Advertisement

Interaction of Antimalarial Aminoquinolines (Primaquine, Pentaquine, and Chloroquine) with Nucleic Acids, and Effects on Various Enzymatic Reactions in Vitro

  • David J. HolbrookJr.
  • Leona P. Whichard
  • Carl R. Morris
  • Lidia A. White
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 2)

Abstract

Two classes of aminoquinolines are effective as antimalarial drugs. The 4-aminoquinolines, including the prototype chloroquine, are active against the erythrocytic stage of Plasmodia. In contrast, the 8-aminoquinolines, including as representatives primaquine and pentaquine, are active against the tissue stages of the malaria parasite (Powell, 1966). In addition, chloroquine is also used for several other parasitic diseases and for rheumatoid arthritis.

Keywords

Equilibrium Dialysis Plasmodium Berghei Micrococcal Nuclease Plasmodium Knowlesi Pancreatic RNase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, J. L., O’Brien, R. L., Hahn, F. E.: DNA: Reaction with chloroquine. Science 149, 1111 (1965).PubMedCrossRefGoogle Scholar
  2. Bates, H. M., Kuenzig, W., Watson, W. B.: Studies on the mechanism of action of anthramycin methyl ether, a new antitumor antibiotic. Cancer Res. 29, 2195 (1969).PubMedGoogle Scholar
  3. Behr, W., Honikel, K., Hartmann, G.: Interaction of the RNA polymerase inhibitor chromomycin with DNA. Europ. J. Biochem. 9, 82 (1969).PubMedCrossRefGoogle Scholar
  4. Blodgett, L. W., Yielding, K. L.: Comparison of chloroquine binding to DNA, and polyadenylic and polyguanylic acids. Biochim. biophys. Acta (Amst.) 169, 451 (1968).Google Scholar
  5. Cohen, S. N., Yielding, K. L.: Spectrophotometric studies of the interaction of chloroquine with deoxyribonucleic acid. J. biol. Chem. 240, 3123 (1965).PubMedGoogle Scholar
  6. Cohen, S. N., Yielding, K. L.: (1) Inhibition of DNA and RNA polymerase reactions by chloroquine. Proc. nat. Acad. Sci. (Wash.) 54, 521 (1965).CrossRefGoogle Scholar
  7. Eron, L. J., Mcauslan, B. R.: Inhibition of deoxyribonuclease action by actinomycin D and ethidium bromide. Biochim. biophys. Acta (Amst.) 114, 633 (1966).Google Scholar
  8. Estensen, R. D., Krey, A. K., Hahn, F. E.: Studies on a deoxyribonucleic acid-quinine complex. Molec. Pharmacol. 5, 532 (1969).Google Scholar
  9. Hahn, F. E., O’Brien, R. L., Ciak, J., Allison, J. L., Olenick, J. G.: Studies on modes of action of chloroquine, quinacrine, and quinine and on chloroquine resistance. Milit. Med. 131, 1071 (1966).Google Scholar
  10. Ilan, J., Ilan, J.: Aminoacyl transfer ribonucleic acid synthetases from cell-free extract of Plasmoidum berghei. Science 164, 560 (1969).PubMedCrossRefGoogle Scholar
  11. Irvin, J. L., Irvin, E. M.: Spectrophotometry and potentiometric evaluation of apparent acid dissociation exponents of various 4-aminoquinolines. J. Amer. chem. Soc. 69, 1091 (1947).CrossRefGoogle Scholar
  12. Irvin, J. L., Irvin, E. M.: The interaction of a 9-aminoacridine derivative with nucleic acids and nucleoproteins. J. biol. Chem. 206, 39 (1954).PubMedGoogle Scholar
  13. Irvin, J. L., Irvin, E. M.: (1) The interaction of quinacrine with adenine nucleotides. J. biol. Chem. 210, 45 (1954).PubMedGoogle Scholar
  14. Irvin, J. L., Irvin, E. M., Parker, F. S.: The interaction of antimalarials with nucleic acids I Acridines. II Quinolines. Science 110, 426 (1949).PubMedCrossRefGoogle Scholar
  15. Kurnick, N. B., Radcliffe, I. E.: Reaction between DNA and quinacrine and other antimalarials. J. Lab. clin. Med. 60, 669 (1962).PubMedGoogle Scholar
  16. Lagowski, J. M., Forrest, H. S.: Interaction in vitro between isoxanthopterin and DNA. Proc. nat. Acad. Sci. (Wash.) 58, 1541 (1967).CrossRefGoogle Scholar
  17. Landez, J. H., Roskoski, R., Jr., Coppoc, G. L.: Ethidium bromide and chloroquine inhibition of rat liver cell-free aminoacylation. Biochim. biophys. Acta (Amst.) 195, 276 (1969).Google Scholar
  18. Leith, J. D., Jr.: Acridine orange and acriflavin inhibit deoxyribonuclease action. Biochim. biophys. Acta (Amst.) 72, 643 (1963).CrossRefGoogle Scholar
  19. Lerman, L. S.: Structural considerations in the interaction of DNA and acridines. J. molec. Biol. 3, 18 (1961).PubMedCrossRefGoogle Scholar
  20. Morris, C. R., Andrew, L. V., Whichard, L. P., Holbrook, D. J., Jr.: The binding of antimalarial aminoquinolines to nucleic acids and polynucleotides. Molec. Pharmacol. 6, 240 (1970).Google Scholar
  21. Muench, K. H.: Chloroquine-mediated conversion of transfer ribonucleic acid of Escherichia coli from an inactive to an active state. Cold Spr. Harb. Symp. quant. Biol. 31, 539 (1966).Google Scholar
  22. Muench, K. H.: Chloroquine and synthesis of aminoacyl transfer ribonucleic acids. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli and tryptophanyladenosine triphosphate formation. Biochemistry 8, 4872 (1969).PubMedCrossRefGoogle Scholar
  23. Muench, K. H.: (1) Chloroquine and synthesis of aminoacyl transfer ribonucleic acids. Conformational changes in tryptophanyl and tryptophan transfer ribonucleic acids. Biochemistry 8, 4880 (1969).PubMedCrossRefGoogle Scholar
  24. O’Brien, R. L., Allison, J. L., Hahn, F. E.: Evidence for intercalation of chloroquine into DNA. Biochim. biophys. Acta (Amst.) 129, 622 (1966).Google Scholar
  25. O’Brien, R. L., Olenick, J. G., Hahn, F. E.: Reactions of quinine, chloroquine, and quinacrine with DNA and their effects on the DNA and RNA polymerase reactions. Proc. nat. Acad. Sci. (Wash.) 55, 1511 (1966).CrossRefGoogle Scholar
  26. Parker, F. S., Irvin, J. L.: The interaction of chloroquine with the albumin of bovine plasma. J. biol. Chem. 199, 889 (1952).PubMedGoogle Scholar
  27. Parker, F. S.: (1) The interaction of chloroquine with nucleic acids and nucleoproteins. J. biol. Chem. 199, 897 (1952).PubMedGoogle Scholar
  28. Polet, H., Barr, C. F.: Chloroquine and dihydroquinine. In vitro studies of their antimalarial effect upon Plasmodium knowlesi. J. Pharmacol, exp. Ther. 164, 380 (1968).Google Scholar
  29. Powell, R. D.: The chemotherapy of malaria. Clin. Pharmacol. Ther. 7, 48 (1966).PubMedGoogle Scholar
  30. Sarkar, N. K.: Effects of actinomycin D and mitomycin C on the degradation of deoxyribonucleic acid and polydeoxyribonucleotide by deoxyribonucleases and venom phosphodiesterase. Biochim. biophys. Acta (Amst.) 145, 174 (1967).Google Scholar
  31. Schellenberg, K. A., Coatney, G. R.: The influence of antimalarial drugs on nucleic acid synthesis in Plasmodiumgallinaceum and Plasmodium berghei. Biochem. Pharmacol. 6, 143 (1961).PubMedCrossRefGoogle Scholar
  32. Smith, C. C.: Metabolism of pentaquine in the rhesus monkey. J. Pharmacol, exp. Ther. 116, 67 (1956).Google Scholar
  33. Sternglanz, H., Yielding, K. L., Pruitt, K. M.: Nuclear magnetic resonance studies of the interaction of chloroquine diphosphate with adenosine 5’-phosphate and other nucleotides. Molec. Pharmacol. 5, 376 (1969).Google Scholar
  34. Stollar, D., Levine, L.: Antibodies to denatured deoxyribonucleic acid in lupus erythematosus serum. V. Mechanism of DNA-anti-DNA inhibition by chloroquine. Arch. Biochem. 101, 335 (1963).PubMedCrossRefGoogle Scholar
  35. Sulkowski, E., Laskowski, M., Sr.: Degradation of thymus DNA and crab poly d(A-T) by micrococcal nuclease in the presence of actinomycin D. Biochim. biophys. Acta (Amst.) 157, 207 (1968).Google Scholar
  36. Sutherland, J. C., Sutherland, B. M.: Energy transfer in the DNA-chloroquine complex. Biochim. biophys. Acta (Amst.) 190, 545 (1969).Google Scholar
  37. Van Dyke, K., Szustkiewicz, C., Lantz, C. H., Saxe, L. H.: Studies concerning the mechanism of action of antimalarial drugs. Inhibition of the incorporation of adenosine-8-3H into nucleic acids of Plasmodium berghei. Biochem. Pharmacol. 18, 1417 (1969).PubMedCrossRefGoogle Scholar
  38. Waring, M. J.: The effects of antimicrobial agents on ribonucleic acid polymerase. Molec. Pharmacol. 1, 1 (1965).Google Scholar
  39. Whichard, L. P., Morris, C. R., Smith, J. M., Holbrook, D. J., Jr.: The binding of primaquine, pentaquine, pamaquine, and plasmocid to deoxyribonucleic acid. Molec. Pharmacol. 4, 630 (1968).Google Scholar
  40. Zeleznick, L. D., Sweeney, C. M.: Inhibition of deoxyribonuclease action by nogala- mycin and U-12241 by their interaction with DNA. Arch. Biochem. 120, 292 (1967).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • David J. HolbrookJr.
  • Leona P. Whichard
  • Carl R. Morris
  • Lidia A. White

There are no affiliations available

Personalised recommendations