall, D., Mayor, D.: The re-distribution of cytochrome oxidase, noradrenaline and adenosinetriphosphate in adrenergic nerves constricted at two points. J. Physiol. (Lond.) 200, 745–762 (1969c).Google Scholar
  18. Bell, C., Vogt, M.: Release of endogenous noradrenaline from an isolated muscular artery. J. Physiol. (Lond.) 215, 509–520 (1971).Google Scholar
  19. Belpaire, F., Laduron, P.: Tissue fractionation and catecholamines. I. Latency and activation properties of dopamine β -hydroxylase in adrenal medulla. Biochem. Pharmacol. 17, 411–421 (1968).PubMedGoogle Scholar
  20. Belpaire, F., Laduron, P.: Tissue fractionation and catecholamines. 3. Intracellular distribution of endogenousinhibitors of dopamine β -hydroxylase in adrenal medulla. Biochem. Pharmacol. 19, 1323–1331 (1970).PubMedGoogle Scholar
  21. Benedeczky, I.: Electron-microscopic observation of the extracellular catecholamine granules. Acta biol. hung. 17, 387 (1966a).Google Scholar
  22. Benedeczky, I.: Electron microscopic study on the extracellular catecholamine granules in the adrenal medulla of the chicken. Acta agron. hung. 15, 107–117 (1966b).Google Scholar
  23. Benedeczky, I.: Ultrastructural analysis of adrenaline resynthesis following insulin treatment. Acta morphol. hung. 15, 23–37 (1967).Google Scholar
  24. Benedeczky, I., Puppi, A., Tigyi, A., Lissak, K.: Electron microscopic study of adrenaline and noradrenaline secretion of the adrenal medulla. Acta biol. hung. 15, 285–298 (1965).Google Scholar
  25. Berneis, K.H., Pletscher, A., Da Prada, M.: Metal-dependent aggregation of biogenic amines: a hypothesis for their storage and release. Nature (Lond.) 224, 281–283 (1969).Google Scholar
  26. Berneis, K.H., Pletscher, A., Da Prada, M.: Phase separation in solutions of noradrenaline and adenosine triphosphate: influence of bivalent cations and drugs. Brit. J. Pharmacol. 39, 382–389 (1970).Google Scholar
  27. Bevan, J. A., Chesher, G.B., Su, C.: Release of adrenergic transmitter from terminal nerve plexus in artery. Agents & Actions (Basel) 1, 20–26 (1969).Google Scholar
  28. Bevan, J. A., Chesher, G.B., Su, C., Nedergaard, O.A.: Abnormal response of the pulmonary artery of the rabbit after high-frequency sympathetic nerve stimulation. Circulat. Res. 22, 141–147 (1968).PubMedGoogle Scholar
  29. Bevan, J. A., Chesher, G.B., Su, C., Nedergaard, O.A., Verity, M.A.: Postganglionic sympathetic delay in vascular smooth muscle. J. Pharmacol. exp. Ther. 152, 221–230 (1966).PubMedGoogle Scholar
  30. Bisby, M.A., Fillenz, M.: Effect of perfusion with K-rich solutions on the noradrenaline content of the rat vas deferens. J. Physiol. (Lond.) 204, 22–23P (1969).Google Scholar
  31. Blakeley, A.G.H., Brown, G.L., Ferry, C.B.: Pharmacological experiments on the release of the sympathetic transmitter. J. Physiol. (Lond.) 167, 505–514 (1963).Google Scholar
  32. Blakeley, A.G.H., Brown, G.L., Ferry, C.B., Dearnaley, D.P., Harrison, V.: The noradrenaline content of the vas deferens of the guinea-pig. Proc. roy. Soc. B. 174, 491–502 (1970).Google Scholar
  33. Blaschko, H., Born, G.V.R., D’Lorio, A., Eade, N.R.: Observations on the distribution of catecholamines and adenosinetriphosphate in the bovine adrenal medulla. J. Physiol. (Lond.) 133, 548–557 (1956).Google Scholar
  34. Blaschko, H., Born, G.V.R., D’Lorio, A., Eade, N.R., Comline, R.S., Schneider, F.H., Silver, M., Smith, A.D.: Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature (Lond.) 215, 58–59 (1967a).Google Scholar
  35. Blaschko, H., Born, G.V.R., D’Lorio, A., Eade, N.R., Comline, R.S., Schneider, F.H., Silver, M., Smith, A.D., Feremark, H., Smith, A.D., Winkler, H.: Phospholipids and cholesterol in particulate fractions of adrenal medulla. Biochem. J. 98, 24P (1966).Google Scholar
  36. Blaschko, H., Born, G.V.R., D’Lorio, A., Eade, N.R., Comline, R.S., Schneider, F.H., Silver, M., Smith, A.D., Feremark, H., Smith, A.D., Winkler, H.: Lipids of the adrenal medulla: lysolecithin, a characteristic constituent of chromaffin granules. Biochem. J. 104, 545–549 (1967b).PubMedGoogle Scholar
  37. Blaschko, H., Born, G.V.R., D’Lorio, A., Eade, N.R., Comline, R.S., Schneider, F.H., Silver, M., Smith, A.D., Feremark, H., Smith, A.D., Winkler, H., Hagen, J.M., Hagen, P.: Mitochondrial enzymes and chromaffin granules. J. Physiol. (Lond.) 139, 316–322 (1957).Google Scholar
  38. Blaschko, H., Born, G.V.R., D’Lorio, A., Eade, N.R., Comline, R.S., Schneider, F.H., Silver, M., Smith, A.D., Feremark, H., Smith, A.D., Winkler, H., Hagen, J.M., Hagen, P., Jerrome, D.W., Robb-Smith, A.H.T., Smith, A.D., Winkler, H.: Biochemical and morphological studies on catecholamine storage in human phaeochromocytoma. Clin. Sci. 34, 453–465 (1968).Google Scholar
  39. Blaschko, H., Born, G.V.R., D’Lorio, A., Eade, N.R., Comline, R.S., Schneider, F.H., Silver, M., Smith, A.D., Feremark, H., Smith, A.D., Winkler, H., Hagen, J.M., Hagen, P., Jerrome, D.W., Robb-Smith, A.H.T., Smith, A.D., Winkler, H., Welch, A.D.: Localization of adrenaline in cytoplasmic particles of the bovine adrenal medulla. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 219, 17–22 (1953).Google Scholar
  40. Borowitz, J.L.: Effect of acetylcholine on the subcellular distribution of 45Ca in bovine adrenal medulla. Biochem. Pharmacol. 18, 715–723 (1969).PubMedGoogle Scholar
  41. Boullin, D. J.: The action of extracellular cations on the release of the sympathetic transmitter from peripheral nerves. J. Physiol. (Lond.) 189, 85–99 (1967).Google Scholar
  42. Brandon, K.W., Rand, M.J.: Acetylcholine and the sympathetic innervation of the spleen. J. Physiol. (Lond.) 157, 18–32 (1961).Google Scholar
  43. Brown, G.L., Dearnaley, D.P., Geffen, L.B.: Noradrenaline storage and release in the decentralised spleen. Proc. roy. Soc. B. 168, 48–56 (1967).Google Scholar
  44. Burack, W.R., Weiner, N., Hagen, P.B.: The effect of reserpine on the catecholamine and adenine nucleotide contents of adrenal gland. J. Pharmacol, exp. Ther. 130, 245–250 (1960).Google Scholar
  45. Burn, J.H., Gibbons, W.R.: The part played by calcium in determining the response to stimulation of sympathetic postganglionic fibres. Brit. J. Pharmacol. 22, 540–548 (1964).PubMedGoogle Scholar
  46. Burn, J.H., Gibbons, W.R.: The release of noradrenaline from sympathetic fibres in relation to calcium concentration. J. Physiol. (Lond.) 181, 214–223 (1965).Google Scholar
  47. Burn, J.H., Gibbons, W.R., Rand, M.J.: Sympathetic postganglionic cholinergic fibres. Brit. J. Pharmacol. 15, 56–66 (1960).PubMedGoogle Scholar
  48. Burnstock, G.: Structure of smooth muscle and its innervation. In: Smooth Muscle, pp. 1–69. Ed. Bülbring, E., Brading, A., Jones, A. And Tomita, T. London: E. Arnold Ltd. 1970.Google Scholar
  49. Carlsson, A., Hillarp, N.Á.: Release of adenosine triphosphate along with adrenaline and noradrenaline following stimulation of the adrenal medulla. Acta physiol. scand. 37, 235–239 (1956).PubMedGoogle Scholar
  50. Carlsson, A., Hillarp, N.Á., Hokfelt, B.: The concomitant release of adenosine triphosphate and catechol aminesfrom the adrenal medulla. J. biol. Chem. 227, 243–252 (1957).PubMedGoogle Scholar
  51. Carlsson, A., Hillarp, N.Á., Hokfelt, B., Waldeck, B.: Analysis of the Mg++-ATP dependent storage mechanism in the aminegranules of the adrenal medulla. Acta physiol. scand. 59, Suppl. 215, 5–38 (1963).Google Scholar
  52. Cession-Fossion, A.: Action des amines sympathicomimétiques a action indirecte sur la médullo-surrénale du rat perfusée “in vitro”. Arch. int. Physiol. 75, 303–309 (1967).Google Scholar
  53. Chubb, I.W., De Potter, W.P., De Schaepdryver, A.F.: Two populations of noradrena-line-containing particles in the spleen. Nature (Lond.) 228, 1203–1204 (1970).Google Scholar
  54. Clementi, F., Palade, G.E.: Intestinal capillaries. 2. Structural effects of EDTA and histamine. J. Cell. Biol. 42, 706–714 (1969).PubMedGoogle Scholar
  55. Clementi, F., Palade, G.E., Zocche, G.P.: Morphological and pharmacological effects of reserpine, given alone or after iproniazid, on the catecholamines of the adrenal glands of the rat. J. Cell Biol. 17, 587–596 (1963).PubMedGoogle Scholar
  56. Connett, R.J., Kirshner, N.: Purification and properties of bovine phenylethanolamine N-methyltransferase. J. biol. Chem. 245, 329–334 (1970).PubMedGoogle Scholar
  57. Coon, J.M., Rothman, S.: The nature of the pilomotor response to acetylcholine; some observations on the pharmacodynamics of the skin. J. Pharmacol, exp. Ther. 68, 301–311 (1940).Google Scholar
  58. Costero, I., Chévez, Z.A., Peralta, L., Monroy, E., Ramón, F.: Rhythmic cellular movements in tissue culture of phaeochromocytoma and adrenal medulla. Tex. Rep. Biol. Med. 23, 213–220 (1965).PubMedGoogle Scholar
  59. Couch, E.F., Arimura, A., Schally, A.V., Souto, M., Savana, S.: Electron microscopic studies of somatotrophs of rat pituitary after injection of purified growth hormone releasing factor (GRF) Endocrinology 85, 1084–1091 (1969).Google Scholar
  60. Coupland, R. E.: Strain sensitivity of albinorats to reserpine. Nature (Lond.) 181, 930–931 (1958).Google Scholar
  61. Coupland, R. E.: The Natural History of the Chromaffin Cell, pp. 1–279 London: Longmans 1965a.Google Scholar
  62. Coupland, R. E.: Electron microscopic observations on the structure of the rat adrenal medulla. 1. The ultrastructure and organisation of chromaffin cells in the normal adrenal medulla. J. Anat. (Lond.) 99, 231–254 (1965b).Google Scholar
  63. Coupland, R. E.: Electron microscopic observations on the structure of the rat adrenal medulla. 2. Normal innervation. J. Anat. (Lond.) 99, 255–272 (1965 c).Google Scholar
  64. Cramer, W.: Further observations on the thyroid-adrenal apparatus. A histochemical method for the demonstration of the adrenalin granules in the suprarenal gland. J. Physiol. (Lond.) 52, viii-x (1918).Google Scholar
  65. Dahlstróm, A.: Synthesis, transport and life-span of amine storage granules in sympathetic adrenergic neurons. In: Cellular Dynamics of the Neuron, pp. 153–174. Ed. Barondes, S. London: Academic Press 1969.Google Scholar
  66. Dahlstróm, A., Haggendal, J., Hókfelt, T.: The noradrenaline content of the varicosities of sympathetic adrenergic nerve terminals in the rat. Acta, physiol. scand. 67, 289–294 (1966).Google Scholar
  67. Dahlstróm, A.B., Zetterstróm, B.E.M.: Noradrenaline stores in nerve terminals of the spleen: changes during hemorrhagic shock. Science 147, 1583–1585 (1965).Google Scholar
  68. Daly, M. De B., Scott, M. J.: The effects of acetylcholine on the volume and vascular resistance of the dog’s spleen. J. Physiol. (Lond.) 156, 246–259 (1961).Google Scholar
  69. D’Anzi, F.A.: Morphological and biochemical observations on the catecholamine-storing vesicles of rat adrenomedullary cells during insulin-induced hypoglycemia. Amer. J. Anat. 125, 381–398 (1969).PubMedGoogle Scholar
  70. Day, M.D., Owen, D.A.A.: The interaction between angiotensin and sympathetic vasoconstriction in the isolated artery of the rabbit ear. Brit. J. Pharmacol. 34, 499–507 (1968).Google Scholar
  71. Dearnaley, D.P., Geffen, L.B.: Effect of nerve stimulation on the noradrenaline content of the spleen. Proc. roy. Soc. B. 166, 303–315 (1966).Google Scholar
  72. Deduve, C.: Endocytosis. In: Lysosomes (Ciba Foundation Symposium). Ed. De Reuck, A.V.S. And Cameron, M.P. p. 126. London: Churchill 1963.Google Scholar
  73. De Potter, W.P.: Doctoral Thesis, University of Ghent (1968).Google Scholar
  74. De Potter, W.P.: Phil. Trans, roy. Soc. B. 261, 313–317 (1971). Noradrenaline storage particles in the splenic nerve.Google Scholar
  75. De Potter, W.P., Moerman, E.J., De Schaepdryver, A.F., Smith, A.D.: Release of noradrenaline and dopamine β-hydroxylase upon splenic nerve stimulation. Proc. 4th int. Congr. Pharmac. Abstracts, p. 146. Basel: Schwabe & Co. 1969a.Google Scholar
  76. De Potter, W.P., Moerman, E.J., De Schaepdryver, A.F., Smith, A.D., De Schaepdryver, A.F., Moerman, E.J., Smith, A.D.: Evidence for the release of vesicle-proteins together with noradrenaline upon stimulation of the splenic nerve. J. Physiol. (Lond.) 204, 102P–104P (1969b).Google Scholar
  77. De Potter, W.P., Moerman, E.J., De Schaepdryver, A.F., Smith, A.D., De Schaepdryver, A.F., Moerman, E.J., Smith, A.D., Smith, A.D., De Schaepdryver, A.F.: Subcellular fractionation of splenic nerve: ATP, chromogranin A and dopamine β-hydroxylase in noradrenergic vesicles. Tissue & Cell 2, 529–546 (1970).Google Scholar
  78. De Robertis, E.D.P.: Adrenergic endings and vesicles isolated from brain. Pharmacol. Rev. 18, 413–424 (1966).PubMedGoogle Scholar
  79. De Robertis, E.D.P., Sabatini, D.D.: Submicroscopic analysis of the secretory process in the adrenal medulla. Fedn. Proc. 19, No. 4, 70–78 (1960).Google Scholar
  80. De Robertis, E.D.P., Sabatini, D.D., Vaz Ferreira: Electron microscope study of the excretion of catechol-containing droplets in the adrenal medulla. Exp. Cell. Res. 12, 568–574 (1957).Google Scholar
  81. De Virgilns, G., Meldolesi, J., Clementi, F.: Ultrastructure of growth-hormone producing cells of rat pituitary after injection of hypothalamic-extract. Endocrinology 83, 1278–1284 (1968).Google Scholar
  82. Diner, O.: L’expulsion des granules de la medullosurrenale chez le hamster. C.R. Acad. Sci. (Paris) 265, 616–619 (1967).Google Scholar
  83. D’Lorio, A., Eade, N.: Catecholamines and adenosinetriphosphate (ATP) in the suprarenal gland of the rabbit. J. Physiol. (Lond.) 133, 17P (1956).Google Scholar
  84. Dodge, F.A., Rahamimoff, R.: Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol. (Lond.) 193, 419–432 (1967).Google Scholar
  85. Douglas, W.W.: Calcium dependent links in stimulus-secretion coupling in the adrenal medulla and neuropophysis. In: Mechanisms of Release of Biogenic Amines, pp. 267–289. Ed. Euler, U.S. Von, Rosell, S. And Uvnas, B. Oxford: Pergamon Press. 1966.Google Scholar
  86. Douglas, W.W.: Stimulus-Secretion Coupling: the concept and clues from chromaffin and other cells. Brit. J. Pharmacol. 34, 451–474 (1968).Google Scholar
  87. Douglas, W.W., Kanno, T.: The effect of amethocaine on acetylcholine-induced depolarization and catecholamine secretion in the adrenal chromaffin cell. Brit. J. Pharmacol. 30, 612–619 (1967).PubMedGoogle Scholar
  88. Douglas, W.W., Kanno, T., Sampson, S.R.: Effects of acetylcholine and other medullary secretagogues and antagonists on the membrane potential of adrenal chromaffin cells: an analysis employing techniques of tissue culture. J. Physiol. (Lond.) 188, 107–120 (1967a).Google Scholar
  89. Douglas, W.W., Kanno, T., Sampson, S.R.: Influence of the ionic environment on the membrane potential of adrenal chromaffincells and on the depolarizing effect of acetylcholine. J. Physiol. (Lond.) 191, 107–121 (1967b).Google Scholar
  90. Douglas, W.W., Kanno, T., Sampson, S.R., Poisner, A.M.: On the mode of action of acetylcholine in evoking adrenal medullary secretion: increased uptake of calcium during the secretory reponse. J. Physiol. (Lond.) 162, 385–392 (1962).Google Scholar
  91. Douglas, W.W., Kanno, T., Sampson, S.R., Poisner, A.M.: Preferential release of adrenaline from the adrenal medulla by muscarine and pilocarpine. Nature (Lond.) 208, 1102 (1965).Google Scholar
  92. Douglas, W.W., Kanno, T., Sampson, S.R., Poisner, A.M.: Evidence that the secreting adrenal chromaffin cell releases catecholamines directlyfrom ATP-rich granules. J. Physiol. (Lond.) 183, 236–248 (1966a).Google Scholar
  93. Douglas, W.W., Kanno, T., Sampson, S.R., Poisner, A.M.: On the relation between ATP splitting and secretion in the adrenal chromaffin cell:extrusion of ATP (unhydrolysed) during release of catecholamines. J. Physiol. (Lond.) 183, 249–256 (1966b).Google Scholar
  94. Douglas, W.W., Kanno, T., Sampson, S.R., Poisner, A.M., Rubin, R.P.: Efflux of adenine nucleotides from perfused adrenal glands exposed tonicotine and other chromaffin cell stimulants. J. Physiol. (Lond.) 179, 130–137 (1965).Google Scholar
  95. Douglas, W.W., Kanno, T., Sampson, S.R., Poisner, A.M., Rubin, R.P., Trifare, J.M.: Lysolecithin and other phospholipids in the adrenal medulla of variousspecies. Life. Sci. 5, 809–815 (1966).Google Scholar
  96. Douglas, W.W., Kanno, T., Sampson, S.R., Poisner, A.M., Rubin, R.P., Trifare, J.M., Rubin, R.P.: The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J. Physiol. (Lond.) 159, 40–57 (1961).Google Scholar
  97. Douglas, W.W., Kanno, T., Sampson, S.R., Poisner, A.M., Rubin, R.P., Trifare, J.M., Rubin, R.P.: The mechanism of catecholamine release from the adrenal medulla and the role ofcalcium in stimulus-secretion coupling. J. Physiol. (Lond.) 167, 288–310 (1963).Google Scholar
  98. Droz, B.: Protein metabolism in nerve cells. Int. Rev. Cytol. 25, 363–390 (1969).PubMedGoogle Scholar
  99. Duch, D.S., Viveros, O.H., Kirshner, N.: Endogenous inhibitor(s) in adrenal medulla of dopamine β-hydroxylase. Biochem. Pharmacol. 17, 255–264 (1968).Google Scholar
  100. Eade, N.: The intracellular localization of the sympathomimetic amines. D. Phil. Thesis, Oxford University (1957).Google Scholar
  101. Eade, N. R.: The distribution of the catechol amines in homogenates of the bovine adrenal medulla. J. Physiol. (Lond.) 141, 183–192 (1958).Google Scholar
  102. Eccles, J.C.: The physiology of synapses. Berlin: Springer Verlag 1964.ELFVIN, L. G.: The ultrastructure of the capillary fenestrae in the adrenal medulla of the rat. J. Ultrastruct. Res. 12, 687–704 (1965).Google Scholar
  103. Euler, U.S. Von: Twenty years of noradrenaline. Pharmacol. Rev. 18, 29–38 (1966).Google Scholar
  104. Euler, U.S. Von: Some aspects of the mechanisms involved in adrenergic neurotransmission. Perspect. Biol. Med. 12, 79–94 (1968).Google Scholar
  105. Euler, U.S. Von: Acute neuromuscular transmission failure in vas deferens after reserpine. Acta physiol. scand. 76, 255–256 (1969).Google Scholar
  106. Euler, U.S. Von, Hillarp, N.A.: Evidence for the presence of noradrenaline in submicroscopic structures of adrenergic axons. Nature (Lond.) 177, 44–45 (1956).Google Scholar
  107. Euler, U.S. Von, Hillarp, N.A., Lishajko, F., Suarne, L.: Catecholamines and ATP in isolated adrenergic nerve granules. Acta physiol. scand. 59, 495–496 (1963).Google Scholar
  108. Euler, U.S. Von, Hillarp, N.A., Lishajko, F., Suarne, L., Purkhold, A.: Effect of sympathetic denervation on the noradrenaline and adrenaline content of the spleen, kidney, and salivary glands in the sheep. Acta physiol. scand. 24, 212–217 (1951).Google Scholar
  109. Falck, B., Hillarp, N.A., Hogberg, B.: Content and intracellular distribution of adenosine-triphosphate in cow adrenal medulla. Acta physiol. scand. 36, 360–376 (1956).PubMedGoogle Scholar
  110. Farber, S.: The action of acetylcholine on the volume of the spleen of the dog. Arch. int. Pharmacodyn. 53, 367–376 (1936).Google Scholar
  111. Farrell, K.E.: Fine structure of nerve fibres in smooth muscle of the vas deferens in normal and reserpinized rats. Nature (Lond.) 217, 279–281 (1968).Google Scholar
  112. Fawcett, D. W.: Surface specialization of absorbing cells. J. Histochem. Cytochem. 13, 75–91 (1965).PubMedGoogle Scholar
  113. Feldberg, W.: The action of bee venom, cobra venom and lysolecithin on the adrenal medulla. J. Physiol. (Lond.) 99, 104–118 (1940).Google Scholar
  114. Feldberg, W., Gaddum, J.H.: The chemical transmitter at synapses in a sympathetic ganglion. J. Physiol. (Lond.) 81, 305–319 (1934).Google Scholar
  115. Feldberg, W., Gaddum, J.H., Minz, B., Tsudzimura, H.: The mechanism of the nervous discharge of adrenaline. J. Physiol. (Lond.) 81, 286–304 (1934).Google Scholar
  116. Ferris, R. M., Viveros, O.H., Kirshner, N.: Effects of various agents on the Mg2+-ATP stimulated incorporation and release of catecholamines by isolated bovine adrenomedul-lary storage vesicles and on secretion from the adrenal medulla. Biochem. Pharmacol. 19, 505–514 (1970).PubMedGoogle Scholar
  117. Ferry, C.B.: The sympathomimetic affect of acetylcholine on the spleen of the cat. J. Physiol. (Lond.) 167, 487–504 (1963).Google Scholar
  118. Fillenz, M.: The innervation of the cat spleen. Proc. roy. Soc. Lond. B. 174, 459–468 (1970).Google Scholar
  119. Fillenz, M.: Fine structure of noradrenaline storage vesicles in nerve terminals of the rat vas deferens. Phil. Trans, roy. Soc. B. 261, 319–323 (1971).Google Scholar
  120. Finean, J.B.: Biophysical contributions to membrane structure. Quart. Rev. Biophys. 2, 1–23 (1969).Google Scholar
  121. Folkow, B., Haggekdal, J., Lisander, B.: Extent of release and elimination of noradrenaline at peripheral adrenergic nerve terminals. Acta physiol. scand. Suppl. 307, 1–38 (1967).Google Scholar
  122. Geffen, L.B., Livett, B.G.: Axoplasmic transport of 14C-noradrenaline and protein and their release by nerve impulses. Proc. int. union physiol. Sci. 7, 152 (1968).Google Scholar
  123. Geffen, L.B., Livett, B.G.: Origin, functions and fate of synaptic vesicles in sympathetic neurones. Physiol. Rev. 51, 98–157 (1971).PubMedGoogle Scholar
  124. Geffen, L.B., Livett, B.G., Rush, R.A.: Immunohistochemical localization of protein components of catecholamine storage vesicles. J. Physiol. (Lond.) 204, 593–605 (1969a).Google Scholar
  125. Geffen, L.B., Livett, B.G., Rush, R.A.: Immunological localization of ehromogranins in sheep sympathetic neurones, andtheir release by nerve impulses. J. Physiol. (Lond.) 204, 58–59P (1969b).Google Scholar
  126. Geffen, L.B., Livett, B.G., Rush, R.A.: Immunohistochemical localization of ehromogranins in sheep sympathetic neuronesand their release by nerve impulses, pp. 58–72. In: New aspects of storage and release mechanism of catecholamines. (Bayer Symposium II). Eds. H.J. Schumann And G. Kroneberg. Berlin: Springer Verlag 1970.Google Scholar
  127. Geffen, L.B., Livett, B.G., Rush, R.A., Ostberg, A.: Distribution of granular vesicles in normal and constricted sympathetic neurones. J. Physiol. (Lond.) 204, 583–592 (1969).Google Scholar
  128. Geffen, L.B., Livett, B.G., Rush, R.A., Ostberg, A., Rush, R.A.: Transport of noradrenaline in sympathetic nerves and the effect of nerve impulses on its contribution to transmitter stores. J. Neurochem. 15, 925–930 (1968).PubMedGoogle Scholar
  129. Gewirtz, G.P., Kopin, I. J.: Release of dopamine β -hydroxylase with norepinephrine during cat splenic nerve stimulation. Nature (Lond.) 227, 406–407 (1970).Google Scholar
  130. Gillespie, J.S., Kirpekar, S.M.: The uptake and release of radioactive noradrenaline by the splenic nerves of cats. J. Physiol. (Lond.) 187, 51–68 (1966a).Google Scholar
  131. Gillespie, J.S., Kibpekar, S.M.: The histological localization of noradrenaline in the cat spleen. J. Physiol. (Lond.) 187, 69–79 (1966b).Google Scholar
  132. Gladstone, G.P., Van Heyningen, W.E.: Staphylococcal leuocidins. Brit. J. exp. Path. 38, 123–137 (1957).PubMedGoogle Scholar
  133. Govier, W.C., Boadle, M.C.: The cardiac action of lysolecithin. J. Pharmacol, exp. Ther. 156, 339–344 (1967).Google Scholar
  134. Graham, J.D.P., Lever, L.D., Spriggs, T.L.B.: An examination of adrenergic axons around pancreatic arteriols of the cat for the presence of acetylcholinesterase by high resolution autoradiographic and histochemical methods. Brit. J. Pharmacol. 33, 15–20 (1968).PubMedGoogle Scholar
  135. Grobecker, H., Holtz, P., Palm, D., Bäk, I. J., Hassler, R.J.: In vitro lysis of erythrocytes and chromaffine granules by Prenylamine. Experientia (Basel) 24, 701–703 (1968).Google Scholar
  136. Grynszpan-Winograd, O.: Différences dans l’innervation des “Cellules a adrénaline” et des “Cellules a noradrenaline” de la médullo-surrénale du Hamster. C.R. Acad. Sci. (Paris) 268, 1420–1422 (1969).Google Scholar
  137. Grynszpan-Winograd, O.: Morphological aspects of exocytosis in the adrenal medulla. Phil. Trans, roy. Soc. B. 261, 291–292 (1971).Google Scholar
  138. Haefely, W., Hurlimann, A., Thoenen, H.: Relation between the rate of stimulation and the quantity of noradrenaline liberated from sympathetic nerve endings in the isolated perfused spleen of the cat. J. Physiol. (Lond.) 181, 48–58 (1965).Google Scholar
  139. Häggendal, J., Malmfors, T.: The effect of nerve stimulation on catecholamines taken up in adrenergic nerves after reserpine pretreatment. Acta physiol. scand. 75, 33–38 (1969).PubMedGoogle Scholar
  140. Haeusler, G., Thoenen, H., Haefely, W., Hurlimann, A.: Electrical events in cardiac adrenergic nerves and noradrenaline release from the heart induced by acetylcholine and KCl. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 261, 389–411 (1968).Google Scholar
  141. Hajdu, S., Weiss, H., Titus, E.: The isolation of a cardiac active principle from mammalian tissue. J. Pharmacol, exp. Ther. 120, 99–113 (1957).Google Scholar
  142. Haydon, D.A., Taylor, J.: The stability and properties of bimolecular lipid leaflets in aqueous solutions. J. theor. Biol. 4, 281–296 (1963).PubMedGoogle Scholar
  143. Hedqvist, P., Suärne, L.: The relative role of recapture and of de novo synthesis for main-tenance of neurotransmitter homeostasis in noradrenergic nerves. Acta physiol. scand. 76, 270–283 (1969).PubMedGoogle Scholar
  144. Heilbrünn, L.V.: The Dynamics of Living Protoplasm. New York: Academic Press 1956.HELLE, K.: Some chemical and physical properties of the soluble protein fraction of bovine adrenal chromaffin granules. Molec. Pharmacol. 2, 298–310 (1966 a).Google Scholar
  145. Heilbrünn, L.V.: Antibody formation against soluble protein from bovine adrenal chromaffin granules. Biochim. biophys. Acta (Amst.) 117, 107–110 (1966b).Google Scholar
  146. Heilbrünn, L.V., Serck-Hanssen, G.: Chromogranin: the soluble and membrane-bound lipoprotein of the chromaffin granule. Pharmacol. Res. Commun. 1, 25–29 (1969).Google Scholar
  147. Hellerstein, D.: Passive membrane potentials. A generalization of the theory of electrotonus. Biophys. J. 8, 358–379 (1968).PubMedGoogle Scholar
  148. Hempel, K., Männl, H.F.K.: Quantitative Analyse der Catecholamin-Biosynthese des Nebennierenmarks in vivo and Ruhesekretion neugebildeter Amine unter besonderer Berücksichtigung des Dopamins. Naunyn-Schmiedebergs Arch. Pharmak. 264, 363–388 (1969).Google Scholar
  149. Hillarp, N.À.: Isolation and some biochemical properties of the catecholamine granules in the cow adrenal medulla. Acta physiol. scand. 43, 82–96 (1958).PubMedGoogle Scholar
  150. Hillarp, N.À.: Further observations on the state of the catecholamines stored in the adrenal medullary granules. Acta physiol. scand. 47, 271–279 (1959).PubMedGoogle Scholar
  151. Hillarp, N.À.: Different pools of catecholamines stored in the adrenal medulla. Acta physiol. scand. 50, 8–22 (1960a).PubMedGoogle Scholar
  152. Hillarp, N.À.: Effect of reserpine on the adrenal medullaof sheep. Acta physiol. scand. 49, 376–382 (1960b).PubMedGoogle Scholar
  153. Hillarp, N.À., Falck, B.: Localization of acid phosphatase in the adrenal medullary cell. Acta endocr. (Kbh.) 22, 95–106 (1956).Google Scholar
  154. Hillarp, N.À., Falck, B., Lagerstedt, S., Nilson, B.: The isolation of a granular fraction from the suprarenal medulla, containing the sympathomimetic catecholamines. Acta physiol. scand. 29, 251–263 (1953).PubMedGoogle Scholar
  155. Hillarp, N.À., Falck, B., Lagerstedt, S., Nilson, B., Nilson, B.: Some quantitative analyses of the sympathomimetic amine containing granules in the adrenal medullary cell. Acta physiol. scand. 32, 11–18 (1954a).PubMedGoogle Scholar
  156. Hillarp, N.À., Falck, B., Lagerstedt, S., Nilson, B., Nilson, B.: The structure of the adrenaline and noradrenaline containing granules in the adrenalmedullary cells with reference to the storage and release of the sympathomimetic amines. Acta physiol. scand. 31, Suppl. 113, 79–107 (1954b).Google Scholar
  157. Hillarp, N.À., Falck, B., Lagerstedt, S., Nilson, B., Nilson, B., Högberg, B.: Adenosine triphosphate in the adrenal medulla of the cow. Nature(Lond.) 176, 1032–1033 (1955).Google Scholar
  158. Hillarp, N.À., Falck, B., Lagerstedt, S., Nilson, B., Nilson, B., Högberg, B., Thieme, G.: Nucleotides in the catecholamine granules of the adrenal medulla. Acta physiol. scand. 45, 328–338 (1959).PubMedGoogle Scholar
  159. Hirsch, J.G.: Cinemicrophotographic observations on granule lysis in polymorphonuclear leucoytes during phagocytosis. J. exp. Med. 116, 827–834 (1962).PubMedGoogle Scholar
  160. Hodgkin, A.L., Keynes, R.D.: Movements of labelled calcium in squid giant axons. J. Physiol. (Lond.) 138, 399–407 (1957).Google Scholar
  161. Hokfelt, T.: In vitro studies on central and peripheral monoamine neurons at the ultra-structural level. Z. Zellforsch. 91, 1–74 (1968).PubMedGoogle Scholar
  162. Hokfelt, T.: Distribution of noradrenaline storing particles in peripheral adrenergic neurons as revealed by electron microscopy. Acta physiol. scand. 76, 427–440 (1969).PubMedGoogle Scholar
  163. Hokin, L.E.: Autoradiographic localization of the acetylcholine-stimulated synthesis of phosphatidylinositol in the superior cervical ganglion. Proc. nat. Acad. Sci. (Wash.) 53, 1369–1374 (1965).Google Scholar
  164. Hokin, L.E.: Dynamic aspects of phospholipids during protein secretion. Int. Rev. Cytol. 20, 187–208 (1968).Google Scholar
  165. Hokin, L.E.: Functional activity in glands and synaptic tissue and the turnover of phosphatidylinositol. Ann. N. Y. Acad. Sci. 165, 695–709 (1969).PubMedGoogle Scholar
  166. Hokin, M.R., Benfy, B.G., Hokin, L.E.: Phospholipids and adrenaline secretion in the guinea pig adrenal medulla. J. biol. Chem. 233, 814–817 (1958).PubMedGoogle Scholar
  167. Hokin, M.R., Benfy, B.G., Hokin, L.E., Hokin, L.E., Shelp, W.D.: The effects of acetylcholine on the turnover of phosphatidic acid and phosphoinositide in sympathetic ganglia, and in various parts of the central nervous system in vitro. J. gen. Physiol. 44, 217–226 (1960).PubMedGoogle Scholar
  168. Holman, M.: Junction potentials in smooth muscle. In: Smooth Muscle, pp. 244–288. Ed. Bulbring, E., Brading, A., Jones, A. And Tomita, T. London: E. Arnold Ltd. 1970.Google Scholar
  169. Holtzman, E., Dominitz, R.: Cytochemical studies of lysosomes, Golgi apparatus and endoplasmic reticulum in secretion and protein uptake by adrenal medulla cells of the rat. J. Histochem. Cytochem. 16, 320–336 (1968).PubMedGoogle Scholar
  170. Holzbauer, M.: The corticosterone content of rat adrenals under different experimental conditions. J. Physiol. (Lond.) 139, 294–305 (1957).Google Scholar
  171. Howell, J. I., Lucy, J. A.: Cell fusion induced by lysolecithin. FEBS Lett. 4, 147–150 (1969).PubMedGoogle Scholar
  172. Hukovi, S., Muscholl, E.: Die Noradrenalin-Abgabe aus dem isolierten Kaninchenherzen bei sympatischer Nervenreizung und ihre pharmakologische Beeinflussung. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 244, 81–96 (1962).Google Scholar
  173. Iversen, L.L., Glowinski, J., Axelrod, J.: The uptake and storage of [3H] norepinephrine in the reserpine-pretreated rat heart. J. Pharmacol, exp. Ther. 150, 173–183 (1965).Google Scholar
  174. Jaanus, S.D., Miele, E., Rubin, R.P.: The analysis of the inhibitory effect of local anaesthetics and propranolol on adreno-medullary secretion evoked by calcium or acetylcholine. Brit. J. Pharmacol. 31, 319–330 (1967).PubMedGoogle Scholar
  175. Jamieson, J.D., Palade, G.E.: Intracellular transport of secretory proteins in the pancreatic exocrine cell. 1. Role of the peripheral elements of the Golgi complex. J. Cell. Biol. 34, 577–596 (1967 a).Google Scholar
  176. Jamieson, J.D., Palade, G.E.: Intracellular transport of secretory proteins in the pancreatic exocrine cell. 2. Transportto condensing vacuoles and zymogen granules. J. Cell. Biol. 34, 597–615 (1967b).PubMedGoogle Scholar
  177. Jamieson, J.D., Palade, G.E.: Intracellular transport of secretory proteins in the pancreatic exocrine cell. 3. Dissociation of intracellular transport from protein synthesis. J. Cell. Biol. 39, 580–588 (1968 a).Google Scholar
  178. Jamieson, J.D., Palade, G.E.: Intracellular transport of secretory proteins in the pancreatic exocrine cell. 4. Metabolicrequirements. J. Cell. Biol. 39, 589–603 (1968b).Google Scholar
  179. Jarlfors, U., Smith, D. S.: Association between synaptic vesicles and neurotubules. Nature (Lond.) 224, 710–711 (1969).Google Scholar
  180. Jonsson, G., Sachs, C.: Subcellular distribution of 3H-noradrenaline in adrenergic nerves of mouse atriumeffect of reserpine. monoamine oxidase and tyrosine hydroxylase inhibition. Acta physiol. scand. 77, 344–357 (1969).PubMedGoogle Scholar
  181. Kanno, Y., Loewenstein, W.R.: Cell-to-cell passage of large molecules. Nature (Lond.) 212, 629–630 (1966).Google Scholar
  182. Kao, C.Y.: Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol. Rev. 18, 997–1049 (1966).PubMedGoogle Scholar
  183. Katz, B.: The release of neural transmitter substances, pp. 1–60. Liverpool: Liverpool University Press 1969.Google Scholar
  184. Katz, B., Miledi, R.: The timing of calcium action during neuromuscular transmission. J. Physiol. (Lond.) 189, 535–544 (1967).Google Scholar
  185. Katz, R.I., Kopin, I. J.: Release of norepinephrine–3H and serotonin–3H evoked from brain slices by electrical-field stimulation-calcium dependency and the effects of lithium, ouabain and tetrodotoxin. Biochem. Pharmacol. 18, 1935–1939 (1969).Google Scholar
  186. Kayaalp, S. O., Mcisaac, R.J.: In vivo release of catecholamines from the adrenal medulla by selective activation of cholinergic receptors. Arch. int. Pharmacodyn. 176, 168–175 (1968).Google Scholar
  187. Kayaalp, S.O., Mcisaac, R. J.: Muscarinic component of splanchnic-adrenal transmission in the dog. Brit. J. Pharmacol. 36, 286–293 (1969).Google Scholar
  188. Kayaalp, S.O., Mcisaac, R. J., Türker, R.K.: Evidence for muscarinic receptors in the adrenal medulla of the dog. Brit. J. Pharmacol. 35, 265–270 (1969).Google Scholar
  189. Kirpekar, S.M., Cervoni, P., Couri, D.: Depletion and recovery of catecholamines and adenosine-triphosphate of rat adrenal medulla after reserpine treatment. J. Pharmacol, exp. Ther. 142, 71–75 (1963a).Google Scholar
  190. Kirpekar, S.M., Cervoni, P., Couri, D.: Effect of cocaine, phenoxybenzamine and phentolamine on catecholamine output fromspleen and adrenal medulla. J. Pharmacol, exp. Ther. 142, 59–70 (1963b).Google Scholar
  191. Kirpekar, S.M., Cervoni, P., Couri, D., Goodland, G.A.J., Lewis, J. J.: Reserpine depletion of adenosine triphosphate from the rat suprarenal medulla. Biochem. Pharmacol. 1, 232–233 (1958).Google Scholar
  192. Kirpekar, S.M., Cervoni, P., Couri, D., Goodland, G.A.J., Lewis, J. J., Misu, Y.: Release of noradrenaline by splenic nerve stimulation and its dependence upon calcium. J. Physiol. (Lond.) 188, 219–234 (1967).Google Scholar
  193. Kirpekar, S.M., Cervoni, P., Couri, D., Goodland, G.A.J., Lewis, J. J., Misu, Y., Wakade, A.R.: Release of noradrenaline from the cat spleen by potassium. J. Physiol. (Lond.) 194, 595–608 (1968).Google Scholar
  194. Kirshner, A.G., Kirshner, N.: A specific soluble protein from the catecholamine storage vesicles of bovine adrenal medulla. 2. Physical characterization. Biochim. biophys. Acta (Amst.) 181, 219–225 (1969).Google Scholar
  195. Kirshner, N.: Uptake of catecholamines by a particulate fraction of the adrenal medulla. J. biol. Chem. 237, 2311–2317 (1962).PubMedGoogle Scholar
  196. Kirshner, N.: Storage and secretion of adrenal catecholamines. Adv. Biochem. Psychopharmacol. 1, 71–89 (1969).PubMedGoogle Scholar
  197. Kirshner, N., Sage, H. J., Smith, W. J., Kirshner, A.G.: Release of catecholamines and specific protein from adrenal glands. Science 154, 529–531 (1966).PubMedGoogle Scholar
  198. Kirshner, N., Sage, H. J., Smith, W. J., Kirshner, A.G.: Mechanism of secretion from the adrenal medulla. 2. Release of catecholamines andstorage vesicle protein in response to chemical stimulation. Molec. Pharmacol. 3, 254–265 (1967).Google Scholar
  199. Kirshner, N., Sage, H. J., Smith, W. J., Kirshner, A.G., Smith, W.J.: Metabolic requirements for secretion from the adrenal medulla. Life Sci. 8, (1) 799–803 (1969).PubMedGoogle Scholar
  200. Kirshner, N., Sage, H. J., Smith, W. J., Kirshner, A.G., Smith, W.J., Viveros, O.H.: Quantal aspects of the secretion of catecholamines and dopamine-/Miydroxylase from the adrenal medulla. In: New aspects of storage and release mechanisms of catecholamines (Bayer Symposium II), pp. 78–88. Eds. Schümann, H.J. And Kroneberg, H.G. Berlin: Springer 1970.Google Scholar
  201. Kopin, I.J.: Storage and metabolism of catecholamines: the role of monoamine oxidase. Pharmacol. Rev. 16, 179–191 (1964).PubMedGoogle Scholar
  202. Kopin, I.J.: Biochemical aspects of release of norepinephrine and other amines from sympathetic nerve endings. Pharmacol. Rev. 18, 513–523 (1966).PubMedGoogle Scholar
  203. Kopin, I.J.: False adrenergic transmitters. Ann. Rev. Pharmacol. 8, 377–394 (1968).PubMedGoogle Scholar
  204. Kopin, I.J., Breese, G.R., Krauss, K.R., Weise, V.K.: Selective release of newly synthesised norepinephrine from the cat spleen during sympathetic nerve stimulation. J. Pharmacol, exp. Ther. 161, 271–278 (1968).Google Scholar
  205. Laduron, P., Belpaire, F.: A rapid assay and partial purification of dopa decarboxylase. Analyt. Biochem. 26, 210–218 (1968a).PubMedGoogle Scholar
  206. Laduron, P., Belpaire, F.: Tissue fractionation and catecholamines–2. Intracellular distribution patterns oftyrosine hydroxylase, dopa decarboxylase, dopamine β -hydroxylase, phenylethanolamine N-methyltransferase and monoamine oxidase in adrenal medulla. Biochem. Pharmacol. 17, 1127–1140 (1968b).PubMedGoogle Scholar
  207. Laduron, P., Belpaire, F.: Transport of noradrenaline and dopamine β-hydroxylase in sympathetic nerves. Life Sci. 7, 1–7 (1968c).PubMedGoogle Scholar
  208. Langer, S.Z.: The metabolism of [3H] noradrenaline released by electrical stimulation from the isolated nictitating membrane of the cat and from the vas deferens of the rat. J. Physiol. (Lond.) 208, 515–546 (1970).Google Scholar
  209. Larrabee, M. G.: Transynaptic stimulation of phosphatidylinositol metabolism in sympathetic neurons in situ. J. Neurochem. 15, 803–808 (1968).PubMedGoogle Scholar
  210. Larrabee, M. G., Leicht, W. S.: Metabolism of phosphatidylinositol and other lipids in active neurones of sympathetic ganglia and other peripheral tissues. The site of the inositide effect. J. Neurochem. 12, 1–13 (1965).PubMedGoogle Scholar
  211. Leaders, F.E., Dayrit, C.: The cholinergic component in the sympathetic innervation to the spleen. J. Pharmacol, exp. Ther. 147, 145–152 (1965).Google Scholar
  212. Lee, F.L., Trendelenburg, U.: Muscarinic transmission of preganglionic impulses to the adrenal medulla of the cat. J. Pharmacol, exp. Ther. 158, 73–79 (1967).Google Scholar
  213. Lever, J.D., Findlay, J. A.: Similar structural basis for the storage and release of secretory material in adrenomedullary and β-pancreatic cells. Z. Zellforsch. 74, 317–324 (1966).PubMedGoogle Scholar
  214. Lewis, P.R., Shute, C.C.D.: An electron-microscopic study of Cholinesterase distribution in the rat adrenal medulla. J. Microscopy 89, 181–193 (1969).Google Scholar
  215. Lightman, S.L., Iversen, L.L.: The role of uptake in the extraneuronal metabolism of cate-cholamines in the isolated rat heart. Brit. J. Pharmacol. 37, 638–649 (1969).Google Scholar
  216. Lindmar, R. Löffelholz, K., Muscholl, E.: Unterschiede zwischen Tyramin and Dimethyl-phenylpiperazin in der Ca2+-Abhängigkeit und im zeitlichen Verlauf der Noradrenalin-Freisetzung am isolierten Kaninchenherzen. Experientia (Basel) 23, 933–944 (1967).Google Scholar
  217. Lindmar, R. Löffelholz, K., Muscholl, E., Muscholl, E.: Die Wirkung von Cocain, Guanethidin, Reserpin, Hexamethonium, Tetra-cain and Psicain auf die Noradrenalin-Freisetzung aus dem Herzen. Naunyn-Schmiede-berg’s Arch. exp. Path. Pharmak. 242, 214–227 (1961).Google Scholar
  218. Lindmar, R. Löffelholz, K., Muscholl, E., Muscholl, E.: Die Wirkung von Pharmaka auf die Elimination von Noradrenalin aus der Perfusionsflüssigkeit und die Noradrenalinaufnahme in das isolierte Herz. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 247, 469–492 (1964).Google Scholar
  219. Lishajko, F.: Influence of chloride ions and ATP-Mg2+ on the release of catecholamines from isolated medullary granules. Acta physiol. scand. 75, 255–256 (1969).PubMedGoogle Scholar
  220. Lishajko, F.: Osmotic factors determining the release of catecholamines from isolated chromaffin cell granules. Acta physiol. scand. 79, 64–75 (1970).PubMedGoogle Scholar
  221. Livett, B.G., Geffen, L.B., Austin, L.: Proximo distal transport of [14C] noradrenaline and protein in sympathetic nerves. J. Neurochem. 15, 931–939 (1968).PubMedGoogle Scholar
  222. Locke, M., Collins, J.V.: Protein uptake into multivesicular bodies and storage granules in the fat body of an insect. J. Cell Biol. 36, 453–483 (1968).PubMedGoogle Scholar
  223. Löffelholz, K.: Untersuchungen über die Noradrenalin-Freisetzung durch Acetylcholin am perfundierten Kaninchenherzen. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 258, 108–122 (1967).Google Scholar
  224. Löffelholz, K., Muscholl, E.: A muscarinic inhibition of noradrenaline release evoked by postganglionic sympathetic nerve stimulation. Naunyn-Schmiedebergs Arch. Pharmak. 265, 1–15 (1969).Google Scholar
  225. Loewenstein, W.R.: Permeability of membrane junctions. Ann. N.Y. Acad. Sci. 137, 441–472 (1966).PubMedGoogle Scholar
  226. Lucy, J.A.: Lysosomal membrane. In: Lysosomes in Biology and Pathology, pp. 313–341. Ed. Dingle, J.T. And Fell, H. Amsterdam: North Holland Publishing Company 1969.Google Scholar
  227. Lundborg, P.: Uptake of metaraminol by the adrenal medullary granules. Acta physiol. scand. 67, 423–429 (1966).PubMedGoogle Scholar
  228. Lundborg, P.: Studies on the uptake and subcellular distribution of catecholamines and their α-methylat-ed analogues. Acta physiol. scand. 72, Suppl. 302, 1–34 (1968).Google Scholar
  229. Malamed, S., Poisner, A.M., Trifarö, J.M., Douglas, W.W.: The fate of the chromaffin granule during catecholamine release from the adrenal medulla. III. Recovery of a purified fraction of electron-translucent structures. Biochem. Pharmacol. 17, 241–246 (1968).PubMedGoogle Scholar
  230. Malmfors, T.: Studies on adrenergic nerves. The use of rat and mouse iris for direct observations on their physiology and pharmacology at cellular and subcellular levels. Acta physiol. scand. 64, Suppl. 248, 1–93 (1965).Google Scholar
  231. Matthews, E.K.: Calcium and hormone release. In: A Symposium on Calcium and Cellular Function, pp. 163–182. Ed. Cuthbert, A.W. London: Macmillan 1970.Google Scholar
  232. Matthews, E.K.: Membrane potential measurement in cells of the adrenal gland. J. Physiol. (Lond.) 189, 139–148 (1967).Google Scholar
  233. Matthews, E.K., Saffran, M.: Effect of ACTH on electrical properties of adrenocortical cells. Nature (Lond.) 219, 1369–1370 (1968).Google Scholar
  234. Miele, E.: The nicotinic stimulation of the cat adrenal medulla. Arch. int. Pharmacodyn. 179, 343–351 (1969).Google Scholar
  235. Miele, E., Rubin, R.P.: Further evidence for the dual action of local anaesthetics on the adrenal medulla. J. Pharmacol, exp. Ther. 161, 296–301 (1968).Google Scholar
  236. Moppert, J.: Zur Ultrastructur der phaeochromen Zellen im Nebennierenmark der Ratte. Z. Zellforsch. 74, 32–44 (1966).PubMedGoogle Scholar
  237. Muscholl, E.: Autonomie nervous system: newer mechanisms of adrenergic blockade. Ann. Rev. Pharmacol. 6, 107–128 (1966).PubMedGoogle Scholar
  238. Muscholl, E.: Discussion remark. In: Adrenergic Neurotransmission, pp. 104–105. Ed. Wolstenholme, G.E.W. And O’Connor, M. London: J. & A. Churchill Ltd. 1968.Google Scholar
  239. Muscholl, E., Maitre, L.: Release by sympathetic stimulation of α-methylnoradrenaline stored in the heart after administration of α -methyldopa. Experientia (Basel) 19, 658–659 (1963).Google Scholar
  240. Muscholl, E., Maitre, L., Vogt, M.: The action of reserpine on the peripheral sympathetic system. J. Physiol. (Lond.) 141, 132–155 (1958).Google Scholar
  241. Nagatsu, T., Kuzuya, H., Hidaka, H.: Inhibition of dopamines-hydroxylase by sulfhydryl compounds and the nature of the natural inhibitors. Biochim. biophys. Acta (Amst.) 139, 319–327 (1967).Google Scholar
  242. Normann, T.C.: The neurosecretory system of the adult Calliphora erythrocephala. 1. The fine structure of the corpus cardiacum, with some observations on adjacent organs. Z, Zellforsch. 67, 461–501 (1965).Google Scholar
  243. Normann, T.C.: Experimentally induced exocytosis of neurosecretory granules. Exp. Cell Res. 55, 285–287 (1969).PubMedGoogle Scholar
  244. Oka, M., Ohuchi, T., Yoshida, H., Imaizumi, R.: The importance of calcium in the release of catecholamine from the adrenal medulla. Jap. J. Pharmacol. 15, 348–356 (1965 a).Google Scholar
  245. Oka, M., Ohuchi, T., Yoshida, H., Imaizumi, R.: Effect of adenosine triphosphate and magnesium on the release of catecholamines from adrenal medullary granules. Biochim. biophys. Acta (Amst.) 97, 170–171 (1965b).Google Scholar
  246. Oka, M., Ohuchi, T., Yoshida, H., Imaizumi, R.: The isolation of catecholamine storage granules from adrenal medulla by themembrane filter technique. Life Sci. 5, 427–432 (1966).PubMedGoogle Scholar
  247. Oka, M., Ohuchi, T., Yoshida, H., Imaizumi, R., Kajikawa, K., Ohijchi, T., Yoshida, H., Imaizumi, R.: Distribution of dopamine β -hydroxylase in subcellular fractions of adrenal medulla. Life Sci. 6, 461–465 (1967a).PubMedGoogle Scholar
  248. Oka, M., Ohuchi, T., Yoshida, H., Imaizumi, R., Kajikawa, K., Ohijchi, T., Yoshida, H., Imaizumi, R., Ohuchi, T., Yoshida, H., Imaizumi, R.: Structural changes in the catecholamine containing granules of adrenal medulla. Life Sci. 6, 467–472 (1967 b).Google Scholar
  249. Oka, M., Ohuchi, T., Yoshida, H., Imaizumi, R., Kajikawa, K., Ohijchi, T., Yoshida, H., Imaizumi, R., Ohuchi, T., Yoshida, H., Imaizumi, R.: Stimulatory effect of adenosine triphosphate and magnesium on the release ofcatecholamines from adrenal medullary granules. Jap. J. Pharmacol. 17, 199–207 (1967 c).Google Scholar
  250. Palade, G.E.: Functional changes in the structure of cell components. In: Subcellular Particles, pp. 64–83. Ed. Hayashi, T. New York: Ronald Press 1959.Google Scholar
  251. Palkama, A.: Demonstration of adrenomedullary catecholamines and cholinesterases at electron microscopic level in the same tissue section. Ann. Med. exp. Fenn. 45, 295–301 (1967).PubMedGoogle Scholar
  252. Paton, W.D.M., Rothschild, A.M.: The effect of varying calcium concentration on the kinetic constants of hyoscine and mepyramine antagonism. Brit. J. Pharmacol. 24, 432–436 (1965).Google Scholar
  253. Philippu, A., He Yd, G., Burger, A.: Release of noradrenaline from the hypothalamus in vivo. Europ. J. Pharmacol. 9, 52–58 (1970).Google Scholar
  254. Philippu, A., He Yd, G., Burger, A., Schümann, H. J.: Der Einfluß von Calcium auf die Brenzcatechinaminfreisetzung. Expe-rientia (Basel) 18, 138–140 (1962).Google Scholar
  255. Philippu, A., He Yd, G., Burger, A., Schümann, H. J.: Effect of ribonuclease on the ribonucleic acid, adenosine-triphosphate and catechol-amine content of medullary granules. Nature (Lond.) 198, 795–796 (1963).Google Scholar
  256. Philippu, A., He Yd, G., Burger, A., Schümann, H. J.: Ribonucleaseaktivität isolierter Nebennierenmarkgranula. Experientia (Basel) 20, 547–548 (1964).Google Scholar
  257. Philippu, A., He Yd, G., Burger, A., Schümann, H. J.: Über die Bedeutung der Calcium-und Magnesiumionen für die Speicherung der Neben-nierenmark-Hormone. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 252, 339–358 (1966).Google Scholar
  258. Plattner, H., Winkler, H., Hörtnagl, H., Pfaller, W.: A study of the adrenal medulla and its subcellular organelles by the freeze-etching method. J. Ultrastruct. Res. 28, 191–202 (1969).PubMedGoogle Scholar
  259. Pohorecky, L., Rust, J.H.: Studies on the cortical control of the adrenal medulla in the rat. J. Pharmacol, exp. Ther. 162, 227–238 (1968).Google Scholar
  260. Poisner, A.M., Douglas, W.W.: The need for calcium in adrenomedullary secretion evoked by biogenic amines, polypeptides, and muscarinic agents. Proc. Soc. exp. Biol. (N. Y.) 123, 62–64 (1966).Google Scholar
  261. Poisner, A.M., Douglas, W.W., Trlfarö, J.M.: The role of ATP and ATPase in the release of catecholamines from the adrenal medulla. 1. ATP-evoked release of catecholamines, ATP, and protein from isolated chromaffin granules. Molec. Pharmacol. 3, 561–571 (1967).Google Scholar
  262. Poisner, A.M., Douglas, W.W., Trlfarö, J.M.: The role of adenosine triphosphate and adenosine triphosphatase in the release ofcatecholamines from the adrenal medulla. 3. Similarities between the effects of adenosine-triphosphate on chromaffin granules and on mitochondria. Molec. Pharmacol. 5, 294–299 (1969).Google Scholar
  263. Poisner, A.M., Douglas, W.W., Trlfarö, J.M., Douglas, W. W.: The fate of the chromaffin granule during catecholamine release fromthe adrenal medulla. II. Loss of protein and retention of lipid in subcellular fractions. Biochem. Pharmacol. 16, 2101 (1967).PubMedGoogle Scholar
  264. Portzehl, H., Caldwell, P.C., Rüegg, J.C.: The dependence of contraction and relaxation of muscle fibres from the crab Maia squinidado on the internal concentration of free calcium ions. Biochim. biophys. Acta (Amst.) 79, 581–591 (1964).Google Scholar
  265. Potter, L.T.: Storage of norepinephrine in sympathetic nerves. Pharmacol. Rev. 18, 439–451 (1966).PubMedGoogle Scholar
  266. Potter, L.T.: Role of intraneuronal vesicles in the synthesis, storage and release of noradrenaline. Circulât. Res. 21, Suppl. 3, 13–24 (1967).Google Scholar
  267. Potter, L.T., Axelrod, J.: Subcellular localization of catecholamines in tissues of the rat. J. Pharmacol, exp. Ther. 142, 291–298 (1963a).Google Scholar
  268. Potter, L.T., Axelrod, J.: Properties of norepinephrine storage particles of the rat heart. J. Pharmacol, exp. Ther. 142, 299–305 (1963b).Google Scholar
  269. Potter, L.T., Axelrod, J., Cooper, T., Willman, V.L., Wolfe, D.E.: Synthesis, binding, release and metabolism of norepinephrine in normal and transplated dog hearts. Circulât. Res. 16, 468–481 (1965).Google Scholar
  270. Rasmussen, H., Tenenhouse, A.: Cyclic AMP, calcium and membranes. Proc. nat. Acad. Sci. (Wash.) 59, 1364–1369 (1968).Google Scholar
  271. Ratzenhofer, M., Müller, O.: Ultrastructure of adrenal medulla of the prenatal rat. J. Embryol. exp. Morph. 18, 13–25 (1967).PubMedGoogle Scholar
  272. Renold, A.E.: Insulin biosynthesis and secretion-a still unsettled topic. New Engl. J. Med. 282, 173–182 (1970).Google Scholar
  273. Rubin, R.P.: The metabolic requirements for catecholamine release from the adrenal medulla. J. Physiol. (Lond.) 202, 197–209 (1969).Google Scholar
  274. Rubin, R.P., Feinstein, M.B., Jaanus, S.D., Paimre, M.: Inhibition of catecholamine secretion and calcium exchange in perfused cat adrenal glands by tetracaine and magnesium. J. Pharmacol. exp. Ther. 155, 463–471 (1967).PubMedGoogle Scholar
  275. Rubin, R.P., Feinstein, M.B., Jaanus, S.D., Paimre, M., Jaanus, S.D.: A study of the release of catecholamines from the adrenal medulla by indirectly acting sympathomimetic amines. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 254, 125–137 (1966).Google Scholar
  276. Rubin, R.P., Feinstein, M.B., Jaanus, S.D., Paimre, M., Jaanus, S.D.: The release of nucleotide from the adrenal medulla by indirectly acting sympathomimetic amines. Biochem. Pharmacol. 16, 1007–1012 (1967).PubMedGoogle Scholar
  277. Rubin, R.P., Feinstein, M.B., Jaanus, S.D., Paimre, M., Jaanus, S.D., Miele, E.: A study of the differential secretion of epinephrine and norepinephrine from the perfused cat adrenal gland. J. Pharmacol, exp. Ther. 164, 115–121 (1968a).Google Scholar
  278. Rubin, R.P., Feinstein, M.B., Jaanus, S.D., Paimre, M., Jaanus, S.D., Miele, E.: The relation between the chemical structure of local anaesthetics and inhibition ofcalciumevoked secretion from the adrenal medulla. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 298–308 (1968b).Google Scholar
  279. Sage, H. J., Smith, W. J., Kirshner, N.: Mechanism of secretion from the adrenal medulla. 1. A microquantitative immunologic assay for bevine adrenal catecholamine storage vesicle protein and its application to studies of the secretory process. Molec. Pharmacol. 3, 81–89 (1967).Google Scholar
  280. Schmitt, F.O., Samson, F.E.: Neuronal fibrous proteins. In: Neurosciences Research Symposium Summaries, vol. 3, pp. 323–329. Ed. Schmitt, F.O., Melnechuk, T., Quarton, G.C. And Adelman, G. Cambridge, Mass.: The M.I.T. Press 1969.Google Scholar
  281. Schneider, F.H.: Observations on the release of lysosomal enzymes from the isolated bovine adrenal gland. Biochem. Pharmacol. 17, 848–851 (1968a).PubMedGoogle Scholar
  282. Schneider, F.H.: Release of lysosomal enzymes from the isolated bovine adrenal gland. Pharmacologist 10, 158 (1968b).Google Scholar
  283. Schneider, F.H.: Drug-induced release of catecholamines, soluble protein and chromogranin A from the isolated bovine adrenal gland. Biochem. Pharmacol. 18, 101–107 (1969a).PubMedGoogle Scholar
  284. Schneider, F.H.: Secretion from the cortex-free bovine adrenal medulla. Brit. J. Pharmacol. 37, 371–379 (1969b).Google Scholar
  285. Schneider, F.H.: Secretion from the bovine adrenal gland: release of lysosomal enzymes. Biochem. Pharmacol. 19, 833–847 (1970).PubMedGoogle Scholar
  286. Schneider, F.H., Smith, A.D., Winkler, H.: Secretion from the adrenal medulla: biochemical evidence for exocytosis. Brit. J. Pharmacol. 31, 94–104 (1967).PubMedGoogle Scholar
  287. Schümann, H. J.: The distribution of adrenaline and noradrenaline in chromaffin granules of the chicken. J. Physiol. (Lond.) 137, 318–326 (1957).Google Scholar
  288. Schümann, H. J.: Die Wirkung von Insulin and Reserpin auf den Adrenalin-und ATP-Gehalt der chromaffinen Granula des Nebennierenmarks. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 233, 237–249 (1958a).Google Scholar
  289. Schümann, H. J.: Über den Noradrenalin-und ATP-Gehalt sympathischer Nerven. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 233, 296–300 (1958b).Google Scholar
  290. Schümann, H. J., Philippu, A.: The mechanism of catecholamine release by tyramine. Int. J. Neuropharmacol. 1, 179–182 (1962).Google Scholar
  291. Shea, S.M., Karnovsky, M.J.: Brownian motion: a theoretical explanation for the movement of vesicles across the endothelium. Nature (Lond.) 212, 353–355 (1966).Google Scholar
  292. Simpson, L.L.: The role of calcium in neurohumoral and neurohormonal extrusion processes. J. Pharm. Pharmacol. 20, 889–910 (1968).PubMedGoogle Scholar
  293. Skipski, V.P., Peterson, R.F., Barclay, M.: Quantitative analysis of phospholipids by thinlayer chromatography. Biochem. J. 90, 374–378 (1964).PubMedGoogle Scholar
  294. Smith, A.D.: Biochemistry of adrenal chromaffin granules. In: The Interaction of Drugs and Subcellular Components in Animal Cells, pp. 239–292. Ed. by Campbell, P.N. London: Churchill Ltd. 1968.Google Scholar
  295. Smith, A.D.: Extracellular release of lysosomal phospholipases from the perfused adrenal gland. Biochem. J. 114, 72P (1969).Google Scholar
  296. Smith, A.D.: Proteins of vesicles from sympathetic axons: chemistry, immunoreactivity and release upon stimulation. Neurosci. Res. Prog. Bull. 8, 377–382 (1970).Google Scholar
  297. Smith, A.D.: Some implications of the neuron as a secreting cell. Phil. Trans, roy. Soc. B. 261, 423–437 (1971a).Google Scholar
  298. Smith, A.D.: Subcellular localization of noradrenaline in sympathetic neurons. Pharmacol. Rev. (in press) (1971b).Google Scholar
  299. Smith, A.D., De Potter, W.P.: Unpublished observations (1969).Google Scholar
  300. Smith, A.D., De Potter, W.P., Moerman, E.H., De Schaepdryver, A.F.: Release of dopamine β-hydroxylase andchromogranin A upon stimulation of the splenic nerve. Tissue and Cell 2, 547–568 (1970).PubMedGoogle Scholar
  301. Smith, A.D., De Potter, W.P., Moerman, E.H., De Schaepdryver, A.F., Winkler, H.: Acid nucleases of the bovine adrenal medulla. Nature (Lond.) 207, 634 (1965).Google Scholar
  302. Smith, A.D., De Potter, W.P., Moerman, E.H., De Schaepdryver, A.F., Winkler, H.: The localization of lysosomal enzymes in chromaffin tissue. J. Physiol. (Lond.) 183, 179–188 (1966).Google Scholar
  303. Smith, A.D., De Potter, W.P., Moerman, E.H., De Schaepdryver, A.F., Winkler, H.: A simple method for the isolation of adrenal chromaffin granules on a large scale. Biochem. J. 103, 480–482 (1967a).PubMedGoogle Scholar
  304. Smith, A.D., De Potter, W.P., Moerman, E.H., De Schaepdryver, A.F., Winkler, H.: Purification and properties of an acidic protein from chromaffin granules of bovineadrenal medulla. Biochem. J. 103, 483–492 (1967b).PubMedGoogle Scholar
  305. Smith, A.D., De Potter, W.P., Moerman, E.H., De Schaepdryver, A.F., Winkler, H.: Lysosomal phospholipases AX and A2 of bovine adrenal medulla. Biochem. J. 108, 867–874 (1968).PubMedGoogle Scholar
  306. Smith, A.D., De Potter, W.P., Moerman, E.H., De Schaepdryver, A.F., Winkler, H.: Lysosomes and chromaffin granules in the adrenal medulla. In: Lysosomes in Biologyand Pathology, Ed. Fell, H. And Dingle, J.T., 1, 155–166. Amsterdam: North Holland 1969.Google Scholar
  307. Smith, R.E., Farquhar, M.G.: Lysosome function in the regulation of the secretory processes in cells of the anterior pituitary gland. J. Cell Biol. 31, 319–347 (1966).PubMedGoogle Scholar
  308. Suärne, L.: Studies of catecholamine uptake storage and release mechanisms. Acta physiol. scand. 62, Suppl. 228, 1–60 (1964).Google Scholar
  309. Suärne, L.: Storage particles in noradrenergic tissues. Pharmacol. Rev. 18, 425–432 (1966).Google Scholar
  310. Suärne, L., Hedqvist, P., Bygdeman, S.: Neurotransmitter quantum released from sympathetic nerves in cat’s skeletal muscle. Life Sci. 8 (1), 189–196 (1969).Google Scholar
  311. Suärne, L., Hedqvist, P., Bygdeman, S., Lagercrantz, H.: Catecholamines and adenine nucleotide material in effluent fromstimulated adrenal medulla and spleen. Biochem. Pharmacol. 19, 1147–1158 (1970).Google Scholar
  312. Suärne, L., Hedqvist, P., Bygdeman, S., Lagercrantz, H., Lishajko, F.: Comparison of spontaneous loss of catecholamines and ATP in vitro from isolated bovine adrenomedullary, vesicular gland, vas deferens and splenic nerve granules J. Neurochem. 13, 1213–1216 (1966).Google Scholar
  313. Suärne, L., Hedqvist, P., Bygdeman, S., Lagercrantz, H., Lishajko, F., Roth, R.H., Lishajko, F.: Noradrenaline formation from dopamine in isolated subcellular particles from bovine splenic nerve. Biochem. Pharmacol. 16, 1729–1739 (1967).Google Scholar
  314. Stormorken, H.: The release reaction of secretion. Scand. J. Haemat. Suppl. 9, 1–24 (1969).Google Scholar
  315. Taugner, G., Hasselbach, W.: Über den Mechanismus der Catecholamin-Speicherung in den “chromaffinen Granula” des Nebennierenmarks. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 266–286 (1966).Google Scholar
  316. Taxi, J.: Morphological and cytochemical studies on the synapses in the autonomic nervous system. Progr. Brain Res. 31, 5–20 (1969).Google Scholar
  317. Thoenen, H.: Bildung und funktionelle Bedeutung adrenerger Ersatztransmitter. Exp. Med. Path. Klin. 27, 1–85 (1969).Google Scholar
  318. Thoenen, H., Huerlimann, A., Haefely, W.: Cation dependence of the noreadrenaline-releasing action of tyramine. Europ. J. Pharmacol. 6, 29–37 (1969a).Google Scholar
  319. Thoenen, H., Huerlimann, A., Haefely, W., Mueller, R., Axelrod, J.: Trans-synaptic induction of tyrosine hydroxylase. J. Pharmacol. exp. Ther. 169, 249–254 (1969b).PubMedGoogle Scholar
  320. Tranzer, J. P., Thoenen, H.: Significance of ‘empty vesicles’ in postganglionic sympathetic nerve terminals. Experientia (Basel) 23, 123–124 (1967).Google Scholar
  321. Tranzer, J. P., Thoenen, H.: Various Types Of Amine-Storing Vesicles In Peripheral Adrenergic Nerve Terminals.Experientia (Basel) 24, 484–486 (1968).Google Scholar
  322. Trifarö, J.: Phospholipid metabolism and adrenal medullary activity. 1. The effect of acetylcholine on tissue uptake and incorporation of orthophosphate-32P into nucleotides and phospholipids of bovine adrenal medulla. Molec. Pharmacol. 5, 382–393 (1969a).Google Scholar
  323. Trifarö, J.: The effect of Ca2+ omission on the secretion of catecholamines and the incorporation of orthophosphate-32P into nucleotides and phospholipids of bovine adrenal medulla during acetylcholine stimulation. Molec. Pharmacol. 5, 420–431 (1969b).Google Scholar
  324. Trifarö, J., Dworkind, J.: A new and simple method for isolation of adrenal chromaffin granules by means of an isotonic density gradient. Analyt. Biochem. 34, 403–412 (1970).PubMedGoogle Scholar
  325. Trifarö, J., Dworkind, J., Poisner, A.M.: The role of ATP and ATPase in the release of catecholamines from the adrenal medulla. 2. ATP-evoked fall in optical density of isolated chromaffin granules. Molec. Pharmacol. 3, 572–580 (1967).Google Scholar
  326. Trifarö, J., Dworkind, J., Poisner, A.M., Douglas, W.W.: The fate of the chromaffiin granule during catecholamine releasefrom the adrenal medulla. I. Unchanged efflux of phospholipid and cholesterol. Biochem. Pharmacol. 16, 2095–2100 (1967).PubMedGoogle Scholar
  327. Van Orden, L.S., Bensch, K.G., Giarman, N.J.: Histochemical and functional relationships of catecholamines in adrenergic nerve endings. 2. Extravesicular noradrenaline, J. Pharmacol. exp. Ther, 155, 428–439 (1967).PubMedGoogle Scholar
  328. Verity, M.A., Bevan, J. A., Ostrom, R.J.: Plurivesicular nerve endings in the pulmonary artery. Nature (Lond.) 211, 537–538 (1966).Google Scholar
  329. Viyeros, O.H., Arqueros, L., Connett, R.J., Kirshner, N.: Mechanism of secretion from the adrenal medulla. 3. Studies of dopamine β -hydroxylase as a marker for catecholamine storage vesicle membranes in rabbit adrenal glands. Molec. Pharmacol. 5, 60–68 (1969a).Google Scholar
  330. Viyeros, O.H., Arqueros, L., Connett, R.J., Kirshner, N.: Mechanism of secretion from the adrenal medulla. 4. The fate of the storagevesicles following insulin and reserpine administration. Molec. Pharmacol. 5, 69–82 (1969b).Google Scholar
  331. Viyeros, O.H., Arqueros, L., Connett, R.J., Kirshner, N., Kirshner, N.: Mechanism of secretion from the adrenal medulla. 5. Retention ofstorage vesicle membranes following release of adrenaline. Molec. Pharmacol. 5, 342–349 (1969 c).Google Scholar
  332. Viyeros, O.H., Arqueros, L., Connett, R.J., Kirshner, N., Kirshner, N.: Quantal secretion from adrenal medulla: all-or-none release of storage vesicle content. Science 165, 911–913 (1969d).Google Scholar
  333. Viyeros, O.H., Arqueros, L., Connett, R.J., Kirshner, N., Kirshner, N.: Release of catecholamines and dopamine β -oxidase from the adrenal medulla. Life Sci. 7, 609–618 (1968).Google Scholar
  334. Vogt, M.: The output of cortical hormone by the mammalian suprarenal. J. Physiol. (Lond.) 102, 341–356 (1943).Google Scholar
  335. Vogt, M.: The Secretion Of The Denervated Adrenal Medulla Of The Cat. Brit. J. Pharmacol. 7, 325–330 (1952).Google Scholar
  336. Vohra, M.M.: Evidence for the release of endogenous catecholamines by tetracaine. Life Sci. 8 (1), 25–31 (1969).PubMedGoogle Scholar
  337. Weiner, N., Burack, W.R., Hagen, P.B.: The effect of insulin on the catecholamines and adenine nucleotides of adrenal glands. J. Pharmacol, exp. Ther. 130, 251–255 (1960).Google Scholar
  338. Whittaker, V.P., Michaelson, I.A., Kirkland, R. J.: The separation of synaptic vesicles from nerve-ending particles (‘Synaptosomes’). Biochem. J. 90, 293–303 (1964).PubMedGoogle Scholar
  339. Winkler, H.: Isolierung and Charakterisierung von chromaffinen Noradrenalin-Granula aus Schweine-Nebennierenmark. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 263, 340–357 (1969).Google Scholar
  340. Winkler, H.: The membrane of the chromaffin granule. Phil. Trans, roy. Soc. B. 261, 293–303 (1971).Google Scholar
  341. Winkler, H., Hörtnagl, H., Hörtnagl, H., Smith, A.D.: Membranes of the adrenal medulla. Behaviour of insoluble proteins of chromaffin granules on gel electrophoresis. Biochem. J. 118, 303–310 (1970a).PubMedGoogle Scholar
  342. Winkler, H., Hörtnagl, H., Hörtnagl, H., Smith, A.D., Zur Nedden, G.: Rindernebennierenmark: Synthese und Sekretion von Hormonenund Chromogranin. Naunyn-Schmiedebergs Arch. Pharmak. 266, 475 (1970b).Google Scholar
  343. Winkler, H., Hörtnagl, H., Hörtnagl, H., Smith, A.D., Zur Nedden, G.: SMITH, A.D.: Lipids of adrenal chromaffin granules: fatty acid composition of phospholipids, in particular lysolecithin. Naunyn-Schmiedebergs Arch. Pharmak. 261, 379–388 (1968).Google Scholar
  344. Winkler, H., Hörtnagl, H., Hörtnagl, H., Smith, A.D., Zur Nedden, G Strieder, N., Ziegler, E..: Über Lipide, insbesondere Lysolecithin, in den chromaffinen Granula verschiedener Species. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 256, 407–415 (1967).Google Scholar
  345. Wood, J.G.: The relationship of nucleotidase activity to catecholamine storage sites in adrenomedullary tissue. Amer. J. Anat. 121, 671–704 (1967).PubMedGoogle Scholar
  346. Woodin, A.M., French, J.E., Marchesi, V.T.: Morphological changes associated with the extrusion of protein induced in the polymorphonuclear leucocyte by staphylococcal leucocidin. Biochem. J. 87, 567–571 (1963).PubMedGoogle Scholar
  347. Woodin, A.M., French, J.E., Marchesi, V.T., Wieneke, A.A.: The accumulation of calcium by the polymorphonuclear leucocyte treated with staphylococcal leucocidin and its significance in the extrusion of protein. Biochem. J. 87, 487–495 (1963).PubMedGoogle Scholar
  348. Woodin, A.M., French, J.E., Marchesi, V.T., Wieneke, A.A.: The participation of calcium, adenosine triphosphate and adenosine triphosphatase inthe extrusion of the granule proteins from the polymorphonuclear leucocyte. Biochem. J. 90, 498–509 (1964).PubMedGoogle Scholar
  349. Woodin, A.M., French, J.E., Marchesi, V.T., Wieneke, A.A.: Site of protein secretion and calcium accumulation in the polymorphonuclear leucocytetreated with leucocidin. In: A Symposium on Calcium and Cellular Function, pp. 183–197. Ed. Cuthbert, A.W. London: Macmillan Ltd. 1970.Google Scholar
  350. Yates, R.D.: Fine structural alterations of adreno-medullary cells of the Syrian hamster following intraperitoneal injections of insulin. Tex. Rep. Biol. Med. 22, 756–763 (1964).PubMedGoogle Scholar
  351. Yokoyama, M., Takayasu, H.: An electron microscopic study of the human adrenal medulla and phaeochromocytoma. Urol. int. (Basel) 24, 79–95 (1969).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • A. D. Smith
  • H. Winkler

There are no affiliations available

Personalised recommendations