Inert Absorbing and Reflecting Pigments

  • W. R. A. Muntz
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 1)

Abstract

One of the most striking early correlations between physiology and behaviour was König’s (1894) demonstration that human scotopic spectral sensitivity resembled the spectral absorptive characteristics (difference spectrum) of a pigment — visual purple, or rhodopsin — that he extracted from the human retina. Later comparisons between such functions (e.g. Hecht and Williams, 1922; Dartnall and Goodeve, 1937; Wald, 1938; Crescitelli and Dartnall, 1953; Dartnall, 1953; Wald and Brown, 1958; Weale, 1961; Dartnall, 1961) have amply confirmed König’s hypothesis. No one today doubts that the photosensitive pigments in retinal receptors mediate vision, and the sophisticated comparisons that are now possible serve rather to give some insight into the nature of the visual process.

Keywords

Mercury Hexagonal Retina Dehydration Stratification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, H. E., Dalland, J. I.: Spectral thresholds in the starling (Sturnus vulgaris). J. comp. physiol. Psychol. 52, 438–445 (1959).PubMedGoogle Scholar
  2. Adolph, A. R.: Thermal and spectral sensitivities of discrete slow potentials in Limulus eye. J. gen. Physiol. 52, 584–599 (1968).Google Scholar
  3. Alpern, M., Thompson, S., Lee, M. S.: Spectral transmission of visible light by the living human eye. J. opt. Soc. Amer. 55, 723–727 (1965).Google Scholar
  4. Arden, G. B., Silver, P. H.: Visual thresholds and spectral sensitivities of the grey squirrel (Sciurus carolinensis leucotis). J. Physiol. (Lond.) 163, 540–557 (1962).Google Scholar
  5. Armington, J. C., Crampton, G. H.: Comparison of spectral sensitivity at the eye and the optic tectum of the chicken. Amer. J. Ophthal. 46, 72–87 (1958).PubMedGoogle Scholar
  6. Balaz, E. A.: Studies on the structure of the vitreous body. 1. The absorption of ultraviolet light. Amer. J. Ophthal. 38, No. 1, pt. II, 21–28 (1954).Google Scholar
  7. Bernhard, C. G., Miller, W. H., Moller, A. R.: The insect corneal nipple array. Acta physiol. scand. 63, suppl. 243 (1965).Google Scholar
  8. Birukow, G.: Beobachtungen über Reizwertverteilung in reinen Zapfennetzhäuten. Z. vergl. Physiol. 27, 322–334 (1939).Google Scholar
  9. Blough, D. S.: Spectral sensitivity in the pigeon. J. opt. Soc. Amer. 47, 827–833 (1957).Google Scholar
  10. Bridgeman, C. S., Smith, K. U.: The absolute threshold of vision in cat and man with observations on its relation to the optic cortex. Amer. J. Physiol. 136, 463–466 (1942).Google Scholar
  11. Bridges, C. D. B.: Visual pigments of the pigeon (Columba livia). Vision Res. 2, 125–137 (1962).Google Scholar
  12. Brindley, G. S.: The effects on colour vision of adaptation to very bright lights. J. Physiol. (Lond.) 122, 332–350 (1953).Google Scholar
  13. Willmer, E. N.: The reflection of light from the macular and peripheral fundus oculi in man. J. Physiol. (Lond.) 116, 350–356 (1952).Google Scholar
  14. Brolin, S. E., Cederlund, C.: The fluorescence of the lens of the eyes of different species. Acta Ophthal. (Kbh.) 36, 324–328 (1958).Google Scholar
  15. Browness, J. M., Morton, R. A.: Distribution of copper and zinc in the eyes of fresh-water fishes and frogs. Occurrence of metals in melanin fractions from eye tissues. Biochem. J. 51, 530–535 (1952).Google Scholar
  16. Burkhardt, D. A.: The goldfish electroretinogram: relation between photopic spectral sensitivity functions and cone absorption spectra. Vision Res. 6, 517–532 (1966).PubMedGoogle Scholar
  17. Carricaburu, P., Chardenot, P.: Spectres d’absorption de la cornée de quelques arthropodes. Vision Res. 7, 43–50 (1967).PubMedGoogle Scholar
  18. Cooper, G. F., Robson, J. G.: The yellow colour of the lens of the grey squirrel (Sciurus carolinensis leucotis). J. Physiol. (Lond.) 203, 403–410 (1969a).Google Scholar
  19. — — The yellow colour of the lens of man and other primates. J. Physiol. (Lond.) 203, 411 to 418 (1969b).Google Scholar
  20. Cooper, T. G., Myer, D. B.: Ontogeny of retinal oil droplets in the chick embryo. Exp. Eye Res. 7, 434–442 (1968).PubMedGoogle Scholar
  21. Crescitelli, F., Dartnall, H. J. A.: Human visual purple. Nature (Lond.) 172, 195–196 (1953).Google Scholar
  22. Dartnall, H. J. A.: Visual purple and the photopic luminosity curve. Brit. J. Ophthal. 32, 793–811 (1948).PubMedGoogle Scholar
  23. — The interpretation of spectral sensitivity curves. Brit. med. Bull. 9, 24–30 (1953).PubMedGoogle Scholar
  24. Dartnall, H. J. A.: Visual pigments before and after extraction from visual cells. Proc. roy. Soc. B 154, 250–266 (1961).Google Scholar
  25. Arden, G. B., Ikeda, H., Luck, C. P., Rosenberg, M. E., Pedler, C. M. H., Tansley, K.: Anatomical, electro-physiological and pigmentary aspects of vision in the bush baby: an interpretative study. Vision Res. 5, 399–424 (1965).PubMedGoogle Scholar
  26. Goodeve, C. F.: Scotopic luminosity curve and the absorption spectrum of visual purple. Nature (Lond.) 139, 409–411 (1937).Google Scholar
  27. Denton, E. J.: Recherches sur l’absorption de la lumière par le cristallin des poissons. Bull. Inst. Océanog. Monaco 1071, 1–10 (1956).Google Scholar
  28. — Light absorption by the intact retina. In: Visual problems of colour. Nat. Phys. Lab., G. Brit., Proc. Symp. No. 8, H.M.S.O., London 1958.Google Scholar
  29. Land, M. F.: Optical properties of the lamellae causing interference colours in animal reflectors. J. Physiol. (Lond.) 191, 23P (1967).Google Scholar
  30. Nicol, J. A.C.: The choroidal tapeta of some cartilaginous fishes (Chondrichthyes). J.marine biol. Assoc. U.K. 44, 219–258 (1964).Google Scholar
  31. Warren, F. J.: Eyes of Histioteuthidae. Nature (Lond.) 219, 400–401 (1968).Google Scholar
  32. DeVries, H., Spoor, A., Jieloe, R.: Properties of the eye with respect to polarised light. Physica 19, 419–432 (1953).Google Scholar
  33. Dodt, E.: Physical factors in the correlation of electroretinogram spectral sensitivity curves with visual pigments. Amer. J. Ophthal. 46, 87–90 (1958).PubMedGoogle Scholar
  34. Echte, K.: Dark and light adaptation in pigmented and white rat as measured by electroretinogram threshold. J. Neurophysiol. 24, 427–445 (1961).PubMedGoogle Scholar
  35. Walther, J. B.: Spektrale Sensitivität und Blutreflexion. Pflügers Arch. ges. Physiol. 266, 187–192 (1958a).Google Scholar
  36. — — Netzhautsensitivität, Linsenabsorption und physikalische Lichtstreuung. Pflügers Arch. ges. Physiol. 266, 167–174 (1958b).Google Scholar
  37. — — Fluorescence of the crystalline lens and electroretinographic sensitivity determinations. Nature (Lond.) 181, 286–287 (1958c).Google Scholar
  38. Donner, K. O.: The spectral sensitivity of pigeon’s retinal elements. J. Physiol. (Lond.) 122, 524–537 (1953).Google Scholar
  39. — On the effect of the coloured oil droplets in the spectral sensitivity of the avian retina. Proc. XIIth Int. Ornithol. Congress, Helsinki 1958, 167–172 (1960).Google Scholar
  40. Ducker, G.: Spontane Bevorzugung arteigener Farben bei Vögeln. Z. Tierpsychol. 20, 43–65 (1963).Google Scholar
  41. Erhard, H.: Messende Untersuchungen über den Farbensinn der Vögel. Zool. Jahrb., Allg. Zool. Physiol. 41, 489–552 (1924).Google Scholar
  42. Franz, V.: Zur Anatomie, Histologie und funktionellen Gestaltung des Selachierauges. Z. Naturwiss. 40, 697–840 (1905).Google Scholar
  43. Friedman, H.: Colour vision in the Virginia opossum. Nature (Lond.) 213, 835 (1967).Google Scholar
  44. Goldsmith, T. H.: Do flies have a red receptor? J. gen. Physiol. 49, 265–287 (1965).PubMedGoogle Scholar
  45. Goldstein, E. B., Williams, T. P.: Calculated effects of “screening pigments”. Vision Res. 6, 39–50 (1966).PubMedGoogle Scholar
  46. Graf, V.: A spectral sensitivity curve and wavelength discrimination for the turtle (Chrysemys picta picta). Vision Res. 7, 915–928 (1967).PubMedGoogle Scholar
  47. Granda, A. M.: Electrical responses of the light- and dark-adapted turtle eye. Vision Res. 2, 343–356 (1962).Google Scholar
  48. Stirling, C. E.: Differential spectral sensitivity in the optic tectum and eye of the turtle. J. gen. Physiol. 48, 901–917 (1965).PubMedGoogle Scholar
  49. — — The spectra] sensitivity of the turtle’s eye to very dim lights. Vision Res. 6, 143–152 (1966).PubMedGoogle Scholar
  50. Granit, R.: The “red” receptor of Testudo. Acta physiol. scand. 1, 386–390 (1941).Google Scholar
  51. — Spectral properties of the visual receptor elements of the Guinea pig. Acta physiol. scand. 3, 318–328 (1942a).Google Scholar
  52. — The photopic spectrum of the pigeon. Acta physiol. scand. 4, 118–124 (1942b).Google Scholar
  53. — Receptors and sensory perception. New Haven: Yale Univ. Press 1955.Google Scholar
  54. Gunter, R.: The absolute threshold for vision in the cat. J. Physiol. (Lond.) 114, 8–15 (1951).Google Scholar
  55. Gunter, R., Harding, H. G. W., Stiles, W. S.: Spectral reflexion factor of the cat’s tapetum. Nature (Lond.) 168, 293–294 (1951).Google Scholar
  56. Guttman, M., Kalish, M. I.: Discriminability and stimulus generalisation. J. exp. Psychol. 51, 79–88 (1956).PubMedGoogle Scholar
  57. Hailman, J. F.: Coding of the colour preference of the gull chick. Nature (Lond.) 204, 710. (1964).Google Scholar
  58. Hamilton, W. F., Coleman, T. B.: Trichomatic vision in the pigeon as illustrated by the spectral discrimination curve. J. comp. Psychol. 15, 183–191 (1933).Google Scholar
  59. Hecht, S., Williams, R. E.: The visibility of monochromatic radiation and the absorption spectrum of visual purple. J. gen. Physiol. 5, 1–34 (1922).PubMedGoogle Scholar
  60. Heyningen, R.van: The lens. In: The eye, Vol. 1, ed. H. Davson, New York, London: Academic Press 1962.Google Scholar
  61. Honigmann, H.: Untersuchungen über Lichtempfindlichkeit und Adaptierung des Vogelauges. Pflügers Arch. ges. Physiol. 189, 1–72 (1921).Google Scholar
  62. Ikeda, H.: The spectral sensitivity of the pigeon (Columba livia). Vision Res. 5, 19–36 (1965).PubMedGoogle Scholar
  63. Jones, A. E.: Wavelength and intensity effects on the response of single lateral geniculate nucleus units in the owl monkey. J. Neurophysiol. 24, 125–138 (1966).Google Scholar
  64. Kennedy, D., Milkman, R. D.: Selective light absorption by the lenses of lower vertebrates, and its influence on spectral sensitivity. Biol. Bull. 111, 375–386 (1956).Google Scholar
  65. Kenshalo, D. R.: Comparison of thermal sensitivity of the forehead, lip, conjunctiva, and cornea. J. appl. Physiol. 15, 987–991 (1960).PubMedGoogle Scholar
  66. Kinsey, V. E.: Spectral transmission of the eye to ultraviolet radiations. Arch. Ophthal. (N. Y.) 39, 508–513 (1948).Google Scholar
  67. König, A.: Über den menschlichen Sehpurpur und seine Bedeutung für das Sehen. S. B. Akad. Wiss. Berlin 577–598 (1894).Google Scholar
  68. Krause, W.: Über die Endigung der Muskelnerven. Z. rationelle Med. 20, 1–18 (1863).Google Scholar
  69. Die Retina. V. Die Retina der Vögel. Int. Mschr. Anat. Physiol. 11, 69–122 (1894).Google Scholar
  70. Land, M. F.: A multilayer interference reflector in the eye of the scallop (Pecten maximus). J. exp. Biol. 45, 433–447 (1966).Google Scholar
  71. LeGrand, Y.: Colorimétrie du poulet théorique. Vision Res. 2, 81–83 (1962).Google Scholar
  72. Lewis, D. M.: Retinal photopigments in the albino rat. J. Physiol. 136, 615–623 (1957).PubMedGoogle Scholar
  73. Lisenby, D.: Spectral sensitivity in the turtle. J. Psychol. 59, 95–100 (1965).PubMedGoogle Scholar
  74. Ludvigh, E., McCarthy, E. F.: Absorption of visible light by the refractive media of the human eye. Arch. Ophthal. 20, 37–51 (1938).Google Scholar
  75. McCandless, R. L., Hoffert, J. R., Fromm, P. O.: Light transmission by corneas, aqueous humor and crystalline lenses of fishes. Vision Res. 9, 223–232 (1969).PubMedGoogle Scholar
  76. McEwen, W. K.: The yellow pigment of human lenses. Amer. J. Ophthal. 47, No. 5 pt. II, 144–146 (1959).PubMedGoogle Scholar
  77. Merker, E.: Die Sichtbarkeit ultravioletten Lichtes. Biol. Rev. 9, 49–78 (1934).Google Scholar
  78. Meyer, D. B., Cooper, T. G.: The visual cells of the chicken as revealed by phase contrast microscopy. Amer. J. Anat. 118, 723–734 (1966).PubMedGoogle Scholar
  79. Middleton, W. E. K.: Vision through the atmosphere. Toronto: Toronto Univ. Press 1952.Google Scholar
  80. Miller, W. H., Bernard, G. D., Allen, J. L.: The optics of insect compound eyes. Science 162, 760–767 (1968).PubMedGoogle Scholar
  81. Moreland, J. D., Lythgoe, J. N.: Yellow corneas in fishes. Vision Res. 8, 1377–1380 (1968).PubMedGoogle Scholar
  82. Morris, V. B., Shorey, C. D.: An electron microscope study of types of receptor in the chick retina. J. comp. Neurol. 129, 313–339 (1967).PubMedGoogle Scholar
  83. Motais, R.: Sur l’absorption de la lumière par le cristallin de quelques poissons de grande profondeur. Bull. Inst. Océanog. Monaco, No. 1094, 1–4 (1957).Google Scholar
  84. Muntz, W. R. A.: A behavioural study on photopic and scotopic vision in the hooded rat. Vision Res. 7, 371–376 (1967).PubMedGoogle Scholar
  85. Sokol, S.: Psychophysical thresholds to different wavelengths in light adapted turtles. Vision Res. 7, 729–741 (1967).PubMedGoogle Scholar
  86. Naylor, E. J., Stanworth, A.: Retinal pigment and the Haidinger effect. J. Physiol. (Lond.) 124, 543–552 (1954).Google Scholar
  87. Nicol, J. A. C.: The tapetum in Scyliorhinus canicula. J. Marine Biol. Assoc. U.K. 41, 271 to 277 (1961).Google Scholar
  88. O’Connell, C. P.: The structure of the eye of Sardinops caerulea, Engraulis mordax, and four other pelagic marine teleosts. J. Morph. 113, 287–329 (1963).PubMedGoogle Scholar
  89. Orlov, O. I. U., Maximova, E. M.: On the role of the intra-bulbar light filters. Dokl. Akad. Nauk SSSR u Otd. Biol. Ch. 154, 463–466 (1964) (in Russian).Google Scholar
  90. Pautler, E. L.: Directional sensitivity of isolated turtle retinas. J. opt. Soc. Amer. 57, 1267 to 1269 (1967).Google Scholar
  91. Pedler, C. M. H., Boyle, M.: Multiple oil droplets in the photoreceptors of the pigeon. Vision Res. 9, 525–528 (1969).PubMedGoogle Scholar
  92. Peiponen, V. A.: Zur Bedeutung der Ölkugeln im Farbensehen der Sauropsiden. Ann. Zool. Fenn. 1, 281–302 (1964).Google Scholar
  93. Pirenne, M. H.: Spectral luminous efficiency of radiation. In: The Eye, Vol. 2, ed. H. Davson, New York, London: Academic Press 1962.Google Scholar
  94. Pirie, A.: Crystals of riboflavin making up the tapetum lucidum in the eye of a lemur. Nature (Lond.) 183, 985–986 (1959).Google Scholar
  95. Pumphrey, R. J.: Concerning vision. In: The cell and the organism, ed. J. A. Ramsey and V. B. Wigglesworth, Cambridge Univ. Press 1961.Google Scholar
  96. Roae, H. E.: The absorption of light by the coloured globules in the retina of the domestic hen. Proc. roy. Soc. B 105, 371–374 (1929).Google Scholar
  97. — Colour vision. Physiol. Rev. 13, 43–79 (1933).Google Scholar
  98. Ruddock, K. H.: The effect of age upon colour vision — II. Changes with age in light transmission of the ocular media. Vision Res. 5, 47–58 (1965).PubMedGoogle Scholar
  99. Rushton, W. A. H.: The cone pigments of the human fovea in colour blind and normal. In: Visual Problems of colour, Nat. Phys. Lab. G.Brit., Proc. Symp. No. 8, London: H.M.S.O. 1958.Google Scholar
  100. — Excitation pools in the frog’s retina. J. Physiol. (Lond.) 149, 327–345 (1959).Google Scholar
  101. Said, F. S., Weale, R. A.: The variation with age of the spectral transmissivity of the living human crystalline lens. Gerontologica 3, 213–223 (1959).Google Scholar
  102. Silver, P. H.: Spectral sensitivity of a trained bush baby. Vision Res. 6, 153–162 (1966).PubMedGoogle Scholar
  103. — Spectral sensitivity of the white rat by a training method. Vision Res. 7, 377–384 (1967).PubMedGoogle Scholar
  104. Sokol, S., Muntz, W. R. A.: The spectral sensitivity of the turtle (Chrysemys picta picta). Vision Res. 6, 285–292 (1966).Google Scholar
  105. Stiles, W. S.: Further studies of visual mechanisms by the two-colour threshold technique. Colloquio sobre problemas opticas de la vision. Union internationale de physique pure et appliquée, Madrid 1953.Google Scholar
  106. Burch, J. M.: N.P.L. colour-matching investigation: final report 1958. Opt. Acta 6, 1–26 (1959).Google Scholar
  107. Crawford, B. H.: The luminous efficiency of rays entering the eye pupil at different points. Proc. roy. Soc. B 112, 428–450 (1933).Google Scholar
  108. Strother, G. K.: Absorption spectra of retinal oil globules in turkey, turtle and pigeon. Exp. Cell Res. 29, 349–355 (1963).PubMedGoogle Scholar
  109. — Absorption of Musca domestica screening pigment. J. gen. Physiol. 49, 1087–1088 (1966).Google Scholar
  110. Sutherland, N. S.: Shape discrimination in the goldfish. In: The central nervous system and fish behaviour, ed. D. Ingle, Chicago: Univ. Chicago Press 1968.Google Scholar
  111. Studnitz, G.von, Loevinich, H. K., Newmann, H. J. Über die Löslichkeit und Trennbarkeit der Farbsubstanzen. Z. vergl. Physiol. 30, 74–83 (1943).Google Scholar
  112. Tyler, J. E., Preisendorfer, R. W.: Transmission of energy within the sea. 8. Light. In: The Sea, Vol. 1, ed. M. N. Hill. New York: Interscience Publishers 1962.Google Scholar
  113. Vakkur, G. J., Bishop, P. O.: The schematic eye in the cat. Vision Res. 3, 357–381 (1963).Google Scholar
  114. Waelchi, G.: Zur Topographie der gefärbten Kugeln der Vogelnetzhaut. Arch. Ophthal. 29, 205–223 (1883).Google Scholar
  115. Wald, G.: On rhodopsin in solution. J. gen. Physiol. 21, 795–832 (1938).PubMedGoogle Scholar
  116. — Human vision and the spectrum. Science 101, 653–658 (1945).PubMedGoogle Scholar
  117. — The photochemistry of vision. Doc. Ophthal. 3, 94–137 (1949).Google Scholar
  118. Brown, P. K.:Human rhodopsin. Science 127, 222–226 (1958).PubMedGoogle Scholar
  119. Zussman, H.: Carotenoids of the chicken retina. Nature (Lond.) 140, 197 (1937).Google Scholar
  120. Walls, G. L.: The vertebrate eye and its adaptive radiation. Michigan. Cranbrook Inst. of Science, 1942.Google Scholar
  121. Walls, G. L., Judd, H. D.: The intra-ocular colour-filters of vertebrates. Brit. J. Ophthal. 17, 641–675; 705–725 (1933).PubMedGoogle Scholar
  122. Walls, G. L., Judd, H. D.: The intra-ocular colour-filters of vertebrates. Brit. J. Ophthal. 17 705–725 (1933).PubMedGoogle Scholar
  123. Wasserman, G. S.: Density spectrum of Limulus screening pigment. J. gen. Physiol. 50, 1075–1077 (1967).PubMedGoogle Scholar
  124. Weale, R. A.: The spectral reflectivity of the cat’s tapetum measured in situ. J. Physiol. 119, 30–42 (1953).PubMedGoogle Scholar
  125. — Photosensitive reactions in foveae of normal and cone-monochromatic observers. Optica Acta 6, 158–174 (1959).Google Scholar
  126. — Notes on the photometric significance of the human crystalline lens. Vision Res. 1, 183–191 (1961).Google Scholar
  127. Weisinger, H., Schmidt, F. H., Williams, R. C., Tiller, C. O., Ruffin, R. S., Guerry, D., Ham, W. T.: The transmission of light through the ocular media of the rabbit eye. Amer. J. Ophthal. 42, 907–910 (1956).Google Scholar
  128. Witkovsky, P.: The effect of chromatic adaptation on colour sensitivity of the carp electroretinogram. Vision Res. 8, 823–837 (1968).PubMedGoogle Scholar
  129. Wyszecki, G., Stiles, W. S.: Color science. New York: Wiley & Sons Inc. 1967.Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • W. R. A. Muntz
    • 1
  1. 1.BrightonUK

Personalised recommendations