Skip to main content

The Metabolism of Analogs of Endogenous Substrates: Wider Application of a Limited Concept

  • Chapter
Concepts in Biochemical Pharmacology

Abstract

Substrate analogs may be defined as compounds which bear a close chemical and/or physical resemblance to a constituent of normal tissue and which may replace the latter in one or more of its normal reactions, usually leading to a metabolic block. The substrate analogs, or antimetabolites, usually compete with the natural substrate at the same site on an enzyme. Actually, only a portion of the antimetabolite molecule must be analogous for competition.

The preparation of this review was supported by USPHS research grants CA 02978 from the National Cancer Institute, and GM-13749 from the National Institute of General Medical Sciences, NIH, Bethesda, Md.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andoh, T., Chargaff, E.: Formation and fate of abnormal ribosomes of E. coli cells treated with 5-fluorouracil. Proc. nat. Acad. Sci. (Wash.) 54, 1181–1189 (1965).

    CAS  Google Scholar 

  • Ansfield, F.J., Curreri, A.R.: Further clinical comparison between 5-fluorouracil (5-FU) and 5-fluoro-2′-deoxyuridine (5-FUDR). Cancer Chemother. Reports 32, 101–105 (1963).

    CAS  Google Scholar 

  • Baker, B.R.: Design of active-site-directed irreversible enzyme inhibitors. New York: John Wiley & Sons 1967.

    Google Scholar 

  • Baker, B.R., Wood, W.: Irreversible enzyme inhibitors, CXLVIII. Active-site-directed irreversible inhibitors of guanine deaminase derived from 9-phenyl-guanine bearing a terminal sulfonyl fluoride. J. Med. Chem. 12, 216–220 (1969).

    PubMed  CAS  Google Scholar 

  • Balis, M.E.: Antagonists and nucleic acids. New York: John Wiley & Sons 1968.

    Google Scholar 

  • Bennett, L.L., Brockman, R.W., Schnebli, H.P., Chumley, S., Dixon, G.J., Schabel, F.M., Dulmadge, E.A., Skipper, H.E., Montgomery, J.A., Thomas, H.J.: Activity and mechanism of action of 6-methylthiopurine ribonucleoside in cancer cells resistant to 6-mercaptopurine. Nature (Lond.) 205, 1276–1279 (1965).

    CAS  Google Scholar 

  • Bieber, S., Dietrich, L.S., Elion, G.B., Hitchings, G.H., Martin, D.S.: The incorporation of 6-mercaptopurine-S35 into the nucleic acids of sensitive and non-sensitive transplantable mouse tumors. Cancer Res. 21, 228–231 (1961).

    CAS  Google Scholar 

  • Borstrum, H.: Sulfate conjugation and conjugated sulfates. (Review). Scand. J. clin. Lab. Invest. 86, Suppl. 17, 33–52 (1965).

    Google Scholar 

  • Bosch, L., Harbers, E., Heidelberger, C.: Studies on fluorinated pyrimidines. V. Effects on nucleic acid metabolism in vitro. Cancer Res. 18, 335–343 (1958).

    PubMed  CAS  Google Scholar 

  • Bresnick, E.: Feedback inhibition of aspartate transcarbamylase in liver and in hepatoma. Cancer Res. 22, 1246–1251 (1962).

    PubMed  CAS  Google Scholar 

  • Bridges, J.W., Kibby, M.R., Williams, R.T.: The nature of the glucuronide of Madribon formed in man. Biochem. J. 91, 12P (1964).

    Google Scholar 

  • Bridges, J.W., Kibby, M.R., Williams, R.T.: The structure of the glucuronide of sulfadimethoxine formed in man. Biochem. J. 96, 829–836 (1965).

    PubMed  CAS  Google Scholar 

  • Bridges, J.W., Williams, R.T.: The metabolism of 5-p-aminobenzenesulphonamido-3-methylisothiazole (sulphasomizole). J. Pharm. Pharmacol. 15, 565–573 (1963).

    PubMed  CAS  Google Scholar 

  • Brock, N., Hohorst, H.-J.: Metabolism of cyclophosphamide. Cancer 20, 900–904 (1967).

    PubMed  CAS  Google Scholar 

  • Brockman, R.W., Anderson, E.P.: Biochemistry of cancer (metabolic aspects). Ann. Rev. Biochem. 32, 463–512 (1963).

    PubMed  CAS  Google Scholar 

  • Brockman, R.W., Davis, J.M., Stutts, P.: Metabolism of uracil and 5-fluorouracil by drug-sensitive and by drug-resistant bacteria. Biochim. biophys. Acta (Amst.) 40, 22–32 (1960).

    CAS  Google Scholar 

  • Calabresi, P.: Regional protection in cancer chemotherapy. I. Infusions of thymidine into external carotid artery of patients receiving systemic 5-iodo-2′-deoxyuridine. J. clin. Invest. 41, 1484–1491 (1962).

    PubMed  CAS  Google Scholar 

  • Caldwell, I.C., Henderson, J.F., Paterson, A.R.P.: The enzymic formation of 6-(methylmercapto) purine ribonucleoside 5′-phosphate. Canad. J. Biochem. 44, 229–245 (1966).

    CAS  Google Scholar 

  • Calendar, R., Berg, P.: The catalytic properties of tyrosyl ribonucleic acid synthetases from Escherichia coli and Bacillus subtilis. Biochemistry 5, 1690–1695 (1966).

    PubMed  CAS  Google Scholar 

  • Carló, P.-E., Mandel, H.G.: The effect of 4-amino-5-imidazolecarboxamide on the toxicity of 8-azaguanine. Cancer Res. 14, 459–462 (1954).

    PubMed  Google Scholar 

  • Carlsson, A., Lindqvist, M.: In vivo decarboxylation of α-methylDOPA and α-methyl metatyrosine. Acta physiol. scand. 54, 87–94 (1962).

    PubMed  CAS  Google Scholar 

  • Chadwick, M., Rogers, W.I.: The distribution of 5-fluoro-2′-deoxyuridine-5′-monophosphate in mice after 5-fluorouracil administration. Proc. Amer. Ass. Cancer Res. 11, 15 (1970).

    Google Scholar 

  • Chaudhuri, N.K., Montag, B.J., Heidelberger, C.: Studies on fluorinated pyrimidines. III. The metabolism of 5-fluorouracil-2-C14 and 5-fluoroorotic-2-C14 acid in vivo. Cancer Res. 18, 318–328 (1958).

    PubMed  CAS  Google Scholar 

  • Chaudhuri, N.K., Mukherjee, K.L., Heidelberger, C.: Studies on fluorinated pyrimidines. VII. The degradative pathway. Biochem. Pharmacol. 1, 328–341 (1959).

    Google Scholar 

  • Chu, M.-Y., Fischer, G.A.: The incorporation of 3H-cytosine arabinoside and its effects on murine leukemic cells (L5178Y). Biochem. Pharmacol. 17, 753–767 (1968).

    PubMed  CAS  Google Scholar 

  • Cohen, S.S., Barner, H.D.: Studies on unbalanced growth in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 40, 885–893 (1954).

    CAS  Google Scholar 

  • Cohen, S.S., Flaks, J.G., Barner, H.D., Loeb, M.R., Lichtenstein, J.: The mode of action of 5-fluorouracil and its derivatives. Proc. nat. Acad. Sci. (Wash.) 44, 1004–1112 (1958).

    CAS  Google Scholar 

  • Cooper, J.R., Kini, M.M.: Biochemical aspects of methanol poisoning-Editorial. Biochem. Pharmacol. 11, 405–416 (1962).

    PubMed  CAS  Google Scholar 

  • Cornish, H.H., Christman, A.A.: A study of the metabolism of theobromine, theophylline, and caffeine in man. J. biol. Chem. 228, 315–323 (1957).

    PubMed  CAS  Google Scholar 

  • Creasey, W.A., Fink, M.E., Handschumacher, R.E., Calabresi, P.: Clinical and pharmacological studies with 2′, 3′, 5′-triacetyl-6-azauridine. Cancer Res. 23, 444–453 (1963).

    PubMed  CAS  Google Scholar 

  • Creveling, C.R., Daly, J.W., Witkop, B., Udenfriend, S.: Substrates and inhibitors of dopamine-β-oxidase. Biochim. biophys. Acta (Amst.) 64, 125–134 (1962).

    CAS  Google Scholar 

  • Crout, J.R., Alpers, H.S., Tatum, E.L., Shore, P.A.: Release of metaraminol (Aramine) from the heart by sympathetic nerve stimulation. Science 145, 828–829 (1964).

    PubMed  CAS  Google Scholar 

  • Dunn, D.B., Smith, J.D.: Effect of 5-halogenated uracils on the growth of Escherichia coli and their incorporation into deoxyribonucleic acids. Biochem. J. 67, 494–506 (1957).

    PubMed  CAS  Google Scholar 

  • Duschinsky, R., Gabriel, T., Tautz, W., Nussbaum, A., Hoffer, M., Grunberg, E.: Nucleosides. XXXVII. 5,6-Substituted 5-fluorodihydropyrimidines and their 2′-deoxyribonucleosides. J. Med. Chem. 10, 47–58 (1967).

    PubMed  CAS  Google Scholar 

  • Elion, G.B.: Biochemistry and pharmacology of purine analogues. Fed. Proc. 26, 898–904 (1967).

    PubMed  CAS  Google Scholar 

  • Elion, G.B.: Actions of purine analogs: enzyme specificity studies as a basis for interpretation and design. Cancer Res. 29, 2448–2453 (1969).

    PubMed  CAS  Google Scholar 

  • Elion, G.B., Callahan, S., Bieber, S., Hitchings, G.H., Rundles, R.W.: A summary of investigations with [(1-methyl-4-nitro-5-imidazolyl)thio] purine (B.W. 57-322). Cancer Chemother. Reports 14, 93–98 (1961).

    CAS  Google Scholar 

  • Elion, G.B., Callahan, S.W., Hitchings, G.H., Rundles, R.W., Laszlo, J.: Experimental, clinical, and metabolic studies of thiopurines. Cancer Chemother. Reports 16, 197–202 (1962).

    CAS  Google Scholar 

  • Elion, G.B., Callahan, S., Nathan, H., Bieber, S., Rundles, R.W., Hitchings, G.H.: Potentiation by inhibition of drug degradation: 6-substituted purines and xanthine oxidase. Biochem. Pharmacol. 12, 85–93 (1963).

    CAS  Google Scholar 

  • Elion, G.B., Hitchtngs, G.H.: Metabolic basis for the actions of analogs of purines and pyrimidines. Advanc. Chemotherapy 2, 91–177 (1965).

    CAS  Google Scholar 

  • Elison, C., Rapoport, H., Laursen, R., Elliott, H.W.: Effect of deuteration of N-CH3 group on potency and enzymatic N-demethylation of morphine. Science 134, 1078–1079 (1961).

    PubMed  CAS  Google Scholar 

  • Ellis, D.B., Le Page, G.A.: Biochemical studies of resistance to 6-thioguanine. Cancer Res. 23, 436–443 (1963).

    CAS  Google Scholar 

  • Ellis, D.B., Le Page, G.A.: Metabolic fate of 9-β-D-xylofuranosyladenine in mice bearing susceptible tumor cells. Canser Res. 26, 893–897 (1966).

    CAS  Google Scholar 

  • Farkas, V., Bauer, S., Zemek, J.: Metabolism of 2-deoxy-D-glucose in Baker’s yeast. III. Formation of 2,2′-dideoxy-α,α′-trehalose. Biochim. biophys. Acta (Amst.) 84, 77–82 (1969).

    Google Scholar 

  • Gilligan, D.R.: Comparative studies of the chemical changes occurring in sulfonamide drugs during therapy in man. J. clin. Invest. 24, 301–315 (1945).

    PubMed  CAS  Google Scholar 

  • Goldin, A., Venditti, J.M., Humphreys, S.R., Mantel, N.: Modification of treatment schedules in the management of advanced mouse leukemia with amethopterin. J. nat. Cancer Inst. 17, 203–212 (1956).

    PubMed  CAS  Google Scholar 

  • Goldin, A., Venditti, J.M., Kline, I., Mantel, N.: Eradication of leukaemic cells (L1210) by methotrexate and methotrexate plus citrovorum factor. Nature (Lond.) 212, 1548–1550 (1966).

    CAS  Google Scholar 

  • Goldman, P.: The carbon-fluorine bond in compounds of biological interest. Science 164, 1123–1130 (1969).

    PubMed  CAS  Google Scholar 

  • Gross, D., Tarver, H.: Studies on ethionine. IV. The incorporation of ethionine into the proteins of tetrahymena. J. biol. Chem. 217, 169–182 (1955).

    PubMed  CAS  Google Scholar 

  • Hahn, G.A., Mandel, H.G.: The effects of fluorourecil on RNA synthesis in Bacillus cereus. Biochem. Pharmacol., in press (1971).

    Google Scholar 

  • Hall, T.C., Kessel, D., Godsill, A., Roberts, D.: Uridine phosphorylation, an overlooked pathway ? 5-Fluorouridine, a neglected drug ? Proc. Amer. Ass. Cancer Res. 9, 27 (1968).

    Google Scholar 

  • Handschumacher, R.E.: Metabolites of 6-azauracil formed by Streptococcus faecalis. Fed. Proc. 16, 191 (1957).

    Google Scholar 

  • Hansen, H.J., Giles, W.G., Nadler, S.B.: Metabolism of 9-ethyl-6-MP-S35 and 9-butyl-6-MP-S35 in humans. Proc. Soc. exp. Biol. (N.Y.) 113, 163–165 (1963).

    CAS  Google Scholar 

  • Hartmann, K.-U., Heidelberger, C.: Studies on fluorinated pyrimidines. XIII. Inhibition of thymidylate synthetase. J. biol. Chem. 236, 3006–3013 (1961).

    PubMed  CAS  Google Scholar 

  • Heidelberger, C.: Fluorinated pyrimidines. Progress in Nucleic Acid Research and Molecular Biology 4, 1–50 (1965).

    PubMed  CAS  Google Scholar 

  • Heidelberger, C., Boohar, J., Kampschroer, B.: Fluorinated pyrimidines. XXIV. In vivo metabolism of 5-trifluoromethyluracil-2-C14 and 5-trifluoromethyl-2′-deoxyuridine-2-C14. Cancer Res. 25, 377–381 (1965).

    PubMed  CAS  Google Scholar 

  • Heidelberger, C., Chaudhuri, N.K., Danneberg, P., Mooren, D., Griesbach, L., Duschinsky, R., Schnitzer, R.J., Pleven, E., Scheiner, J.: Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature (Lond.) 179, 663–666 (1957).

    CAS  Google Scholar 

  • Heidelberger, C., Griesbach, L., Cruz, O., Schnitzer, R.J., Grunberg, E.: Fluorinated pyrimidines. VI. Effects of 5-fluorouridine and 5-fluoro-2′-deoxyuridine on transplanted tumors. Proc. Soc. exp. Biol. (N.Y.) 97, 470–475 (1958).

    CAS  Google Scholar 

  • Henderson, E.S., Samaha, R.J.: Evidence that drugs in multiple combinations have materially advanced the treatment of human malignancies. Cancer Res. 29, 2272–2280 (1969).

    CAS  Google Scholar 

  • Henderson, J.F.: Variation in selective toxicity: Causes and consequences. Cancer Res. 29, 2404–2406 (1969).

    PubMed  CAS  Google Scholar 

  • Henderson, J.F., Mandel, H.G.: Purine and pyrimidine antimetabolites in cancer chemotherapy. In: Advances in Pharmacology 2, 297–343 (1963).

    CAS  Google Scholar 

  • Henderson, J.F., Mazel, P.: Demethylation of purine analogs by microsomal enzymes from mouse liver. Biochem. Pharmacol. 13, 207–210 (1964a).

    PubMed  CAS  Google Scholar 

  • Henderson, J.F., Mazel, P.: Studies on the induction of microsomal S-, N-and O-demethylases. Biochem. Pharmacol. 13, 1471–1474 (1964b).

    PubMed  CAS  Google Scholar 

  • Hirschberg, E., Kream, J., Gellhorn, A.: Enzymatic deamination of 8-azaguanine in normal and neoplastic tissues. Cancer Res. 12, 524–528 (1952).

    PubMed  CAS  Google Scholar 

  • Hitchings, G.H., Falco, E.A., Sherwood, M.B.: The effects of pyrimidines on the growth of Lactobacillus casei. Science 102, 251–252 (1945).

    PubMed  CAS  Google Scholar 

  • Horowitz, J., Kohlmeier, V.: Formation of active β-galactosidase by Escherichia coli treated with 5-fluorouracil. Biochim. biophys. Acta (Amst.) 142, 208–218 (1967).

    CAS  Google Scholar 

  • Jacquez, J.A.: Permeability of Ehrlich cells of uracil, thymine and fluorouracil. Proc. Soc. exp. Biol. (N.Y.) 109, 132–135 (1962).

    CAS  Google Scholar 

  • Johnson, R.K., Mazel, P., Donahue, J.D., Jondorf, W.R.: Factors involved in the inhibition of drug metabolism by (—)-emetine. Biochem. Pharmacol. (in press).

    Google Scholar 

  • Kahan, F.M., Hurwitz, J.: The role of deoxyribonucleic acid in ribonucleic acid synthesis. IV. The incorporation of pyrimidine and purine analogues into ribonucleic acid. J. biol. Chem. 237, 3778–3785 (1962).

    CAS  Google Scholar 

  • Kaiser, I.I.: Studies on 5-fluorouracil-containing ribonucleic acid. I. Separation and partial characterization of fluorouracil-containing transfer ribonucleic acids from Escherichia coli. Biochemistry 8, 231–238 (1969).

    PubMed  CAS  Google Scholar 

  • Kaplan, N.O., Ciotti, M.M.: Chemistry and properties of the 3-acetylpyridine analogue of diphosphopyridine nucleotide. J. biol. Chem. 221, 823–832 (1956).

    PubMed  CAS  Google Scholar 

  • Kessel, D., Hall, T.C.: Studies on drug transport by normal human leukocytes. Biochem. Pharmacol. 16, 2395–2403 (1967).

    PubMed  CAS  Google Scholar 

  • Kessel, D., Hall, T.C., Wodinsky, I.: Nucleotide formation as a determinant of 5-fluorouracil response in mouse leukemias. Science 154, 911–913 (1966).

    PubMed  CAS  Google Scholar 

  • Kopin, I.J.: False adrenergic transmitters. Ann. Rev. Pharmacol. 8, 377–394 (1968).

    PubMed  CAS  Google Scholar 

  • Krenitsky, T.A., Papaioannou, R., Elion, G.B.: Human hypoxanthine phosphoribosyltransferase. I. Purification, properties, and specificity. J. biol. Chem. 244, 1263–1270 (1969).

    PubMed  CAS  Google Scholar 

  • Langen, P.: Antimetabolite des Nucleinsäure-Stoffwechsels. Berlin: Akademie-Verlag 1968.

    Google Scholar 

  • Lasnitzki, I., Matthews, R.E.F., Smith, J.D.: Incorporation of 8-azaguanine into nucleic acids. Nature (Lond.) 173, 346–349 (1954).

    CAS  Google Scholar 

  • Le Page, G.A.: Basic biochemical effects and mechanism of action of 6-thioguanine. Cancer Res. 23, 1202–1206 (1963).

    Google Scholar 

  • Le Page, G.A., Jones, M.: Further studies on the mechanism of action of 6-thioguanine. Cancer Res. 21, 1590–1594 (1961).

    Google Scholar 

  • Le Page, G.A., Kaneko, T.: Effective means of reducing toxicity without concomitant sacrifice of efficacy of carcinostatic therapy. Cancer Res. 29, 2314–2318 (1969).

    Google Scholar 

  • Lipmann, F.: Acetylation of sulfanilamide by liver homogenates and extracts. J. biol. Chem. 160, 173–190 (1945).

    CAS  Google Scholar 

  • Loo, T.L., Adamson, R.H.: The enzymic oxidation of certain folic acid antagonists. Biochem. Pharmacol. 11, 170–171 (1962).

    PubMed  CAS  Google Scholar 

  • Lovenberg, W., Weissbach, H., Udenfriend, S.: Aromatic L-amino acid decarboxylase. J. biol. Chem. 237, 89–93 (1962).

    PubMed  CAS  Google Scholar 

  • Lowrie, R.J., Bergquist, P.L.: Transfer ribonucleic acids from Escherichia coli treated with 5-fluorouracil. Biochemistry 7, 1761–1770 (1968).

    PubMed  CAS  Google Scholar 

  • Maitre, L.: Presence of a-methyl-DOPA metabolites in heart and brain of guinea pigs treated with a-methyl-tyrosine. Life Sci. 4, 2249–2256 (1965).

    PubMed  CAS  Google Scholar 

  • Mandel, H.G.: The physiological disposition of some anticancer agents. Pharmacol. Rev. II, 743–838 (1959).

    Google Scholar 

  • Mandel, H.G.: The incorporation of 5-fluorouracil into RNA and its molecular consequences. In: Progress in Molecular and Subcellular Biology, Vol. 1, pp. 82–135 (F.E. Hahn, ed.). Berlin-Heidelberg-New York: Springer 1969.

    Google Scholar 

  • Mandel, H.G.: Pathways of drug biotransformation: biochemical conjugations. In: Fundamental of drug metabolism and disposition (B.N. La Du, H.G. Mandel and E.L. Way, eds.). Baltimore: Williams & Wilkins 1971.

    Google Scholar 

  • Mandel, H.G., Alpen, E.L., Winters, W.D., Smith, P.K.: The urinary metabolites of 8-azaguanine in the mouse and the monkey. J. biol. Chem. 193, 63–71 (1951).

    PubMed  CAS  Google Scholar 

  • Mandel, H.G., Latimer, R.G., Riis, M.: The actions of thioguanine in Bacillus cereus. Biochem. Pharmacol. 14, 661–682 (1965).

    PubMed  CAS  Google Scholar 

  • Mandel, H.G., Oliver, H.M., Riis, M.: Interference of barbiturates with pyrimidine incorporation. I. Amobarbital inhibition of orotate uptake in Bacillus cereus. Molec. Pharmacol. 3, 537–548 (1967).

    CAS  Google Scholar 

  • Mandel, H.G., Riis, M.: Interference of barbiturates with pyrimidine incorporation. II. Structural specificity of the inhibition of orotate uptake in Bacillus cereus. Biochem. Pharmacol 19, 1867–1877 (1970).

    PubMed  CAS  Google Scholar 

  • Mandel, H.G., Triester, S.R., Szapary, D.: Interference of barbiturates with pyrimidine incorporation. III. Studies on the mechanism of the amobarbital-orotate relationship. Biochem. Pharmacol. 19, 1879–1892 (1970).

    PubMed  CAS  Google Scholar 

  • Marchand, C., Fujimoto, J.M.: The enhancement of the action of 6-mercaptopurine (6MP) on leukemia L1210 by compounds which act on the liver. Fed. Proc. 21, 165 (1962).

    Google Scholar 

  • Markham, R.: Lethal synthesis. In: The strategy of chemotherapy. Eighth Symposium of the Society for Gen. Microbiology, pp. 163–177. London: Cambridge University Press 1958.

    Google Scholar 

  • Marsh, C.A.: Chemistry of D-glucuronic acid and its glycosides. In: Glucuronic acid — free and combined. Chemistry, Biochemistry, Pharmacology and Medicine, pp. 3–136. Ed. by G.J. Dutton. New York: Academic Press 1966.

    Google Scholar 

  • Matthews, R.E.F.: Biosynthetic incorporation of metabolite analogs. Pharmacol. Rev. 10, 359–406 (1958).

    PubMed  CAS  Google Scholar 

  • Mazel, P., Henderson, J.F.: On the relationship between lipid solubility and microsomal metabolism of drugs. Biochem. Pharmacol. 14, 92–94 (1965).

    PubMed  CAS  Google Scholar 

  • Mazel, P., Henderson, J.F., Axelrod, J.: S-Demethylation by microsomal enzymes. J. Pharmacol. exp. Ther. 143, 1–6 (1964).

    PubMed  CAS  Google Scholar 

  • Mazel, P., Kerza-Kwiatecki, A., Simanis, J.: Studies on the demethylation of puromycin and related compounds by liver microsomal enzymes. Biochim. biophys. Acta (Amst.) 114, 72–82 (1966).

    CAS  Google Scholar 

  • Meloni, M.L., Rogers, W.I.: Enhancement of 6-thioinosine-5′-monophosphate synthesis in solid L-1210 lymphatic leukemia cells by prior exposure to 6-mercaptopurine. Biochem. Pharmacol. 18, 413–417 (1969).

    PubMed  CAS  Google Scholar 

  • Mitchell, M.S., Wawro, N.W., De Conti, R.C., Kaplan, S.R., Papac, R., Bertino, J.R.: Effectiveness of high-dose infusions of methotrexate followed by leucovorin in carcinoma of the head and neck. Cancer Res. 28, 1088–1094 (1968).

    PubMed  CAS  Google Scholar 

  • Montgomery, J.A., Dixon, G.J., Dulmage, E.A., Thomas, H.J., Brockman, R.W., Skipper, H.E.: Inhibition of 6-mercaptopurine-resistant cancer cells in culture by bis(thioinosine)-5′,5′″-phosphate. Nature (Lond.) 199, 769–772 (1963).

    CAS  Google Scholar 

  • Moore, E.C., Le Page, G.A.: The metabolism of 6-thioguanine in normal and neoplastic tissues. Cancer Res. 18, 1075–1083 (1958).

    PubMed  CAS  Google Scholar 

  • Mudd, S.H., Cantoni, G.L.: Selenomethionine in enzymatic transmethylations. Nature (Lond.) 180, 1052 (1957).

    CAS  Google Scholar 

  • Mukherjee, K.L., Heidelberger, C.: Studies on fluorinated pyrimidines. IX. The degradation of 5-fluorouracil-6-C14. J. biol. Chem. 235, 433–437 (1960).

    PubMed  CAS  Google Scholar 

  • Mukherjee, K.L., Heidelberger, C.: Studies on fluorinated pyrimidines. XV. Inhibition of the incorporation of formate-C14 into DNA thymine of Ehrlich ascites carcinoma cells by 5-fluoro-2′-deoxyuridine-5′-monophosphate and related compounds. Cancer Res. 22, 815–822 (1962).

    PubMed  CAS  Google Scholar 

  • Muscholl, E.: Biosynthese (aus α-Methyldopa), Aufnahme und Freisetzung von α-Methyladrenalin. Arch. exp. Pathol. Pharmakol. 251, 162–163 (1965).

    Google Scholar 

  • Muscholl, E., Maitre, L.: Release by sympathetic stimulation of a-methyl-noradrenaline stored in the heart after administration of α-methyldopa. Experientia (Basel) 19, 658–660 (1963).

    CAS  Google Scholar 

  • Muscholl, E., Sprenger, E.: Vergleichende Untersuchung der Blutdruckwirkung, Aufnahme und Speicherung von Dihydroxyephedrin (α-Methyladrenalin) und Dihydroxypseudoephedrin. Arch. exp. Pathol. Pharmakol. 254, 109–124 (1966).

    CAS  Google Scholar 

  • Nathans, D.: Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains. Proc. nat. Acad. Sci. (Wash.) 51, 585–592 (1964).

    CAS  Google Scholar 

  • Novelli, G.D.: Amino acid activation for protein synthesis. Annual Review of Biochemistry 36, 449–484 (1967).

    PubMed  CAS  Google Scholar 

  • Oliverio, V.T., Davidson, J.D.: The physiological disposition of dichloromethotrexate-Cl36 in animals. J. Pharmacol. exp. Ther. 137, 76–83 (1962).

    PubMed  CAS  Google Scholar 

  • Oliverio, V.T., Zubrod, C.G.: Clinical pharmacology of the effective anti-tumor drugs. Ann. Rev. Pharmacol. 5, 335–356 (1965).

    CAS  Google Scholar 

  • Pasternak, C.A., Handschumacher, R.E.: The biochemical activity of 6-azauridine. Interference with pyrimidine metabolism in transplantable mouse tumors. J. biol. Chem. 234, 2992–2997 (1959).

    PubMed  CAS  Google Scholar 

  • Paterson, A.R.P.: The formation of 6-mercaptopurine riboside phosphate in ascites tumor cells. Canad. J. Biochem. 37, 1011–1023 (1959).

    PubMed  CAS  Google Scholar 

  • Paterson, A.R.P., Moriwaki, A.: Combination therapy: Synergistic inhibition of lymphoma L5178Y cells in culture and in vivo with 6-mercaptopurine and 6-(methyl-mercapto)purine ribonucleoside. Cancer Res. 29, 681–686 (1969).

    PubMed  CAS  Google Scholar 

  • Pattison, F.L.M., Hunt, S.B.D., Stothers, J.B.: Toxic fluorine compounds. IX. ω-Fluorocarboxylic esters and acids. J. Org. Chem. 21, 883–886 (1956).

    CAS  Google Scholar 

  • Peters, R.A.: Lethal synthesis. Proc. roy. Soc. B 139, 143–170 (1952).

    CAS  Google Scholar 

  • Reichard, P., Sköld, O.: Possible enzymic mechanism for the development of resistance against fluorouracil in ascites tumors. Nature (Lond.) 183, 939–941 (1959).

    CAS  Google Scholar 

  • Reyes, P.: Synthesis of 5-fluorouridine 5′-phosphate by pyrimidine phosphoribosyltransferase of mammalian origin. I. Some properties of the enzyme from P 1534J mouse leukemia cells. Biochemistry 8, 2057–2062 (1969).

    PubMed  CAS  Google Scholar 

  • Richmond, M.H.: The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bact. Rev. 26, 398–420 (1962).

    PubMed  CAS  Google Scholar 

  • Rogers, H.J., Perkins, H.R.: 5-Fluorouracil and mucopeptide biosynthesis by Staphylococcus aureus. Biochem. J. 77, 448–459 (1960).

    PubMed  CAS  Google Scholar 

  • Rogers, W.I., Meloni, M.L., Wodinsky, I., Kensler, C.J.: Metabolic basis for enhanced chemotherapy of solid L-1210 with 6 MP. Proc. Amer. Ass. Cancer Res. 10, 74 (1969).

    Google Scholar 

  • Roush, A., Norris, E.R.: Deamination of 8-azaguanine by guanase. Arch. Biochem. 29, 124–129 (1950).

    PubMed  CAS  Google Scholar 

  • Sartorelli, A.C., Le Page, G.A.: The development and biochemical characterization of resistance to azaserine in a TA-3 ascites carcinoma. Cancer Res. 18, 457–463 (1958).

    PubMed  CAS  Google Scholar 

  • Sartorelli, A.C., Le Page, G.A., Moore, E.C.: Metabolic effects of 6-thioguanine. I. Studies on thioguanine-resistant and-sensitive Ehrlich ascites cells. Cancer Res. 18, 1232–1239 (1958).

    PubMed  CAS  Google Scholar 

  • Scannell, J.P., Hitchings, G.H.: Thioguanine in deoxyribonucleic acid from tumors of 6-mercaptopurine-treated mice. Proc. Soc. exp. Biol. (N.Y.) 122, 627–629 (1966).

    CAS  Google Scholar 

  • Schabel, F.M., Jr., Laster, W.R., Jr., Skipper, H.E.: Chemotherapy of leukemia L-1210 by 6-mercaptopurine (NSC-755) in combination with 6-methylthiopurine ribonucleoside (NSC 40774). Cancer Chemother. Reports 51, 111–124 (1967).

    CAS  Google Scholar 

  • Schanker, L.S., Jeffrey, J.J.: Active transport of foreign pyrimidines across the intestinal epithelium. Nature (Lond.) 190, 727–728 (1961).

    CAS  Google Scholar 

  • Selawry, O.S., and Members of Acute Leukemia Group B.: New treatment schedule with improved survival in childhood leukemia. J. Amer. med. Ass. 194, 75–80 (1965).

    Google Scholar 

  • Skibba, J.L., Beal, D.D., Ramirez, G., Bryan, G.T.: N-Demethylation of the antineoplastic agent 4(5)-(3,3-dimethyl-1-triazeno) imidazole-5(4)-carboxamide by rats and man. Cancer Res. 30, 147–150 (1970).

    PubMed  CAS  Google Scholar 

  • Skipper, H.E., Schabel, F.M., Jr., Wilcox, W.S.: Experimental evaluation of potential anticancer agents. XXI. Scheduling of arabinosylcytosine to take advantage of its S-phase specificity against leukemia cells. Cancer Chemother. Reports 51, 125–165 (1967).

    CAS  Google Scholar 

  • Sköld, O.: Enzymic ribosidation and ribotidation of 5-fluorouracil by extracts of the Ehrlichascites tumor. Biochim. biophys. Acta (Amst.) 29, 651 (1958).

    Google Scholar 

  • Stenram, U., Willén, R.: Radioautographic, ultrastructural and biochemical studies on the effect of fluorouracil on the RNA synthesis in the liver of rats. Z. Zellforsch. 82, 270–281 (1967).

    PubMed  CAS  Google Scholar 

  • Stock, J.A.: Antimetabolites. In: Experimental Chemotherapy, Vol. IV, pp. 79–237, Part 1 (R.J. Schnitzer and F. Hawkins, eds.). New York: Academic Press 1966.

    Google Scholar 

  • Tomasz, A., Borek, E.: The mechanism of an osmotic instability induced in E. coli K-12 by 5-fluorouracil. Biochemistry 1, 543–552 (1962).

    PubMed  CAS  Google Scholar 

  • Tomkins, G.M.: A mammalian 3 α-hydroxysteroid dehydrogenase. J. biol. Chem. 218, 437–447 (1956).

    PubMed  CAS  Google Scholar 

  • Tooze, J., Weber, K.: Isolation and characterization of amber mutants of bacteriophage R 17. J. molec. Biol. 28, 311–330 (1967).

    PubMed  CAS  Google Scholar 

  • Umbreit, W.W., Waddell, J.G.: Mode of action of desoxypyridoxine. Proc. Soc. exp. Biol. (N.Y.) 70, 293 (1949).

    CAS  Google Scholar 

  • Vadlamudi, S., Fields, L., Waravdekar, V.S., Kline, I., Goldin, A.: Influence of colcemid on therapeutic effectiveness of cytosine arabinoside. Proc. Amer. Ass. Cancer Res. 9, 73 (1968).

    Google Scholar 

  • Wacker, A., Ebert, M., Kolm, H.: Metabolism of p-aminosalicylic and salicylic acids by Enterococcus. Z. Naturforsch. 13b, 147–150 (1958).

    CAS  Google Scholar 

  • Wang, M.C., Simpson, A.I., Paterson, A.R.P.: Combinations of 6-mercaptopurine (NSC-755) and 6-(methylmercapto)purine ribonucleoside (NSC 40774) in the therapy of Ehrlich ascites carcinoma. Cancer Chemother. Reports 51, 101–109 (1967).

    CAS  Google Scholar 

  • Way, J.L., Parks, R.E., Jr.: Enzymatic synthesis of 5′-phosphate nucleotides of purine analogues. J. biol. Chem. 231, 467–480 (1958).

    PubMed  CAS  Google Scholar 

  • Wells, W., Gaines, D., Koenig, H.: Studies of pyrimidine nucleotide metabolism in the central nervous system. I. Metabolic effects and metabolism of 6-azauridine. J. Neurochem. 10, 709–723 (1963).

    PubMed  CAS  Google Scholar 

  • Weygand, F., Wacker, A., Dellweg, H.: Stoffwechseluntersuchungen bei Mikroorganismen mit Hilfe radioaktiver Isotope. II. Kompetitive und nicht-kompetitive Enthemmung von 5-82Br-Uracil. Z. Naturforsch. 7b, 19 (1952).

    CAS  Google Scholar 

  • Williams, R.T.: Detoxication mechanisms. The metabolism and detoxication of drugs, toxic substances and other organic compounds. New York: John Wiley & Sons 1959.

    Google Scholar 

  • Williams, R.T.: The biogenesis of conjugation and detoxication products. In: Biogenesis of natural compounds, 2nd ed., pp. 589–639 (P. Bernfeld, ed.). New York: Pergamon Press 1967.

    Google Scholar 

  • Wittmann-Liebold, B., Wittmann, H.G.: Lokalisierung von Aminosaureaustauschen bei Nitritmutanten des Tabakmosaikvirus. Z. Vererbungsl. 97, 305–326 (1965).

    PubMed  CAS  Google Scholar 

  • Wolberg, W.H.: Determinants of human tumor sensitivity to fluorinated pyrimidine chemotherapy. Ann. Surg. 166, 609–623 (1967).

    PubMed  CAS  Google Scholar 

  • Woodman, R.J.: Localized incorporation of iododeoxyuridine from poly cation-complexed iododeoxycytidylic acid into DNA of several murine and hamster tumors. Cancer Res. 28, 2007–2016 (1968).

    PubMed  CAS  Google Scholar 

  • Woolley, D.W.: A study of antimetabolites. New York: John Wiley & Sons, Inc. 1952.

    Google Scholar 

  • Zatman, L.J., Kaplan, N.O., Colowick, S.P., Ciotti, M.M.: The isolation and properties of the isonicotinic acid hydrazide analogue of diphosphopyridine nucleotide. J. biol. Chem. 209, 467–484 (1954).

    PubMed  CAS  Google Scholar 

  • Zubrod, C.G.: The limited usefulness of 5-fluorouracil (5-FU) and 5-fluorodeoxyuridine (5-FUDR) in the management of patients with adenocarcinoma. In: Controversy in internal medicine, pp. 591–600 (F.J. Ingelfinger, A.S. Relman and M. Finland, eds.). Philadelphia: W.B. Saunders Co. 1966.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Mandel, H.G. (1971). The Metabolism of Analogs of Endogenous Substrates: Wider Application of a Limited Concept. In: Brodie, B.B., Gillette, J.R., Ackerman, H.S. (eds) Concepts in Biochemical Pharmacology. Handbook of Experimental Pharmacology / Handbuch der experimentellen Pharmakologie, vol 28 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65177-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65177-9_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65179-3

  • Online ISBN: 978-3-642-65177-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics