Advertisement

Zusammenfassung

Diffusionsmethoden. Die N2O-Methode, 1945 von KETY u. SCHMIDT beschrieben, ist Standardmethode zur Bestimmung der Durchblutung des Gesamtgehirns. Sie beruht auf dem Diffusionsprinzip mit der Berechnungsgrundlage nach FICK. Das Prinzip der Methode ist im Kapitel Herz beschrieben. Entnahmeorte für die Blutproben sind beim Menschen irgendeine Arterie, meistens die leicht zu punktierende A. femoralis und der Bulbus venae jugularis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adolph, E. F.: General and specific characteristics of physiological adaptions. Amer. J. Physiol. 184, 18 — 28 (1956).PubMedGoogle Scholar
  2. Agnoli, A.: Adaptation of CBF during induced chronic normooxic respiratory acidosis. Scand. J. clin. Lab. Invest., Suppl. 102, VIII: D (1968).Google Scholar
  3. Aizawa, T., Tazaki, Y., Gotoh, F.: Cerebral circulation in cerebrovascular disease. Wid. Neurol. 2, 635 — 648 (1961).Google Scholar
  4. Alexander, S.C., Wollman, H., Cohen, P. J., Chase, P. E., Melman, E., Behar, M.: Krypton85 and nitrous oxide uptake of the human brain during anesthesia. Anaesthesiology 26, 27 — 42 (1964).Google Scholar
  5. Baust, W.: Local blood flow in different regions of the brain-stem during natural sleep and arousal. Electroenceph. olin. Neurophysiol. 22, 365 — 372 (1967).Google Scholar
  6. Bayliss, W. M.: On the local reactions of the arterial wall to changes of internal pressure. J. Physiol. (Lond.) 28, 220 — 231 (1902).Google Scholar
  7. Bedford, T. H. B.: The effect of variations in the subarachnoid pressure on the venous pressure in the superior longitudinal sinus and in the torcular of the dog. J. Physiol. (Lond.) 101, 362 — 368 (1942).Google Scholar
  8. Bell, R. L.: Observations of cerebral arterio-venous transit times using radio-iodinated human serum albumin. J. nucl. Med. 5, 9 — 15 (1964).PubMedGoogle Scholar
  9. Bernsmeier, A.: Probleme der Hirndurchblutung. Z. Kreisl.-Forsch. 48, 278 — 323 (1959).Google Scholar
  10. Bernsmeier, A.: Zur Pathogenese cerebraler ZirkulationBBtürungen bei Erkrankungen des Herzens und der Lungen. Proceedings of the VII International Congress of Neurology, vol. 1, p. 291—315, Rom (1961).Google Scholar
  11. Bernsmeier, A., Gottstein, U.: Die Sauerstoffaufnahme des menschlichen Gehirns unter Phenothiacinen, Barbituraten und in der Ischämie. Pflügers Arch. ges. Physiol. 263, 102 — 108 (1956).Google Scholar
  12. BERNSMEIER, A., Hirndurchblutung und Alter. Verh. dtsch. Ges. Kreisl.-Forsch. 24, 248 — 253 (1958).Google Scholar
  13. Bernsmeier, A., Sack, H., Siemons, K.: Hochdruck und Hirndurchblutung (Unter besonderer Berücksichtigung der Augenhintergrundverii.nderungen und der neurologischen Komplikationen). Klin. Wschr. 32, 971 — 975 (1954).PubMedGoogle Scholar
  14. Bernsmeier, A., Siemons, K.: Die Messung der Hirndurchblutung mit der Stickoxydulmethode. Pflügers Arch. ges. Physiol. 298, 149 — 162 (1953a).Google Scholar
  15. BERNSMEIER, A., Der Hirnkreislauf bei der gesteuerten experimentellen Hypotension Hypotension controlee). Schweiz. med. Wschr. 83, 210 — 212 (1953b).Google Scholar
  16. Bertha, H., Heppner, F., Jenker, F. L., Lechner, H., Rodler, R.: Zur Deutung des Schädelrheogrammes. Zbl. Neurochir. 19, 257 — 266 (1957).Google Scholar
  17. Betz, E.: Zur Registrierung der lokalen Gehirndurchblutung mit Wärmeleitsonden. Pflügers Arch. ges. Physiol. 284, 278 — 284 (1965a).Google Scholar
  18. Betz, E.: Adaption of regional cerebral blood flow in animals exposed to chronic alteration of p02 and pC02• Acta neurol. scand. 41, Suppl. 14, 121 — 128 (1965b).Google Scholar
  19. Betz, E.: Zur Pathophysiologie der Sauerstoffversorgung. Z. prakt. Anästh. Wiederbelebung 3, 261 — 272 (1968).Google Scholar
  20. Betz, E.: Local heat clearance from the brain as a measure of blood flow in acute and chronic experiments. Acta neurol. scand. 41, Suppl. 14, 29 — 37 (1965).Google Scholar
  21. Betz, E.: HENSEL, H.: Fortlaufende Registrierung der lokalen Durchblutung des Gehirns bei wachen, frei beweglichen Tieren. Pflügers Arch. ges. Physiol. 274, 608 — 614 (1962).Google Scholar
  22. Betz, E.: HERRMANN, E.: Die fortlaufende Registrierung der Gehirndurchblutung beim Menschen mit flexiblen Wii.rmeleitsonden. Nervenarzt 37, 173 — 175 (1966).Google Scholar
  23. Betz, E., Heuser, D.: Cerebral cortical blood flow during changes of acid-base equilibrium of the brain. J. appl. Physiol. 23, 726 — 733 (1967).PubMedGoogle Scholar
  24. Betz, E., Ingvar,D.H., Lassen,N.A., Schmahl, F.W.: Regional blood flow in the cerebral cortex measured simultaneously by heat and inert gas clearance. Acta physiol. scand. 67, 1 — 9 (1966).PubMedGoogle Scholar
  25. Betz, E., Kozak, R.: Der Einfluß der W asserstoffionenkonzentration der Gehirnrinde auf die Regulation der corticalen Durchblutung. Pfliigers Arch. ges. Physiol. 293, 56 — 67 (1967).Google Scholar
  26. Betz, E., Schmahl, F. W.: Durchblutung und Sauerstoffdruck in der Gehirnrinde bei Carotisdrosselung und ihre Beeinflussung durch Pharmaka. Pflügers Arch. ges. Physiol. 287, 368 — 384 (1966).Google Scholar
  27. Betz, E., Wullenweber, R.: Fortlaufende Registrierung der lokalen Gehirndurchblutung mit Wärmeleitsonden am Menschen. Klin. Wschr. 40, 1056 — 1058 (1962).PubMedGoogle Scholar
  28. Birzis, L., Tachibana, S.: Measurement of local cerebral blood flow by impedance changes. Life Sci. 11, 587 - 598 (1962).Google Scholar
  29. Brobeil, A., Harter, 0., Herrmann, E., Nilsson, N. J.: MeBBungen von cerebralen Kreislaufzeiten am Menschen und ihre Beziehung zur Gehirndurchblutung. Acta physiol. scand. 40, 122 - 129 (1957).Google Scholar
  30. Brock, M., Ingvar, D. H., Jacobsen, C. W. S.: Regional blood flow in deep structures of the brain measured in acute cat experiments by means of a new beta-sensitive semiconductor needle detector. Exp. Brain Res. 4, 126 - 137 (1967).PubMedGoogle Scholar
  31. Carlyle, A., Grayson, J.: Factors involved in the control of cerebral blood flow., J. Physiol. (Lond.) 133, 10 - 30 (1956).Google Scholar
  32. Cobb, S., Finesinger, J. E.: Cerebral circulation. XIX. The vagal pathway of the vasodilator impulses. Arch. Neurol. Psychiat. (Chic.) 28, 1243 - 1256 (1932).Google Scholar
  33. Creech, 0., Bresler, E., Halley, M., Adam, M.: Cerebral blood flow during extracorporeal circulation. Surg. Forum 8, 510 - 514 (1957).Google Scholar
  34. Cushing, H.: Some experimental and clinical observations concerning states of increased intracranial tension. Amer. J. med. Sci. 124, 375 - 400 (1902).Google Scholar
  35. Dewar, H. A., Davidson, L.A. G.: The cerebral blood flow in mitral stenosis and its response to carbon dioxide. Brit. Heart J. 20, 516 - 522 (1958).PubMedGoogle Scholar
  36. Dewar, H. A., Owen, S. G., Jenkins, A. R.: Influence of tolazoline hydrochloride (Prisco!) on cerebral blood-flow in patients with mitral stenosis. Lancet 1953b, 867-870.Google Scholar
  37. Dieckhoff, D., Kanzow, E.: über die Lokalisation des Strömungswiderstandes im Hirnkreislauf. Pflügers Arch. 310, 75 - 85 (1969).PubMedGoogle Scholar
  38. Diemer, K.: Über die Entwicklung der Gefäßversorgung im Sauglingsalter. Mschr. Kinderheilk. 112, 240 - 242 (1964).PubMedGoogle Scholar
  39. Diemer, K.: Der Einflull chronischen Sauerstoffmangels auf die Capillarentwicklung im Gehirn des Sauglings. Mschr. Kinderheilk. 113, 281 - 283 (1965).PubMedGoogle Scholar
  40. Diemer, K.: HENN, R.: Kapillarvermehrung in der Hirnrinde der Ratte unter chronischem Sauerstoffmangel. Naturwissenschaften 52, 135 - 136 (1965).Google Scholar
  41. Dumke, P.R., Schmidt, C. F.: Quantitative measurements of cerebral blood flow in the macacque monkey. Amer. J. Physiol. 138, 421 - 431 (1943).Google Scholar
  42. Ehrenreich, D. L., Burns, R. A., Alman, R. W., Fazekas, J. F.: Influence of acetazolamide on cerebral blood flow. Arch. Neurol. Psychiat. (Chic.) 5, 227 - 232 (1961).Google Scholar
  43. Eichhorn, 0.: Die Radiocirculographie, eine klinische Methode zur Messung der Hirndurchblutung. Wien. klin. Wschr. 71, 499 - 502 (1959).Google Scholar
  44. Falck, B., Mchedlishvili, G. I., Owman, Ch.: Histochemical demonstration of adrenergic nerves in cortex-pia of rabbit. Acta pharmacol. (Kbh.) 23, 133 - 142 (1965).Google Scholar
  45. Fazekas, J. F., Alman, R. W., Bessman, A. N.: Cerebral physiology of the aged. Amer. J. med. Sci. 223, 245 - 257 (1953).Google Scholar
  46. Fazekas, J. F., Bessman, A. N., Cotsonas, N. J., Alman, R. W.: Cerebral hemodynamics in cerebral arteriosclerosis. J. Geront. 8, 137 - 144 (1953).Google Scholar
  47. Fazekas, J. F., Mchenry, L. C., Alman, R. W., Sullivan, J. F.: Cerebral hemodynamics during brief hyperventilation. Arch. Neurol. Psychiat. (Chic.) 4, 132 - 138 (1961).Google Scholar
  48. Fedoruk, S., Feindel, W.: Measurement of brain circulation time by radioactive iodinated albumin. Canad. J. Surg. 3, 312 - 318 (1960).PubMedGoogle Scholar
  49. Fieschi, C., Bozzao, L., Agnoli, A.: Regional clearance of hydrogen as a measure of cerebral blood flow. Acta neurol. scand., Suppl., 14, 46 - 52 (1965).Google Scholar
  50. Fieschi, C., Nardini, M., Bartolini, A.: The hydrogen method of measuring local blood flow in subcortical structures of the brain: Including a comperative study with the 14C antipyrine method. Exp. Brain Res. 7, lll-ll9 (1969).Google Scholar
  51. Finnerty, F. A., Guillaudeu, R. L., Fazekas, J. F.: Cardiac and cerebral hemodynamics in drug induced postural collapse. Circulat. Res. 5, 34 - 39 (1957).Google Scholar
  52. Finnerty, F. A., Witkin, L., Fazekas, J. F.: Cerebral hemodynamics during cerebral ischemia induced by acute hypotension. J. clin. Invest. 33, 1227 - 1232 (1954).PubMedGoogle Scholar
  53. Florey, H.: Microscopical observation on the circulation of blood in the cerebral cortex. Brain 48, 43 - 64 (1925).Google Scholar
  54. Fog, M.: Om piaarteriernes vasomotoriske reaktioner. Munksgaard: Kiipenhamm 1934.Google Scholar
  55. Fog, M.: Cerebral circulation. The reactions of the pial arteries to a fall in blood pressure. Arch. Neurol. Psychiat. 37, 351 - 364 (1937).Google Scholar
  56. Fog, M.: The relationship between the blood pressure and the tonic regulation of the pial arteries. J. Neurol. Psychiat. 1, 187 - 197 (1938).Google Scholar
  57. Fog, M.: Cerebral circulation. I. Reaction of pial arteries to Epinephrine by direct application and by intravenous injection. Arch. Neurol. Psychiat. (Chic.) 41, 109-ll8 (1939a).Google Scholar
  58. Fog, M.: Cerebral circulation. II. Reaction of pial arteries to increase in blood pressure. Arch. Neurol. Psychiat. (Chic.) 41, 260 - 268 (1939b).Google Scholar
  59. Folkow, B.: Description of the myogenic hypothesis. Circulat. Res. 15, Suppl. I, 279 - 287 (1964).Google Scholar
  60. Forbes, H. S.: The cerebral circulation. I. Observation and measurement of pial vessels. Arch. Neurol. Psychiat. (Chic.) 19, 751 - 761 (1928).Google Scholar
  61. Forbes, H. S.: Regulation of the cerebral vessels - new aspects. Arch. Neurol. Psychiat. (Chic.) 80, 689 - 695 (1958).Google Scholar
  62. Forbes, H. S.: CoBB, ST. S.: Vasomotor control of cerebral vessels. Brain 61, 221 - 233 (1938).Google Scholar
  63. Forbes, H. S., Nason, G. I., Wortman, R. C.: Cerebral circulation. XLIV. Vasodilation in the pia following stimulation of the vagus, aortic and carotid sinus nerves. Arch. Neurol. Psychiat. (Chic.) 37, 334 - 350 (1937).Google Scholar
  64. Forbes, H. S., Schmidt, C. F., Nason, G. I.: Evidence of vasodilator innervation in the parietal cortex of the cat. Amer. J. Physiol. 129, 216 - 219 (1939).Google Scholar
  65. Forbes, H. S., Wolff, H. G.: Cerebral circulation. III. The vasomotor control of cerebral vessels. Arch. Neural. Psychiat. (Chic.) 19, 1057 - 1086 (1928).Google Scholar
  66. Ganshirt, H., Tonnis, W.: Durchblutung und Sauerstoffverbrauch des Hirns bei intracraniellen Tumoren. Dtsch. Z. Nervenheilk. 174, 305 - 330 (1956).Google Scholar
  67. Geiger, A., Sigg, E. B.: The significance of the hypothalamus in the regulation of the metabolism of the brain. Trans. Amer. neurol. Ass. 80, 117 - 120 (1955).Google Scholar
  68. GÉRaud, J., BÈS, A., Rascol, A., Delpla, M., Marc-Vergnes, J.P.: Mesure du debit sanguin cerebral au krypton 85. Quelques applications physio-pathologiques et cliniques. Rev. neurol. 108, 542 - 557 (1963).Google Scholar
  69. Gercken, G., Roth, E.: Metabolitkonzentration im Gehirn und Stromstarke-Druckabhangigkeit bei künstlicher Perfusion des Kaninchenkopfes. Pflügers Arch. ges. Physiol. 273, 589 - 603 (1961).Google Scholar
  70. Gibbs, F. A.: A thermoelectric blood flow recorder in the form of a needle. Proc. Soc. exp. Bioi. (N.Y.) 31, 141 - 147 (1933).Google Scholar
  71. Gibbs, F. A.: MAXWELL, H., GIBBS, E. L.: Volume flow of blood through the human brain. Arch. Neurol. Psychiat. (Chic.) 97, 137 - 144 (1947).Google Scholar
  72. Gleichmann, U., Ingvar, D. H., Lassen, N. A., LÜBbers, D. W., Siesjo, B. K., Thews, G.: Regional cerebral cortical metabolic rate of oxygen and carbon dioxide, related to the EEG in the anesthetized dog. Acta physiol. scand. M, 82 - 94 (1962).Google Scholar
  73. Gotoh, F., Meyer, J. S., Takagi, Y.: Cerebral effects of hyperventilation in man. Arch. Neural. Psychiat. 12, 410 - 423 (1965).Google Scholar
  74. Gotoh, F.,Tomita, M.: Carbonic anhydrase inhibition and cerebral venous blood gases and ions in man. Arch. intern. Med. 117, 39 - 46 (1966a).Google Scholar
  75. GOTOH, F., Hydrogen method for determining cerebral blood flow in man. Arch. Neural. Psychiat. 19, 549 - 559 (1966b).Google Scholar
  76. Gottstein, U.: Der Hirnkreislauf unter dem Einfluß vasoaktiver Substanzen. Heidelberg: Rüthig 1962.Google Scholar
  77. Grant, F. C., Spitz, E. B., Shenkin, H. A., Schmidt, C. F., Kety, S. S.: The cerebral blood flow and metabolism in idiopathic epilepsy. Trans. Amer. neural. Ass. 72, 82 - 86 (1947).Google Scholar
  78. Green, H. D., Rapela, C. E., Conrad, M. C.: Resistance (conductance) and capacitance phenomena in vascular beds. In: Handbook of physiology, sect. II, Circulation, p. 935. Washington, D.C.: American Physiological Society 1963.Google Scholar
  79. Greitz, T.: A radiologic study of the brain circulation by rapid serial angiography of the carotid artery. Acta radial. (Stockh.) 140, 12 - 19 (1956).Google Scholar
  80. Grote, J., Kreuscher, M.: Die Sauerstoffversorgung des Hundegehirns. I. Mitteilung: Die cerebrale Durchblutung und Sauerstoffaufnahme. Zool. Anz. 179, 320 - 329 (1967).Google Scholar
  81. Gurdjian, E. S., Webster, J. E., Martin, F. A., Thomas, L. M.: Cinephotomicrography of the pial circulation. Arch. Neurol. Psychiat. (Chic.) 80, 418 - 430 (1958).Google Scholar
  82. HÄGgendal, E.: Effects of some vasoactive drugs on the vessels of cerebral grey matter in the dog. Acta physiol. scand. 66, Suppl. 258, 55 - 79 (1965).Google Scholar
  83. HÄGgendal, E. Johansson, B.: Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs. Acta physiol. scand. 66, Suppl. 258, 27 - 53 (1965).Google Scholar
  84. HÄGgendal, E. LÖFgren, L., Nilsson, N. J., Zwetnow, N.: Die Gehirndurchblutung bei experimentellen Liquordruckänderungen. Acta neurochir. (Wien) 16, 163 (1967).Google Scholar
  85. HÄGgendal, E. Nilsson, N.J., N.RbÄCk, B.: On the components of Kr85 clearance curves from the brain of the dog. Acta physiol. scand. 66, Suppl. 258, 5 - 25 (1965).Google Scholar
  86. HÄGGENDAL, E. Effect of blood corpuscle concentration on cerebral blood flow. Acta chir. scand., Suppl. 364, 3 - 12 (1966).Google Scholar
  87. HÄGgendal, E., NorbÄCk, B.: Effect of blood viscosity on cerebral blood flow. Acta chir. scand., Suppl. 364, 13 - 22 (1966).Google Scholar
  88. HÄFkenschiel, J. H., Crumpton, C. W., Friedland, C. K.: Cerebral oxygen consumption in essential hypertension. Constancy with age, severity of the disease, sex and variations of blood constituents, as observed in 101 patients. J. clin. Invest. 33, 63 - 69 (1954).PubMedGoogle Scholar
  89. Hafkenschiel, J. H., Crumpton, C. W., Moyer, J. H.: The effect of intramuscular dihydro· ergocornine on the cerebral circulation in normotensive patients. J. Pharmacol. exp. Ther. 98, 144 - 146 (1950).PubMedGoogle Scholar
  90. HÄFkenschiel, J. H., Crumpton, C. W., Friedland, C. K., Jeffers, Vl. A.: The effect of dihydroergocornine on the cerebral circulation of patients wit essential hypertension. J. clin. Invest. 28, 408 - 411 (1950).Google Scholar
  91. Hafkenschiel, J. H., Crumpton, C. W., Shenkin, H. A., Moyer, J. H., Zintel, H. A., Wendel, H., Jeffers, W. A.: Theeffects of twenty degree head-up tilt up:m the cerebral circulation of patients with arterial hypertension before and after sympathectomy. J. clin. Invest. 30, 793 - 798 (1951).PubMedGoogle Scholar
  92. Hafkenschiel, J. H., Friedland, C. K., Zintel, H. A., Lincoln, N. K., Brandt, H., Merill, J.: The blood flow and oxygen concumption of the brain in patients with esRential hypertension before and after adrenalectomy. J. clin. Invest. 33, 57 - 62 (1954).PubMedGoogle Scholar
  93. Halley, M. M., Reemtsma, K., Creech, 0.: Cerebral blood flow, metabolism, and brain volume in extracorporeal circulation. J. thorac. Surg. 36, 506 - 518 (1958).PubMedGoogle Scholar
  94. Handa, J., Ishikawa, S., Huber, P., Meyer, J. S.: Experimental production of the „subclavian steal“: electromagnetic flow measurements in the monkey. Surgery 68, 703 - 712 (1965).Google Scholar
  95. Harmel, M. H., Hafkenschiel, J. H., Austin, G. M., Crumpton, C. W., Kety, S. S.: The effect of bilateral stellate ganglion block on the cerebral circulation in normotensive and hypertensive patients. J. clin. Invest. 28, 415 - 418 (1949).Google Scholar
  96. Harper, A. M.: The inter-relationship between aPco, and blood pressure in the regulation of blood flow through the cerebral cortex. Acta neurol. scand. 41, Suppl. 14, 94 - 103 (1965).Google Scholar
  97. Harper, A. M., Bell, R. A.: The effect of metabolic acidosis and alkalosis on the blood flow through the cerebral cortex. J. Neurol. Neurosurg. Psychiat. 26, 341 - 344 (1963).PubMedGoogle Scholar
  98. Harper, A. M.: JACOBSEN, J., McDowALL, D. G.: The effect of hyperbaric oxygen on the blood flow through the cerebral cortex. In: LEDINGHAM, I. M. (ed.), Hyperbaric oxygenation. Edinburgh a. London: Livingstone Ltd. 1965.Google Scholar
  99. Hedlund, S., Ljundgreen, K., Berggren, B., Brundell, P. 0.: Scintillation detectors for determination of cerebral blood flow. Acta radio!. (Stockh.) 2, 51 - 64 (1964).Google Scholar
  100. Hedlund, S., Nylin, G.: Cerebral blood flow and circulation time studied with labelled erythrocytes. Arch. int. Pharmacodyn. 139, 503 - 511 (1962).Google Scholar
  101. Hellinger, F. R., Bloor, B. M., Mccutchen, J. J.: Total cerebral blood flow and oxygen consumption using the dye dilution method. J. Neurosurg. 19, 964 - 970 (1962).PubMedGoogle Scholar
  102. Henry, J. P., Gauer, 0. H., Kety, S. S., Kramer, K.: Factors maintaining cerebral circulation during gravitational stress. J. clin. Invest. 20, 292 - 300 (1951).Google Scholar
  103. Heyman, A., Patterson, Jr., J. L., Duke, T. W.: Cerebral circulation and metabolism in sickle cell and other chronic anemias, with observations on the effects of oxygen inhalation. J. clin. Invest. 31, 824 (1952).Google Scholar
  104. Himwich, W. A., Hamburger, E., Mareska, K., Himwich, H. E.: Brain metabolism in man: unanesthetized and in pentothal narcosis. Amer. J. Psychiat. 103, 669 - 696 (1947).Google Scholar
  105. Hirsch, H., Gleichmann, U., Kristen, H., MagazinoviĆ, V.: Über die Beziehung zwischen 0 2-Aufnahme des Gehirns und 0 2-Druck im Sinusblut des Gehirns bei uneingeschränkter und eingeschrankter Durchblutung. Pflügers Arch. ges. Physiol. 273, 213 - 222 (1961).Google Scholar
  106. Hirsch, H., Grote, G., Schlosser, V.: Über den Einfluß von Hexobarbitursaure auf Sauerstoffverbrauch und Vulnerabilitat des Gehirns. Pflügers Arch. ges. Physiol. 272, 247 - 253 (1961).Google Scholar
  107. Hirsch, H., Korner, K.: Über die Druck-Durchblutungs-Relation der Gehirngefäße. Pflügers Arch. ges. Physiol. 280, 316 - 325 (1964).Google Scholar
  108. HØEdt-Rasmussen, K.: Regional cerebral blood flow in man measured externally following intra-arterial administration of Kr85 of Xe133 dissolved in saline. Acta neurol. scand. 41, Suppl. 14, 65 - 68 (1965).Google Scholar
  109. HØEdt-Rasmussen, K. Sveinsdottir, E., Lassen, N. A.: Regional cerebral blood flow in man determined by intra-arteriel injection of radioactive inert gas. Circulat. Res. 18, 237 - 247 (1966).Google Scholar
  110. Holmqvist, B., Ingvar, D. H., SiesjÖ, B.: Cerebral sympathetic vasoconstriction and EEG. Acta physiol. scand. 40, 146 - 160 (1957).PubMedGoogle Scholar
  111. Homburger, E., Himwich, E. A., Etstein, E., York, G., Maresca, R., Himwich, H. E.: Effect of pentothal anesthesia on canine cerebral cortex. Amer. J. Physiol.147, 343-345(1946)Google Scholar
  112. Huber, P., Meyer, J. S., Handa, J., Ishikawa, S.: Electromagnetic flowmeter study of carotid and vertebral blood flow during intracranial hypertension. Acta neurochir. (Wien) 13, 37 - 63 (1965).Google Scholar
  113. Ingvar, D. H.: Cortical state of excitability and cortical circulation. In: Reticular formation of the brain. Boston, Mass.: Little Brown 1958.Google Scholar
  114. Ingvar, D. H. Cronquist, S., Ekberg, R., Risberg, J., H0Edt-Rasmussen, K.: Normal values of regional cerebral flow in man including flow and weight estimates of gray and white matter. Acta neurol. scand. 41, Suppl. 14, 72 - 78 (1965).Google Scholar
  115. Ingvar, D. H. Lassen, N. A.: Regional blood flow of the cerebral cortex determined by krypton85• Acta physiol. scand. 54, 325 - 338 (1962).Google Scholar
  116. Ingvar, D. H. Risberg, J.: Influence of mental activity upon regional cerebral blood flow in man. Acta neurol. scand. 41, Suppl. 14, 183 - 186 (1965).Google Scholar
  117. Ingvar, D. H. SÖDerberg, U.: A new method for measuring cerebral blood flow in relation to the electroencephalogram. Electroenceph. clin. Neurophysiol. 8, 403 - 412 (1956).Google Scholar
  118. Ishikawa, S., Handa, J., Meyer, J. S., Huber, P.: Haemodynamics of the circle of Willis and the leptomeningeal anastomoses: an electromagnetic flowmeter study of intracranial arterial occlusion in the monkey. J. Neurol. Neurosurg. Psychiat. 28, 124 - 136 (1965).Google Scholar
  119. Jenkner, F. L.: Rheoencephalography. Confin. neurol. (Basel) 19, 1 - 20 (1959).Google Scholar
  120. Jenkner, F. L.: Rheoencephalography. A method for the continuous registration of cerebrovascular changes. Springfield, III.: Thomas 1962.Google Scholar
  121. Kanzow, E.: Quantitative fortlaufende Messung von Durchblutungsi:inderungen in der Hirnrinde. Pflügers Arch. ges. Physiol. 273, 100-209 (1961 a).Google Scholar
  122. Kanzow, E.: GREGL, I. M., HELD, U. P., RICHTERING, I.: Vasomotorische Reaktionen in der Großhirnrinde bei der EEG-Arousal. Pflügers Arch. ges. Physiol. 273, 288-301 (1961 b).Google Scholar
  123. Kanzow, E., Krause, D.: Vasomotorik der Hirnrinde und EEG-Aktivität wacher, frei beweglicher Katzen. Pflügers Arch. ges. Physiol. 174, 447 - 458 (1962).Google Scholar
  124. Kanzow, E.: GREGL, I. M., KUHNEL, H.: Die Vasomotorik der Hirnrinde in den Phasen desynchronisierter EEGAktivitätim natürlichen Schlaf der Katze. PflügersArch. ges. Physiol. 274, 593 - 607 (1962).Google Scholar
  125. Kanzow, E. Reichel, K.: Apperzeptiv-affektive GefäßBreaktionen in der GroBhirnrinde. Pflügers Arch. ges. Physiol. 293, 19 - 33 (1967).Google Scholar
  126. Kennedy, C., Sokoloff, L.: An adaptation of the nitrous oxide methode to the study of the cerebral circulation in children; normal values for cerebral blood flow and cerebral metabolic rate in childhood. J. clin. Invest. 36, 1130 - 1137 (1957).PubMedGoogle Scholar
  127. Kety, S. S.: Circulation and metabolism of the human brain in health and disease. Amer. J. Med. 8, 205 - 217 (1950).PubMedGoogle Scholar
  128. Kety, S. S.: The theory and applications of the exchange ofinert gas at the lungs and tissues. Pharmacal. Rev. 3, 1 - 41 (1951).Google Scholar
  129. Kety, S. S.: Human cerebral blood flow and oxygen consumption as related to aging. J. chron. Dis. 3, 478 - 486 (1956).PubMedGoogle Scholar
  130. Kety, S. S.: The cerebral circulation. In: Handbook of physiology, sect. I: Neurophysiology, vol. III. Washington, D.C.: American Physiological Society 1960.Google Scholar
  131. Kety, S. S.: HAFKENSCHIEL, J. H., JEFFERS, W. A., LEOPOLD, J. H., SHENKIN, H. A.: The blood flow, vascular resistance, and oxygen consumption of the brain in essential hypertension. J. clin. Invest. 27, 511 - 514 (1948).Google Scholar
  132. Kety, S. S., Schmidt, C. F.: The determination of cerebral blood flow in man by the use of nitrous oxide in low concentration. Amer. J. Physiol. 143, 53 - 66 (1945).Google Scholar
  133. Kety, S. S., Schmidt, C. F.: The effect of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J. clin. Invest. 25, 107 - 119 (1946).Google Scholar
  134. Kety, S. S., Schmidt, C. F.: The nitrous oxide method for the quantitative determination of cerebral blood flow in man. Theory, procedure and normal values. J. clin. Invest. 27, 476 - 483 (1948a).Google Scholar
  135. Kety, S. S., Schmidt, C. F.: The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young man. J. clin. Invest. 27, 484 - 492 (1948b).Google Scholar
  136. Kety, S. S., Shenkin, H. A., Schmidt, C. F.: The effect of increasing intracranial pressure on cerebral circulatory functions in man. J. clin. Invest. 27, 493 - 499 (1948).Google Scholar
  137. King, B. D., Sokoloff, L., Wechsler, R. L.: The effects of l-epinephrine and l-nor-epinephrine upon cerebral circulation and metabolism in man. J. clin. Invest. 31, 273 (1952).PubMedGoogle Scholar
  138. Kogure, K., Scheinberg, P., Reinmuth, O. M., Fujishima, M., Busto, R.: Mechanism of cerebral vasodilatation in hypoxia. J. appl. Physiol. 29, 223 - 229 (1970).PubMedGoogle Scholar
  139. Kreuscher, H.: Die Gehirndurchblutung unter Neuroleptanaesthesie. Berlin-HeidelbergNew York: Springer 1967.Google Scholar
  140. Krogh, J.: A comparative study of the effect of cervical sympathetic stimulation on cerebral blood flow. Medical Research Foundation of Christian Plesner, Oslo, 1964.Google Scholar
  141. Krupp, P.: Cerebrale Durchblutung und elektrische Hirnaktivitat. Basel-Stuttgart: Schwabe and Co. 1966.Google Scholar
  142. Kunert, W.: Über die Grundlagen der Schadelrheographie. Z. klin. Med. 196, 94 - 116 (1959).Google Scholar
  143. Lambertsen, C. J., Kough, R. H., Cooper, D. Y., Emmel, G. L., Loeschke, H. H., Schmidt, C. F.: Oxygen toxicity. Effects in man of oxygen inhalation at 1 and 3, 5 atmospheres upon blood gas transport, cerebral circulation and cerebral metabolism. J. appl. Physiol. 5, 471 - 486 (1953).PubMedGoogle Scholar
  144. Landau, W. M., Freygang, W. H., Roland, L. P., Sokoloff, L., Kety, S. S.: The local circulation of the living brain; values in the unanesthetized and anesthetized cat. Trans. Amer. neural. Ass. 80, 125 - 129 (1955).Google Scholar
  145. Langfitt, T. W., Kassell, N. F., Weinstein, J. D.: Cerebral blood flow with intracranial hypertension. Neurology (Minneap.) 10, 761 - 773 (1965).Google Scholar
  146. Lassen, N. A.: Cerebral blood flow and oxygen consumption in man. Physiol. Rev. 39, 183 - 238 (1959).PubMedGoogle Scholar
  147. Lassen, N. A., Feinberg, I., Lane, M. H.: Bilateral studies of cerebral oxygen uptake in young and aged normal subjects and in patients with organic dementia. J. clin. Invest. 39, 491 - 500 (1960).PubMedGoogle Scholar
  148. Lassen, N. A. Hoedt-Rasmussen, K., Sorensen, S. C., Skinhoj, E., Cronquist, S., Badforss, B., Ingvar, D. H.: Regional cerebral blood flow in man determined by krypton85 Neurology (Mineap.) 13, 719 - 727 (1963).Google Scholar
  149. Lassen, N. A. Munck, O.: The cerebral blood flow in man determined by the use of radioactive krypton. Acta physiol. scand. 33, 30 - 49 (1955).PubMedGoogle Scholar
  150. Lewis, B. M., Sokoloff, L., Wechsler, R. L., Wentz, W. B., Kety, S. S.: A method for the continuous measurement of cerebral blood flow in man by means of radioactive krypton (KR79). J. clin. Invest. 39, 707 - 716 (1957).Google Scholar
  151. Lierse, W.: Die Kapillardichte im Wirbeltiergehirn. Acta anat. (Basel) M, 1-31 (1963).Google Scholar
  152. Linden, L.: The effect of stellate ganglion block on cerebral circulation in cerebrovascular accidents. Acta med. scand., Suppl. 301 (1955).Google Scholar
  153. Ljundgreen, K., Nylin, G., Berggreen, B., Hedlund, S., Regnstron, O.: Observation on the determination of blood passage times in the brain by means of radioactive erythrocytes and externally placed detectors. Int. J. appl. Radiat. 12, 55 - 59 (1961).Google Scholar
  154. Loman, J., Dameshek, W., Myerson, A., Goldman, D.: Effect of alterations in posture on the intra-arterial blood pressure in man. Arch. Neurol. Psychiat. (Chic.) 35, 1216 - 1224 (1936).Google Scholar
  155. Ludwigs, N.: Über eine Modifikation der Methode nach GIBBS zur lokalisierten Durchblutungsmessung des Hirngewebes und die Giiltigkeit der damit erhobenen Befunde. Pflügers Arch. ges. Physiol. 299, 35 - 42 (1954).Google Scholar
  156. Ludwigs, N.: SCHNEIDER, M.: Über den Einfluß des Halssympathicus auf die Gehirndurchblutung. Pflügers Arch. ges. Physiol. 259, 43 - 55 (1954).Google Scholar
  157. Ludwigs, N.: WIEMERS, K.: Zur Hamodynamik der Hirndurchblutung bei Liquordrucksteigerung. Verh. dtsch. Ges. Kreisl.-Forsch. 19, 96 - 99 (1953).Google Scholar
  158. LÜBbers, D. W., Kessler, M., Knaust, K., Mcdowall, D. G., Womck, R.: Die Verwendung von W asserstoff und Sauerstoff zur Messung der lokalen Gewebedurchblutung in situ mit der Platinelektrode. Pflügers Arch. ges. Physiol. 289, R 99 (1966).Google Scholar
  159. Mangold, R., Sokoloff, L., Conner, E., Kleinermann, J., Therman, P. G., Kety, S. S.: The effect of sleep and lack of sleep on the cerebral circulation an the metabolism of normal young men. J. clin. Invest. 34, 1092 - 1100 (1955).PubMedGoogle Scholar
  160. Mccall, M. L.: Cerebral circulation and metabolism in toxemia of pregnancy. Observations on the effects of Veratrum V iride and apresoline (1-hydrazinophthalazine). Amer. J. Obstet. Gynec. 66, 1015 - 1030 (1953).Google Scholar
  161. Mccall, M. L., Taylor, H. W.: The action of hydergine on the circulation and metabolism of the brain in toxemia of pregnancy. Amer. J. med. Sci. 226, 537 - 540 (1953).Google Scholar
  162. Mcdowall, D. G.: Interrelationship between blood oxygen tensions and cerebral blood flow. In: PAYNE, J.P. and D. H. HILL (eds.), A Symposium on Oxygen Measurements in Blood and Tissues and their Significance. London: J. and A. Churchill Ltd. 1966.Google Scholar
  163. Mchedlishvili, G. 1., Nikolaishvili, L. S.: Zum nervösen Mechanism us der funktionellen Dilatation der Piaarterien. Pflügers Arch. ges. Physiol. 296, 14 - 20 (1967).Google Scholar
  164. Mchenry, L.: Quantitative cerebral blood flow determination. Application of a krypton 85 desaturation technique in man. Neurology (Minneap.) 14, 785 - 793 (1964).Google Scholar
  165. Mercker, H., Opitz, E.: Die Gefäße der Pia mater hiihenangepaBter Kaninchen. Pflügers Arch. ges. Physiol. 251, 117 - 122 (1949).Google Scholar
  166. Mercker, H., Schneider, M.: Über Capillarveranderungen des Gehirns bei Hiihenanpassung. Pflügers Arch. ges. Physiol. 251, 49 - 55 (1949).Google Scholar
  167. Meyer, J. S., Gotho, F., Tazaki, Y.: Inhibitory action of carbon dioxide and acetazoleamide in seizure activity. Electroenceph. clin. Neurophysiol. 13, 762 - 775 (1961).Google Scholar
  168. Meyer, J. S., Gotho, F., Tomita, M., Akiyama, M.: Automatic recording of cerebral blood flow by the nitrous oxide method without blood loss. Ann. N.Y. Acad. Sci. 133, 305 (1966).Google Scholar
  169. Meyer, J. S., Ishikawa, S., Lee, T. K.: Electromagnetic measurement of internal jugular venous flow in the monkey. Effect of epilepsy and other procedures. J. Neurosurg. 21, 524 - 529 (1964).PubMedGoogle Scholar
  170. Meyer, J. S., Gotho, F., Thal, A.: Quantitative measurement of cerebral blood flow with electromagnetic flowmeters. Trans. Amer. neural. Ass. 88, 78 - 83 (1963).Google Scholar
  171. Meyer, J. S., Nomura, F., Sakamoto, K., Kondo, A.: Effect of stimulation of the brain-stem reticular formation on cerebral blood flow and oxygen consumption. Electroenceph. clin. Neurophysiol. 26, 125 - 133 (1969).Google Scholar
  172. Mithoefer, J. C., Davis, J. S.: Inhibition of carbonic anhydrase: Effect in tissue gas tensions in the rat. Proc. Soc. exp. Bioi. (N.Y.) 98, 797 - 801 (1958).Google Scholar
  173. Mithoefer, J. C., Mayer, P. W., Stocks, J. F.: Effect of carbonic anhydrase on the cerebral circulation of the unanesthetized dog. Fed. Proc. 16, 382 - 383 (1957).Google Scholar
  174. Molnar, L.: Donnees recentes sur Ia regulation du debit sanguin cerebral. Actualites Neurophysiol. 7, 217 - 238 (1967).PubMedGoogle Scholar
  175. Morris, G. C., Moyer, S. H., Snyder, H. B., Haynes, B. W.: Cerebral hemodynamics in controlled hypotension. Surg. Forum 4, 140-143 (1954).Google Scholar
  176. Moyer, J. H., Miller, S. I., Snyder, H.: Effect of increased jugular pressure on cerebral hemodynamics. J. appl. Physiol. 7, 245 - 247 (1954).PubMedGoogle Scholar
  177. Moyer, J. H., Morris, G.: Cerebral hemodynamics during controlled hypotension induced by the continuous infusion of ganglionic blocking agents (Hexamethonium, Pendiomide and Arfonad). J. clin. Invest. 33, 1081 - 1088 (1954).PubMedGoogle Scholar
  178. Moyer, J. H., Miller, S. I., Snyder, H., Smith, C. P.: A comparsion of the cerebral hemodynamic response to aramine and norepinephrine in the normotensive and the hypotensive subject. Circulation 10, 265 - 270 (1954).PubMedGoogle Scholar
  179. Snyder, H., Miller, S. I., Smith, C. P.: Cerebral hemodynamic response to blood pressure reduction with phenoxybenzamine (Dibenzyline 688A). Amer. J. rued. Sci. 288, 563 (1954).Google Scholar
  180. Nelson, D., Fazekas, J. F.: Cerebral blood flow in polycythemia vera. Arch. intern. Med. 98, 328 - 330 (1956).Google Scholar
  181. Nilsson, N. J.: Eine oximetrische Methode zur Kreislaufzeitmessung am menschlichen Gehirn. Acta physiol. scand. 40, 84 - 100 (1957).Google Scholar
  182. Noell, W.: Über die Durchblutung und die Sauerstoffversorgung des Gehirns. V. Mitteilung. Einfluß der Blutdrucksenkung. Pflügers Arch. ges. Physiol. 247, 528 - 552 (1944a).Google Scholar
  183. Noell, W.: Uber die Durchblutung und Sauerstoffversorgung des Gehirns. VI. Mitteilung. Einfluß der Hypoxamie und Anamie. Pflügers Arch. ges. Physiol. 247, 553 - 575 (1944b).Google Scholar
  184. Schneider, M.: Über die Durchblutung und Sauerstoffversorgung des Gehirns im akuten Sauerstoffmangel. I. Mitteilung. Die Gehirndurchblutung. Pflügers Arch. ges. Physiol. 246, 181 - 200 (1942).Google Scholar
  185. Schneider, M.: Über die Durchblutung und die Sauerstoffversorgung des Gehirns. IV. Mitteilung. Die Rolle der Kohlensaure. Pflügers Arch. ges. Physiol. 247, 514 - 527 (1944).Google Scholar
  186. Schneider, M.: Quantitative Angaben über Durchblutung und Sauerstoffversorgung des Gehirns. Pflügers Arch. ges. Physiol. 250, 35 - 41 (1948a).Google Scholar
  187. Schneider, M.: Zur Hamodynamik der Gehirndurchblutung bei Liquordrucksteigerung. Arch. Psychiat. Nervenkr. 180, 713 - 730 (1948b).Google Scholar
  188. Novack, P., Shenkin, H. A., Bortin, L., Goluboff, B., Soffe, A.M.: The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease. J. clin. Invest. 32, 696 - 702 (1953).PubMedGoogle Scholar
  189. Nylin, G., Blomer, H., Jones, H., Hedlund, S., Rylander, C. G.: Further studies on the cerebral blood flow with thorium B- labelled erythrocytes. Brit. Heart. J. 18, 385 - 392 (1956).Google Scholar
  190. Nylin, G., Hedlund, S., Regnstrom, 0.: Studies of the cerebral circulation with labelled erythrocytes in healthy man. Circulat. Res. 9, 664 - 674 (1961).PubMedGoogle Scholar
  191. Nylin, G., SilverskiÖLd, B. P., LÖFstedt, S., RegnstrÖM, 0., Hedlund, S.: Studies on cerebral blood flow in man, using radioactive-labelled erythrocytes. Brain 83, 293 - 335 (1960).PubMedGoogle Scholar
  192. Opitz, E., Schneider, M.: tlber die Sauerstoffversorgung des Gehirns und den Mechanism us von Mangelwirkungen. Ergebn. Physiol. 46, 126 - 260 (1950).Google Scholar
  193. Patterson, J. L., Cannon, J. L.: Postural changes in the cerebral circulation, studied by continuous oxymetric and pressure-recording technique. J. clin. Invest. 30, 664 (1951).Google Scholar
  194. Patterson, J. L., Heyman, A., Battey, L. L., Ferguson, R. W.: Treshold of response of the cerebral vessels of man to increase in blood carbon dioxide. J. clin. Invest. 34, 1857 - 1864 (1955).PubMedGoogle Scholar
  195. Patterson, J. L., Cannon, J. L. Duke, T.: Cerebral circulation and metabolism in chronic pulmonary emphysema. With observations on the effect of inhalation of oxygen. Amer. J. Med. 12, 363 387 (1952).Google Scholar
  196. Patterson, J. L., Warren, J. V.: Mechanisms of adjustment in the cerebral circulation upon assumption of the upright position. J. clin. Invest. 31, 653 (1952).Google Scholar
  197. Perez-Borja, C., Meyer, J. S.: A cortical evaluation of rheoencephatlography in control subjects and in proven cases of cerebrovascular disease. J. Neural. Neurosurg. Psychiat. 27, 66 - 72 (1964).Google Scholar
  198. Polzer, K., Schuhfried, F.: Rheographische Untersuchungen am Schadel. Wien. Z. Nervenheilk. 2, 295 - 297 (1951).Google Scholar
  199. PontÉN, N., SiesjÖ, B. K.: Brain tissue carbon dioxide changes and cerebral blood flow measurements. Acta neural. scand. 41, Suppl. 14, 129 - 134 (1965).Google Scholar
  200. Pool, J. L., Forbes, H. S., Nason, G. I.: Cerebral circulation. XXXII. Effect of stimulation of the sympathetic nerve on the pial vessels in the isolated head. Arch. Neural. Psychiat. (Chic.) 32, 915 - 923 (1934).Google Scholar
  201. Rapela, C. E., Green, H. D.: Autoregulation of canine cerebral blood flow. Circulat. Res. 15, Suppl. 1, 205 - 212 (1964).Google Scholar
  202. Reivich, M.: Arterial pC02 and cerebral hemodynamics. Amer. J. Physiol. 206, 25 - 35 (1964).PubMedGoogle Scholar
  203. Rosomoff, N. L., Holaday, D. A.: Cerebral blood flow and cerebral oxygen consumption during hypothermia. Amer. J. Physiol. 179, 85 - 88 (1954).PubMedGoogle Scholar
  204. Sagawa, K., Guyton, A. C.: Pressure flow relationships in isolated canine cerebral circulation. Amer. J. Physiol. 200, 711 - 714 (1961).PubMedGoogle Scholar
  205. Scheinberg, P.: Cerebral blood flow in vascular disease of the brain. With observations on the effects of stellate ganglion block. Amer. J. Med. 8, 139 - 147 (1950).PubMedGoogle Scholar
  206. Scheinberg, P., Stead, E. A.: The cerebral blood flow in male subjects as measured by the nitrous oxide technique. Normal values for blood flow, oxygen utilization, glucose utilization, and peripheral resistance, with observations on the effect of tilting and anxiety. J. clin. Invest. 28, 1163 - 1171 (1949).PubMedGoogle Scholar
  207. Schieve, J. F., Wilson, W. P.: The influence of age, anesthesia and cerebral arteriosclerosis on cerebral vascular activity to C02 • Amer. J. Med. 15, 171 - 174 (1953).Google Scholar
  208. Schmidt, C. F.: The intrinsic regulation o£ the circulation in the hypothalamus of the cat. Amer. J. Physiol. 110, 137 - 152 (1934).Google Scholar
  209. SCHMIDT, C. F. The intrinsic regulation of the circulation in the parietal cortex of the cat. Amer. J. Physiol. 114, 572-585 (1935/36).Google Scholar
  210. Schmidt, C. F. Kety, S. S., Pennes, H. H.: The gaseous metabolism of the brain of the monkey. Amer. J. Physiol. 143, 33 - 52 (1945).Google Scholar
  211. Sensenbach, W., Madison, L., Ochs, L.: A comparision o£ effects of l-nor-epinephrine, synthetic l-epinephrine, and USP-epinephrine upon cerebral blood flow and metabolism in man. J. clin. Invest. 32, 226 - 232 (1953).PubMedGoogle Scholar
  212. Serota, H., Gerard, R. W.: Localized thermal changes in the eat's brain. J. Neurophysiol. 1, 115 - 124 (1938).Google Scholar
  213. Severinghaus, J. W.: Outline of H+-b!ood £low relationship in brain. Scand. J. clin. Lab. Invest., Suppl. 102, VIII: K (1968).Google Scholar
  214. Severinghaus, J. W., Chiodi, H., Eger, E. I., Brandstater, B., Hornbein, T. F.: Cerebral blood flow in man at high altitude. Circulat. Res. 19, 274 - 282 (1966).PubMedGoogle Scholar
  215. Severinghaus, J. W., Lassen, N.: Step hypocapnia to separate arterial from tissue pC02 in the regulation of cerebral blood flow. Circulat. Res. 20, 272 - 278 (1967).PubMedGoogle Scholar
  216. SHENKIN, H. A., CABIESES, F., NOORDT, C. VAN DEN: The effect of bilateral stellectomy upon the cerebral circulation of man. J. clin. Invest. 30, 90 - 93 (1951).PubMedGoogle Scholar
  217. Shenkin, H. A., Hafkenschiel, J. H., Kety, S. S.: Effects of sympathectomy on the cerebral circulation of hypertensive patients. Arch. Surg. 61, 319 - 324 (1950).PubMedGoogle Scholar
  218. Shenkin, H. A., Harmel, M. H., Kety, S. S.: Dynamic anatomy of the cerebral circulation. Arch. Neurol. Psychiat. (Chic.) 60, 240 - 252 (1948).Google Scholar
  219. Shenkin, H. A., Novak, P., Goluboff, B., Soffe, A., Bortin, L.: The effects of aging, arteriosclerosis, and hypertension upon the cerebral circulation. J. clin. Invest. 32, 459 - 465 (1953).PubMedGoogle Scholar
  220. Shenkin, H. A., Scheurman, M. G., Spitz, E. B., Groff, R. A.: Effect of change of position upon cerebral circulation of man. J. appl. Physiol. 2, 317 - 326 (1949).PubMedGoogle Scholar
  221. Shenkin, H. A., Woodford, R. B., Freyhan, F. A., Kety, S. S.: The effects of frontal lobotomy on the cerebral blood flow and metabolism. Res. Publ. Ass. nerv. ment. Dis. 27, 823 - 831 (1948).Google Scholar
  222. Sokoloff, L.: Relation of cerebral circulation and metabolism to mental activity. In: KOREY, S. R., and J.l. NURNBERGER (eds.), Neurochemistry. New York: Hoeber-Harper 1956.Google Scholar
  223. Sokoloff, L.: Local cerebral circulation at rest and during altered cerebral activity induced by anesthesia or visual stimulation. In: KETY, S. S. and J. ELKES (eds.), Regional neurochemistry. Oxford: Pergamon Press 1961.Google Scholar
  224. Sokoloff, L.: MANGOLD, R., WECHSLER, R. L., KENNEDY, C., KETY, S. S.: The effects of mental arithmetric on cerebral circulation and metabolism. J. clin. Invest. 34, 1001-1008 (1955). SPUNDA, CH.: "Über den Wert und Anwendung der Schadelrheographie. Wien. klin. Wschr. 67, 788 - 792 (1955).Google Scholar
  225. Symon, L., Ishikawa, S., Lavy, S., Meyer, J. S.: Quantitative measurement of cephalic blood flow in the monkey. A study of vascular occlusion in the neck using electromagnetic flowmeters. J. Neurosurg. 20, 199 - 218 (1963).PubMedGoogle Scholar
  226. Thompson, R. K., Malina, St.: Dynamic axial brain-stem distortion as a mechanism explaning the cardiorespiratory changes in increased intracranial pressure. J. Neurosurg. 16, 664 - 675 (1959).PubMedGoogle Scholar
  227. Tonnis, W., Scmefer, W.: Zirkulationsstorungen des Gehirns im Serienangiogramm. BerlinGottingen- Heidelberg: Springer 1959.Google Scholar
  228. Turner, J., Lambertsen, C. J., Owen, S. G., Wendel, H., Chiodi, H.: Effects of.08 and.8 atmospheres of inspired p02 upon cerebral hemodynamics at a "constant" alveolar pC02 of 43 mm Hg. Fed. Proc. 16, 130 (1957).Google Scholar
  229. Veall, N., Mallett, B. L.: Regional cerebral blood flow determination by 133Xe inhalation and external recording: The effect of arterial recirculation. Clin. Sci. 30, 353 - 369 (1966).PubMedGoogle Scholar
  230. Wilcke, G., Zeh, H.: Klinische und experimentelle Untersuchungen zur Bestimmung der Zirkulationszeit mit radioaktiven Isotopen. Zbl. Neurochir. 23, 145 - 152 (1963).Google Scholar
  231. Wilson, W. P., Odom, G. L., Durham, N. C., Scmeve, J. F.: The effect of carbon dioxide on cerebral blood flow, spinal fluid pressure and brain volume during pentothal sodium anesthesia. Curr. Res. Anesth. 32, 268 - 273 (1953).Google Scholar
  232. Wollman, H., Alexander, S.C., Cohen, P. J., Stephen, G. W., Zeiger, L. S.: TwoCompartment of the Blood Flow in the Human Brain. Acta neurol. scand. 41, Suppl. 14, 79 - 82 (1965).Google Scholar
  233. Wright, D.: Experimental observations on increased intracranial pressure. Aust. N.Z. J. Surg. 7, 215 - 235 (1938).Google Scholar
  234. Wullenweber, R.: Schwankungen der Hirndurchblutung unter physiologischen und pathophysiologischen Bedingungen. Acta neurochir. (Wien) 13, 64 - 76 (1965).Google Scholar
  235. Wullenweber, R., Schmitz-Valckenberg, P.: Zur Frage der nervosen Regulation der Hirndurchblutung. Acta neurochir. (Wien) 18, 95 - 111 (1968).Google Scholar
  236. Zierler, K. L.: Equations for measuring blood flow by external monitoring of radioisotopes. Circulat. Res. 16, 309 - 321 (1965).PubMedGoogle Scholar
  237. ZIERLER, K. L., Circulation times and the theory of indicatordilution methods for determining blood flow and volume. In: Handbook od physiology, sect. II, vol. 1, p. 585 - 615. Washington: American Physiological Society 1962.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1971

Authors and Affiliations

  • H. Hirsch

There are no affiliations available

Personalised recommendations