Advertisement

The Behaviour of Visual Pigments at Low Temperatures

  • T. Yoshizawa
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 1)

Abstract

One of the most fascinating problems in vision is the identification of the chemical process that triggers the excitation of the photoreceptor. To elucidate the molecular basis of this event, many workers have studied the sequence of intermediate products that are formed after a visual pigment molecule has captured a photon. Since the intermediates have short lives, these studies have been helped by working at low temperatures.

Keywords

Visual Pigment Equilibrium Mixture Chromophoric Group Spectral Absorbance Bleaching Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bownds, D.: Site of attachment of retinal in rhodopsin. Nature (Lond.) 216, 1178–1181 (1967).CrossRefGoogle Scholar
  2. Bridges, C. D. B.: Spectroscopic properties of porphyropsins. Vision Res. 7, 349–369 (1967).PubMedCrossRefGoogle Scholar
  3. Broda, E. E., Goodeve, C. F.: The behaviour of visual purple at low temperature. Proc. roy. Soc. A 179, 151–159 (1941).CrossRefGoogle Scholar
  4. Brown, P. K., Brown, P. S.: Visual pigments of the octopus and cuttlefish. Nature (Lond.) 182, 1288–1290 (1958).CrossRefGoogle Scholar
  5. — Wald, G.: The neo-b isomer of vitamin A and retinene. J. biol. Chem. 222, 865–877 (1956).PubMedGoogle Scholar
  6. Collins, F. D.: Rhodopsin and indicator yellow. Nature (Lond.) 171, 469–471 (1953).CrossRefGoogle Scholar
  7. — Morton, R. A.: Studies in rhodopsin 3: Rhodopsin and transient orange. Biochem. J. 47, 18–24 (1950).PubMedGoogle Scholar
  8. Cone, R. A.: Early receptor potential: Photoreversible charge displacement in rhodopsin. Science 155, 1128–1130 (1967).PubMedCrossRefGoogle Scholar
  9. Cunningham, J., Tompkins, F. C.: Spectra of sodium and potassium azide crystals coloured by ultraviolet and X-ray radiation. Proc. roy. Soc. A 251, 27–40 (1959).CrossRefGoogle Scholar
  10. Dartnall, H. J. A.: The visual pigments. London, Methuen & Co: New York, John Wiley & Sons, Inc. (1957).Google Scholar
  11. Ebrey, T. G.: The thermal decay of the intermediates of rhodopsin in situ. Vision Res. 8, 965–982 (1968).PubMedCrossRefGoogle Scholar
  12. Erhardt, F., Ostroy, S. E., Abrahamson, E. W.: Protein configuration changes in the photolysis of rhodopsin. 1. The thermal decay of cattle lumirhodopsin in vitro. Biochim. biophys. Acta (Amst.) 112, 256–264 (1966).CrossRefGoogle Scholar
  13. Erickson, J. O., Blatz, P. E.: N-retinylidene-l-amino-2-propanol: A Schiff base analog for rhodopsin. Vision Res. 8, 1367–1375 (1968).PubMedCrossRefGoogle Scholar
  14. Estabrook, R. W.: The low temperature spectra of hemoproteins. I. Apparatus and its application to a study of cytochrome C. J. biol. Chem. 223, 781–794 (1956).PubMedGoogle Scholar
  15. Goldsmith, T. H., Fernandez, H. R.: Some photochemical and physiological aspects of visual excitation in compound eyes. In: The functional organization of the compound eye. London: Pergamon Press (1966).Google Scholar
  16. Grellmann, K.-H., Livingston, R., Pratt, D.: A flash-photolytic investigation of rhodopsin at low temperatures: Nature (Lond.) 193, 1258–1260 (1962).CrossRefGoogle Scholar
  17. Hara, T., Hara, R.: New photosensitive pigment found in the retina of the squid Ommastrephes. Nature (Lond.) 206, 1331–1334 (1965).CrossRefGoogle Scholar
  18. — — Vision in octopus and squid. Rhodopsin and retinochrome in the squid retina. Nature (Lond.) 214, 573–575 (1967).CrossRefGoogle Scholar
  19. — — Takeuchi, J.: Vision in octopus and squid. Rhodopsin and retinochrome in the octopus retina. Nature (Lond.) 214, 572–573 (1967).CrossRefGoogle Scholar
  20. Hausser, K. W., Kuhn, R., Seitz, G.: Lichtabsorption und Doppelbindung. V. Über die Absorption von Verbindungen mit Konjugierten. Kohlenstoffdoppelbindungen bei tiefer Temperatur. Z. phys. Chem. 29, 391–416 (1935).Google Scholar
  21. Hubbard, R.: Retinene isomerase. J. gen. Physiol. 39, 935–962 (1956).PubMedCrossRefGoogle Scholar
  22. — On the chromophores of the visual pigments. In: Visual problems of colour, No. 8, pp. 153 to 169. London: H. M. Stationary Office (1958).Google Scholar
  23. — Bownds, D., Yoshizawa, T.: The chemistry of visual photoreception. Cold Spr. Harb. Symp. quant. Biol. 30, 301–315 (1965).Google Scholar
  24. — Brown, P. K., Kropf, A.: Action of light on visual pigments. Vertebrate lumi- and metarhodopsins. Nature (Lond.) 183, 442–446 (1959).CrossRefGoogle Scholar
  25. — St. George, R. C. C.: The rhodopsin system of the squid. J. gen. Physiol. 41, 501–528 (1958).PubMedCrossRefGoogle Scholar
  26. — Kropf, A.: The action of light on rhodopsin. Proc. natl. Acad. Sci. 44, 130–139 (1958).PubMedCrossRefGoogle Scholar
  27. — — Molecular aspects of visual excitation. Ann. N. Y. Acad. Sci. 81, 388–398 (1959a).PubMedCrossRefGoogle Scholar
  28. — — Action of light on visual pigments. Chicken lumi- and meta-iodopsin. Nature (Lond.) 183, 448–450 (1959b).CrossRefGoogle Scholar
  29. — Wald, G.: Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J. gen. Physiol. 36, 269–315 (1952).PubMedCrossRefGoogle Scholar
  30. — —; Visual pigment of the horseshoe crab, Limulus polyphemus. Nature (Lond.) 186, 212–215 (1960).CrossRefGoogle Scholar
  31. Jurkowitz, L.: Photochemical and stereochemical properties of carotenoids at low temperatures. (1) Photochemical behaviour of retinene. Nature (Lond.) 184, 614–617 (1959).CrossRefGoogle Scholar
  32. Keilin, D. F. R. S., Hartree, E. F.: Effect of low temperature on the absorption spectra of haemoproteins; with observations on the absorption spectrum of oxygen. Nature (Lond.) 164, 254–259 (1949).CrossRefGoogle Scholar
  33. — — Further observations on absorption spectra at low temperatures. Nature (Lond.) 165, 504–505 (1950).CrossRefGoogle Scholar
  34. Kitô, Y., Ishigami, M., Yoshizawa, T.: On the labile intermediate of rhodopsin as demonstrated by low temperature illumination. Biochim. biophys. Acta (Amst.) 48, 287–298 (1961).CrossRefGoogle Scholar
  35. Kitô, Y., Suzuki, T., Azuma, M., Sekoguti, Y.: Absorption spectrum of rhodopsin denatured with acid. Nature (Lond.) 218, 955–956 (1968).CrossRefGoogle Scholar
  36. — Yoshizawa, T.: Photochemical properties of rhodopsin at low temperature. Ann. Zool. Jap. 33, 7–13 (1960).Google Scholar
  37. Kropf, A.: The role of geometrical isomerism in the visual process. Symp. Reversible Photochemical Processes, at Durham, preprint 592–609 (1962).Google Scholar
  38. — Brown, P. K., Hubbard, R.: Action of light on visual pigments. Lumi- and metarhodopsins of squid and octopus. Nature (Lond.) 183, 446–448 (1959).Google Scholar
  39. — Hubbard, R.: The mechanism of bleaching rhodopsin. Ann. N. Y. Acad. Sci. 74, 266–280 (1958).CrossRefGoogle Scholar
  40. Loeb, J. N., Brown, P. K., Wald, G.: Photochemical and stereochemical properties of carotenoids at low temperatures. (2) Cis-trans isomerism and steric hindrance. Nature (Lond.) 184, 617–620 (1959).Google Scholar
  41. Lythgoe, R. J.: The absorption spectra of visual purple and of indicator yellow. J. Physiol. (Lond.) 89, 331–358 (1937).Google Scholar
  42. — Quilliam, J. P.: The relation of transient orange to visual purple and indicator yellow. J. Physiol. (Lond.) 94, 399–410 (1938).Google Scholar
  43. Matthews, R. G., Hubbard, R., Brown, P. K., Wald, G.: Tautomeric forms of metarhodopsin. J. gen. Physiol. 47, 215–240 (1963–1964).PubMedCrossRefGoogle Scholar
  44. Morton, R. A., Pitt, G. A. J.: Studies on rhodopsin. 9: pH and the hydrolysis of indicator yellow. Biochem. J. 59, 128–134 (1955).PubMedGoogle Scholar
  45. Mulliken, R. S.: Intensities of electronic transitions in molecular spectra III. Organic molecules with double bonds. Conjugated dienes. J. chem. Phys. 7, 121–135 (1939).CrossRefGoogle Scholar
  46. Ostroy, S. E., Erhardt, F., Abrahamson, E. W.: Protein configuration changes in the photolysis of rhodopsin. II. The sequence of intermediates in thermal decay of cattle metarhodopsin in vitro. Biochim. biophys. Acta (Amst.) 112, 265–277 (1966).CrossRefGoogle Scholar
  47. Pratt, D.C., Livingston, R., Grellmann, K.-H.: Flash Photolysis of rod particle suspensions. Photochem. and Photobiol. 3, 121–127 (1964).CrossRefGoogle Scholar
  48. Takeuchi, J.: Photosensitive pigments in the cephalopod retinas. J. Nara med. Ass. (in Japanese) 17, 433–448 (1966).Google Scholar
  49. Wald, G.: Photochemical and stereochemical properties of carotenoids at low temperatures: (3) Discussion. Nature (Lond.) 184, 620–624 (1959).Google Scholar
  50. — Visual pigments of crayfish. Nature (Lond.) 215, 1131–1133 (1967a).CrossRefGoogle Scholar
  51. — The molecular basis of visual excitation. Nobel lecture, preprint 1–21 (1967b).Google Scholar
  52. — Brown, P. K.: The molar extinction of rhodopsin. J. gen. Physiol. 37, 189–200 (1953).PubMedCrossRefGoogle Scholar
  53. — — Brown, P. S.: Quoted by Brown, P. K., Gibbons, I. R., Wald, G. (1963): The visual cells and visual pigment of the mudpuppy, Necturus. J. Cell Biol. 19, 79–106 (1963).PubMedCrossRefGoogle Scholar
  54. — — Smith, P. H.: Iodopsin. J. gen. Physiol. 38, 623–681 (1955).CrossRefGoogle Scholar
  55. — Durell, J., St. George, R.C.C.: The light reaction in the bleaching of rhodopsin. Science 111, 179–181 (1950).PubMedCrossRefGoogle Scholar
  56. — Hubbard, R.: Visual pigment of a decapod crustacean. The lobster. Nature (Lond.) 180, 278–280 (1957).CrossRefGoogle Scholar
  57. Wulff, V. J., Adams, R., Linschitz, H., Abrahamson, E. W.: Effect of flash illumination on rhodopsin in solution. Ann. N. Y. Acad. Sci. 74, 281–290 (1958).CrossRefGoogle Scholar
  58. Yoshizawa, T.: Further studies on labile intermediates of rhodopsin. Ann. Rep. Sci. Works, Fac. Sci., Osaka Univ. 10, 1–12 (1962).Google Scholar
  59. — Horiuchi, S.: Intermediates in the photolytic process of porphyropsin. Exptl. Eye. Res. 8, 243–244 (1969).Google Scholar
  60. — — Conversion of cattle rhodopsin at extremely low temperature. In preparation.Google Scholar
  61. — Kitô, Y.: Studies on rhodopsin illuminated at low temperature. Ann. Rep. Sci. Works, Fac. Sci., Osaka Univ. 6, 27–41 (1958a).Google Scholar
  62. — — Chemistry of the rhodopsin cycle. Nature (Lond.) 182, 1604–1605 (1958b).CrossRefGoogle Scholar
  63. — — Ishigami, M.: Studies on the metastable states in the rhodopsin cycle. Biochim. biophys. Acta (Amst.) 43, 329–334 (1960).CrossRefGoogle Scholar
  64. — Wald, G.: Pre-lumirhodopsin and the bleaching of visual pigments. Nature (Lond.) 197, 1279–1286 (1963).CrossRefGoogle Scholar
  65. — — Transformations of squid rhodopsin at low temperatures. Nature (Lond.) 201, 340–345 (1964).CrossRefGoogle Scholar
  66. — — Visual pigments and the Keilin-Hartree effect. Nature (Lond.) 212, 483–485 (1966).CrossRefGoogle Scholar
  67. — — Photochemistry of iodopsin. Nature (Lond.) 214, 566–571 (1967).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • T. Yoshizawa
    • 1
  1. 1.Toyonaka, OsakaJapan

Personalised recommendations